Category-Graded Algebraic Theories and Effect Handlers

Takahiro Sanada ¹

¹RIMS, Kyoto University

6 September 2022 ERATO MMSD Colloquium

Overview

I propose a novel effects system based on a category-graded extension of algebraic theories that correspond to category-graded monads.

monad	algebraic theory	effect system with handlers
category-graded monad	category-graded algebraic theory	category-graded effect system with handlers

Outline

Lax functors and extensions of monads

Category-Graded Algebraic Theories

Category-Graded Effect System with Effect Handlers

Lax functors and extensions of monads

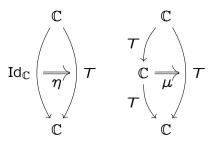
Category-Graded Algebraic Theories

Category-Graded Effect System with Effect Handlers

Monads

Monads are used to capture computation in terms of category theory.

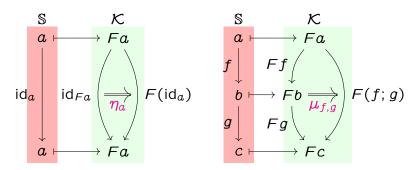
A monad is a functor $T: \mathbb{C} \to \mathbb{C}$ with



that satisfies appropriate axioms.

Lax functors

Monads can be seen as a special case of lax functor. $F: \mathbb{S} \to \mathcal{K}$ where \mathcal{K} is a 2-category.

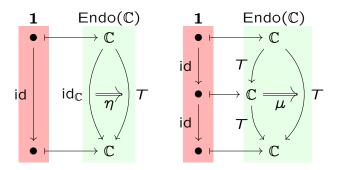


that satisfies appropriate axioms.

If η_a and $\mu_{f,g}$ are identities, the lax functor is an ordinary functor.

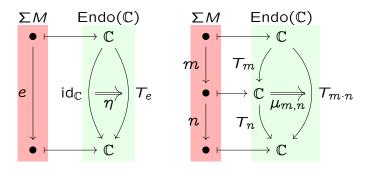
Monads as lax functors

A monad is a lax functor $T: \mathbf{1} \to \text{Endo}(\mathbb{C})$ [Benabou, 1967].



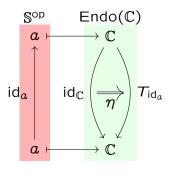
Graded monads as lax functors

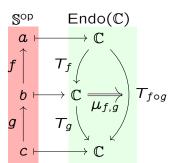
For a monoid $M = (M, e, \cdot)$, an M-graded monad (w/o order) is a lax functor $T: \Sigma M \to \text{Endo}(\mathbb{C})$ [Katsumata, 2014].



Category-graded monads as lax functors

For a category S, an S-graded monad is a lax functor $T: S^{op} \to Endo(\mathbb{C})$ [Orchard, Wadler and Eades III, 2020].





Lax functors and extensions of monads

Category-Graded Algebraic Theories

Category-Graded Effect System with Effect Handlers

(Ordinary) algebraic theories

Let $\Sigma = \{op, ...\}$ be a set of operations

For each op $\in \Sigma$, a set called coarity P and a set called arity Q are assigned (op: $P \rightarrow Q$).

The set $Term_{\Sigma}(X)$ of terms on a set X is defined inductively by:

$$\frac{x \in X}{x \in \mathit{Term}_{\Sigma}(X)}$$

$$\underbrace{\mathsf{op} \colon P \to Q \quad p \in P \quad \{t_i\}_{i \in Q} \subset \mathit{Term}_{\Sigma}(X)}_{\mathbf{do}(\mathsf{op}, \, p, \, \{t_i\}_{i \in Q}) \in \mathit{Term}_{\Sigma}(X)}$$

$$extbf{do}(ext{op}, p, \{t_i\}_{i \in Q})$$
 $= extbf{op}, p$
 $\underbrace{t_1 \cdots t_n \cdots}_{Q ext{-many}}$

Proposition

 $Term_{\Sigma}(-)$: **Set** \rightarrow **Set** forms a monad.

Examples of terms

Consider algebraic theories for a state. Let S be a set of values of the state.

$$\Sigma = \{ \text{put} : S \rightarrow 1, \text{ get} : 1 \rightarrow S \}$$

For example, a term $do(get, (), \{do(put, s, s)\}_s)$ gets a value from state, put it to state again, and return the value s.

