Category-Graded Algebraic Theories and Effect Handlers

Takahiro Sanada ${ }^{1}$
${ }^{1}$ RIMS, Kyoto University
6 September 2022
ERATO MMSD Colloquium

Overview

I propose a novel effects system based on a
category-graded extension of algebraic theories that correspond to category-graded monads.

monad	algebraic theory	effect system with handlers
category-graded monad	category-graded algebraic theory	category-graded effect system with handlers

Outline

Lax functors and extensions of monads

Category-Graded Algebraic Theories

Category-Graded Effect System with Effect Handlers

Lax functors and extensions of monads

Category-Graded Algebraic Theories

Category-Graded Effect System with Effect Handlers

Monads

Monads are used to capture computation in terms of category theory.
A monad is a functor $T: \mathbb{C} \rightarrow \mathbb{C}$ with

that satisfies appropriate axioms.

Lax functors

Monads can be seen as a special case of lax functor. $F: \mathbb{S} \rightarrow \mathcal{K}$ where \mathcal{K} is a 2 -category.

that satisfies appropriate axioms.
If η_{a} and $\mu_{f, g}$ are identities, the lax functor is an ordinary functor.

Monads as Lax functors

A monad is a lax functor $T: \mathbf{1} \rightarrow$ Endo(\mathbb{C}) [Benabou, 1967].

Graded monads as lax functors

For a monoid $M=(M, e, \cdot)$, an M-graded monad (w/o order) is a lax functor $T: \Sigma M \rightarrow$ Endo(\mathbb{C}) [Katsumata, 2014].

Category-graded monads as lax functors

For a category \mathbb{S}, an \mathbb{S}-graded monad is a lax functor $T: \mathbb{S}^{\circ p} \rightarrow$ Endo($\left.\mathbb{C}\right)$ [Orchard, Wadler and Eades III, 2020].

Lax functors and extensions of monads

Category-Graded Algebraic Theories

Category-Graded Effect System with Effect Handlers

(Ordinary) algebraic theories

Let $\Sigma=\{o p, \ldots\}$ be a set of operations
For each op $\in \Sigma$, a set called coarity P and a set called arity Q are assigned (op: $P \rightarrow Q$).
The set $\operatorname{Term}_{\Sigma}(X)$ of terms on a set X is defined inductively by:

$$
\frac{x \in X}{x \in \operatorname{Term}_{\Sigma}(X)}
$$

$$
\frac{\mathrm{op}: P \rightarrow Q \quad p \in P \quad\left\{t_{i}\right\}_{i \in Q} \subset \operatorname{Term}_{\Sigma}(X)}{\mathbf{d o}\left(\mathrm{op}, p,\left\{t_{i}\right\}_{i \in Q}\right) \in \operatorname{Term}_{\Sigma}(X)}
$$

do(op, $\left.p,\left\{t_{i}\right\}_{i \in Q}\right)$

Proposition

Term $_{\Sigma}(-)$: Set \rightarrow Set forms a monad.

Examples of terms

Consider algebraic theories for a state. Let S be a set of values of the state.

$$
\Sigma=\{\text { put }: S \rightarrow 1, \text { get }: 1 \rightarrow S\}
$$

For example, a term do(get, (), $\{\mathbf{d o}(\mathrm{put}, \mathrm{s}, \mathrm{s})\}_{s}$) gets a value from state, put it to state again, and return the value s.
Equations for this signature are:
do $\left(\right.$ put, $s, \operatorname{do}\left(\right.$ put, $\left.\left.s^{\prime}, t\right)\right)=\boldsymbol{d o}\left(\right.$ put $\left., s^{\prime}, t\right)$ do(put, $s, \operatorname{do}\left(\right.$ get, ()$\left.\left.,\left\{t_{s^{\prime}}\right\}_{s^{\prime} \in s}\right)\right)=d o\left(\right.$ put, $\left.s, t_{s}\right)$ do(get, (), $\left.\left\{\operatorname{do}\left(\text { put, } s, t_{s}\right)\right\}_{s \in s}\right)=\operatorname{do}\left(\right.$ get, ()$\left.,\left\{t_{s}\right\}_{s}\right)$ $\operatorname{do}\left(\right.$ get, ()$\left.,\left\{\operatorname{do}\left(\text { get, }(),\left\{t_{s s^{\prime}}\right\}_{s^{\prime}}\right)\right\}_{s}\right)=\operatorname{do}\left(\operatorname{get},(),\left\{t_{s s}\right\}_{s}\right)$.

Category-graded algebraic theories

For each op $\in \Sigma$, a coarity P, an arity Q, and a grade $f: b \rightarrow a$ in \mathbb{S} are assigned (op: $P \rightarrow Q ; f$).
The set $\operatorname{Term}_{\Sigma}(f, X)$ of terms graded by f on a set X is defined inductively by:

$$
\begin{aligned}
& \frac{a \in \mathbb{S} \quad x \in X}{x \in \operatorname{Term}_{\Sigma}\left(\mathrm{id}_{a}, X\right)} \\
& \text { op: } P \rightarrow Q ; g \quad p \in P \quad\left\{t_{i}\right\}_{i \in Q} \subset \operatorname{Term}_{\Sigma}(f, X) \\
& \mathbf{d o}\left(o p, p,\left\{t_{i}\right\}_{i \in Q}\right) \in \operatorname{Term}_{\Sigma}(f \circ g, X) \\
& \text { do(op, } \left.p,\left\{t_{i}\right\}_{i \in Q}\right) \\
& { }_{\mathrm{op}} \mathrm{p}, p \\
& =\underbrace{}_{f_{Q-\text { many }}^{t_{1} \cdots t_{n} \cdots}} \\
& \left\{\operatorname{Term}_{\Sigma}(f,-)\right\}_{f} \text { forms an } \\
& \mathbb{S} \text {-graded monad. }
\end{aligned}
$$

Lax functors and extensions of monads

Category-Graded Algebraic Theories

Category-Graded Effect System with Effect Handlers

Example

Let \mathbb{S} be the category generated by the following graph

Consider a situation where we have a state of types that can change, and we can send or receive its stored value.
$\Sigma=\left\{\begin{array}{ll}\operatorname{send}_{x}: 1 \rightarrow 1 ; s_{x}, & \text { recv }_{x y}: 1 \rightarrow 1 ; r_{x y}, \\ \operatorname{put}_{b n}: \operatorname{nat} \rightarrow 1 ; \tau_{n}, & \text { put }_{b n}: \operatorname{bool} \rightarrow 1 ; \tau_{b} \\ \operatorname{put}_{n n}: \text { nat } \rightarrow 1 ; \mathrm{id}_{n a t}, & \text { put }_{b b}: \operatorname{bool} \rightarrow 1 ; \mathrm{id}_{b o o l} \\ \operatorname{get}_{n}: 1 \rightarrow \text { nat }^{2} \mathrm{id}_{n a t}, & \text { get }_{b}: 1 \rightarrow \text { bool;id }{ }_{b o o l}\end{array}\right\}$
If we have $\vdash^{s_{b} \circ \tau_{b} \circ r_{n n}} M: A$, then M is a computation of type A that receives a data of type nat and then sends a data of type bool with some operations on the state.

Category-graded effect system

Fix a grading category \mathbb{S} and a signature Σ.

Type

$$
A::=1|A \rightarrow B ; f| A \times B \mid A+B
$$

Value

$$
\begin{gathered}
V, W::=x|()| \lambda x: A . M \mid \ldots \\
M, N::=\operatorname{val}_{a} V \mid \operatorname{let} x \leftarrow M \text { in } N \\
|\operatorname{op}(V)| V W \mid \