Equations for this signature are:

$$\begin{aligned} \mathbf{do}(\text{put}, s, \mathbf{do}(\text{put}, s', t)) &= \mathbf{do}(\text{put}, s', t) \\ \mathbf{do}(\text{put}, s, \mathbf{do}(\text{get}, (), \{t_{s'}\}_{s' \in S})) &= \mathbf{do}(\text{put}, s, t_s) \\ \mathbf{do}(\text{get}, (), \{\mathbf{do}(\text{put}, s, t_s)\}_{s \in S}) &= \mathbf{do}(\text{get}, (), \{t_s\}_s) \\ \mathbf{do}(\text{get}, (), \{\mathbf{do}(\text{get}, (), \{t_{ss'}\}_{s'})\}_s) &= \mathbf{do}(\text{get}, (), \{t_{ss}\}_s). \end{aligned}$$

Category-graded algebraic theories

For each op $\in \Sigma$, a coarity P, an arity Q, and a grade $f: b \to a$ in $\mathbb S$ are assigned (op: $P \to Q$; f).

The set $Term_{\Sigma}(f, X)$ of terms graded by f on a set X is defined inductively by:

$$\frac{a \in \mathbb{S} \quad x \in X}{x \in \mathit{Term}_{\Sigma}(\mathsf{id}_a, X)}$$

$$\underbrace{\mathsf{op} \colon P \Rightarrow Q; g \quad p \in P \quad \{t_i\}_{i \in Q} \subset \mathit{Term}_{\Sigma}(f, X)}_{\mathbf{do}(\mathsf{op}, p, \{t_i\}_{i \in Q}) \in \mathit{Term}_{\Sigma}(f \circ g, X)}$$

$$do(op, p, \{t_i\}_{i \in Q})$$

$$= \begin{cases} g \\ op, p \end{cases}$$

$$t_1 \cdots t_n \cdots$$

Proposition

 $\{Term_{\Sigma}(f, -)\}_f$ forms an S-graded monad.

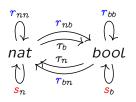
Lax functors and extensions of monads

Category-Graded Algebraic Theories

Category-Graded Effect System with Effect Handlers

Example

Let $\ \ \ \ \$ be the category generated by the following graph



Consider a situation where we have a state of types that can change, and we can send or receive its stored value.

$$\Sigma = \left\{ \begin{array}{ll} \mathbf{send}_x : 1 \rightarrow 1; \mathbf{s}_x, & \mathbf{recv}_{xy} : 1 \rightarrow 1; \mathbf{r}_{xy}, \\ \mathbf{put}_{bn} : \mathbf{nat} \rightarrow 1; \mathbf{\tau}_n, & \mathbf{put}_{bn} : \mathbf{bool} \rightarrow 1; \mathbf{\tau}_b \\ \mathbf{put}_{nn} : \mathbf{nat} \rightarrow 1; \mathrm{id}_{nat}, & \mathbf{put}_{bb} : \mathbf{bool} \rightarrow 1; \mathrm{id}_{bool} \\ \mathbf{get}_n : 1 \rightarrow \mathbf{nat}; \mathrm{id}_{nat}, & \mathbf{get}_b : 1 \rightarrow \mathbf{bool}; \mathrm{id}_{bool} \end{array} \right\}$$

If we have $\vdash^{s_b \circ \tau_{b} \circ \tau_{nn}} M : A$, then M is a computation of type A that receives a data of type nat and then sends a data of type bool with some operations on the state.

Category-graded effect system

Fix a grading category $\mathbb S$ and a signature Σ .

Type
$$A ::= 1 \mid A \rightarrow B; f \mid A \times B \mid A + B$$

Value $V, W ::= x \mid () \mid \lambda x : A.M \mid ...$

Computation $M, N ::= \mathbf{val}_a V \mid \mathbf{let} x \leftarrow M \mathbf{in} N \mid \mathbf{op}(V) \mid VW \mid ...$

The type $A \to B$; f means that a value which has this type is a function from A to B and performs effects graded by f.

Typing rule

Judgements
$$\Gamma \vdash V : A \text{ for values}$$

 $\Gamma \vdash^f M : A \text{ for computations}$

The judgement $\Gamma \vdash^f M$: A means that the computation M has a type A and invokes effects graded by f.

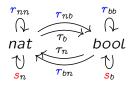
$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \quad \frac{\Gamma,x:A\vdash^f M:A}{\Gamma\vdash \lambda x:A.M:A\to B;f} \quad \cdots$$

Computation

$$\frac{\Gamma \vdash V : A}{\Gamma \vdash^{\text{id}_a} \text{ val}_a V : A} \quad \frac{\Gamma \vdash V : P \quad \text{op} : P \to Q; f}{\Gamma \vdash^f \text{ op}(V) : Q}$$

$$\frac{\Gamma \vdash^{g:c \to b} M : A \quad \Gamma, x : A \vdash^{f:b \to a} N : B}{\Gamma \vdash^{f \circ g} \text{ let } x \leftarrow M \text{ in } N : B} \quad \cdots$$

Example of typing



$$\vdash^{s_b \circ \tau_b \circ \tau_{nn}}$$

$$\mathsf{let}_{_} \leftarrow \mathsf{recv}_{nn}() \, \mathsf{in}$$

$$\mathsf{let}_{x} \leftarrow \mathsf{get}_{n}() \, \mathsf{in}$$

$$\mathsf{let}_{_} \leftarrow \mathsf{put}_{nb}(\mathsf{true}) \, \mathsf{in}$$

$$\mathsf{let}_{_} \leftarrow \mathsf{send}_{bb}() \, \mathsf{in}$$

$$\mathsf{val}_{x} : \mathsf{nat}$$

The above program receives data <u>before</u> sends data.

$$\vdash^{r_{nb} \circ s_n}$$

$$\mathsf{let}_{-} \leftarrow \mathsf{put}_{nn}(3) \mathsf{in}$$

$$\mathsf{let}_{-} \leftarrow \mathsf{send}_n() \mathsf{in}$$

$$\mathsf{let}_{-} \leftarrow \mathsf{recv}_{nb}() \mathsf{in}$$

$$\mathsf{let}_{x} \leftarrow \mathsf{get}_{b}() \mathsf{in}$$

$$\mathsf{val}_{x} : \mathsf{bool}$$

The above program receives data <u>after</u> sends data.

Denotational semantics

We define denotation of $\Gamma \vdash^f M$: A using S-graded monad $\{Term_{\Sigma}(f,-)\}_f$.

Value $\llbracket \Gamma \vdash V : A \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket A \rrbracket$ Computation $\llbracket \Gamma \vdash^f M : A \rrbracket : \llbracket \Gamma \rrbracket \rightarrow Term_{\Sigma}(f, \llbracket A \rrbracket)$

- $\qquad \qquad \qquad \qquad \qquad \prod \Gamma \vdash^{\mathsf{id}_a} \mathsf{val} \ V : A \](s) := \eta_a(\llbracket V \rrbracket(s)) \in Term_{\Sigma}(\mathsf{id}_a, \llbracket A \rrbracket)$
- $\boxed{ \begin{bmatrix} \Gamma \vdash^{f \circ g} \text{let } x \leftarrow M \text{ in } N : B \end{bmatrix}(s) := \\ \mu_{f,g}(\text{Term}(g, \llbracket N \rrbracket(s, -))(\llbracket M \rrbracket(s))) \in \\ \text{Term}(f \circ g, \llbracket B \rrbracket)$

We can also define operational semantics, and show soundness and adequacy theorem.

Handlers for exception

An exception handler catches an exception and executes exception handling.

```
handle  \begin{tabular}{l} \textbf{if } x = 0 \\ \textbf{then raise}(\text{``devided by zero''}) \\ \textbf{else } 1/x \\ \textbf{with} \{ \\ \textbf{raise}(e) \mapsto \textbf{val } 0 \\ \} \end{tabular}
```

Handlers for effects

Effect handlers [Plotkin and Pretner, 2009] are generalization of exception handlers.

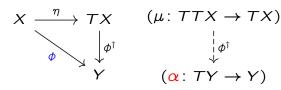
```
handle
   let x \leftarrow op_i(V) in L
with{
   val x \mapsto N
   op_1(p_1), r_1 \mapsto M_1
   \operatorname{op}_n(p_n), r_n \mapsto M_n
```

Effect handlers catch general effect operations and continuation, and execute operation handling.

Handlers are homomorphism from the free algebra

Categorically, effect handlers are homomorphism from the free algebra.

handle
$$\mathcal{L}$$
 with { $\mathsf{val}\,x\mapsto \mathsf{N}$ $\mathsf{op}_1(p_1), r_1\mapsto \mathsf{M}_1$ \vdots $\mathsf{op}_n(p_n), r_n\mapsto \mathsf{M}_n$ }



- ► The term *N* determines the morphism $\phi: X \to Y$.
- The terms M_1, \ldots, M_n determine the algebra α .

The handler is interpreted by ϕ^{\dagger} .

Typing rule for handlers

Typing rule for handlers are as follows:

$$\begin{array}{c} \Gamma, x: A \vdash_{\Sigma'} N: B \\ \big(\Gamma, p: P, r: Q \to B \vdash_{\Sigma'} M_{\mathrm{op}}: B\big)_{(\mathrm{op}: P \to Q) \in \Sigma} \\ \hline \Gamma \vdash_{\Sigma \Rightarrow \Sigma'} \{ \mathbf{val} \ x \mapsto N \} \cup \{ \mathrm{op}(p), r \mapsto M_{\mathrm{op}} \}_{\mathrm{op} \in \Sigma}: A \leadsto B \\ \hline \frac{\Gamma \vdash_{\Sigma} L: A \quad \Gamma \vdash H: A \leadsto B}{\Gamma \vdash_{\Sigma'} \mathbf{handle} \ L \mathbf{ with} \ H: B} \end{array}$$

Operational semantics:

handle val V with
$$H \to N[V/x]$$

handle
$$\mathcal{E}[\operatorname{op}(V)]$$
 with $H \to M_{\operatorname{op}}[V/p, \lambda y]$. handle $(\mathcal{E}[\operatorname{val} y])$ with $H/r]$

Handlers for category-graded effects

Category-graded version of effect handlers can also be constructed. Let $\mathbb S$ and $\mathbb S'$ be grading categories,

$$\Sigma = \{ \text{op} : P \rightarrow Q; f, \dots \} \ (f \text{ is in } \mathbb{S}) \text{ and } \Sigma' = \{ \text{op}' : P' \rightarrow Q'; f', \dots \} \ (f' \text{ is in } \mathbb{S}') \text{ signatures.}$$

handle

$$L$$
with{val_a $x \mapsto N$ }
$$\cup \{ op_1(p_1), r_1 \mapsto M_1^k \}_{k: b \to a}$$

$$\vdots$$

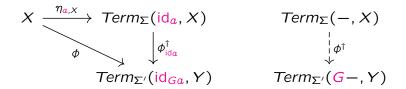
$$\cup \{ op_n(p_n), r_n \mapsto M_n^k \}_{k: b \to a}$$

Handlers for category-graded effects

If we have

- ▶ a functor $G: \mathbb{S} \to \mathbb{S}', \alpha \in \mathsf{Ob} \mathbb{S}$,
- $\blacktriangleright \phi \colon X \to Term_{\Sigma'}(id_{Ga}, Y)$, and
- ▶ $|\operatorname{op}|_k$: $P \times \operatorname{Term}_{\Sigma'}(Gk, Y)^Q \rightarrow \operatorname{Term}_{\Sigma'}(G(k \circ f), Y)$ for each $\operatorname{op} \in \Sigma$, $k : b \rightarrow a$ in §

then



Typing rules for handlers

By the above argument, we can construct a handler $H := \{ \mathbf{val}_a \ x \mapsto N \} \cup \{ \mathrm{op}(p), r \mapsto M_{\mathrm{op}}^k \}_{\mathrm{op} \in \Sigma}^k$ from the following judgements:

- ightharpoonup $\Gamma, x : A \vdash^{\mathsf{id}_{Ga}} N : B$
- ► Γ , $p: P, r: Q \to B$; $Gk \vdash^{G(k \circ f)} M_{op}^k: B$ for each $k: b \to a$, op: $P \to Q$; $f \in \Sigma$.

Operational semantics is defined as follows:

handle val_a V with
$$H \rightarrow N[V/x]$$

handle
$$\mathcal{E}[\operatorname{op}(V)]$$
 with H
 $\to M_{\operatorname{op}}^k[V/p,\lambda y]$ handle $(\mathcal{E}[\operatorname{val}_{Gb}y])$ with $H/r]$

Example of Handlers

$$G: \begin{pmatrix} r_{nn} & r_{nb} & r_{ob} \\ nat & r_{n} & bool \\ & & & \\ r_{bn} & & \\ \end{pmatrix} \rightarrow \begin{pmatrix} nat + bool \end{pmatrix}$$

$$x: A \vdash^{\mathrm{id}_{bool+nat}} \mathbf{val} x: A$$

$$p: 1, r: \mathrm{nat} \rightarrow A; \mathrm{id} \vdash^{\mathrm{id}}$$

$$\mathrm{let} x \leftarrow \mathrm{recv}() \mathrm{in}$$

$$\mathrm{match} x \mathrm{with} \qquad \mathrm{for} \ \mathrm{recv}_{nn}, \cdots$$

$$\mathrm{in}_{1}(n) \rightarrow rn$$

$$\mathrm{in}_{2}(b) \rightarrow \mathrm{raise}(): A$$

$$p: \mathrm{nat}, r: 1 \rightarrow A; \mathrm{id} \vdash^{\mathrm{id}}$$

$$\mathrm{let}_{-} \leftarrow \mathrm{send}(\mathrm{in}_{1}(p)) \mathrm{in} \ r(): A$$

Conclusion

monad $T: 1 \to Endo(\mathbb{C})$	algebraic theory $Term_{\Sigma}(X)$	effect system with handlers Γ⊢ M : A
category-graded monad $T: \mathbb{S}^{op} \to \text{Endo}(\mathbb{C})$	category-graded algebraic theory $Term_{\Sigma}(f, X)$	category-graded effect system with handlers $\Gamma \vdash^f M : A$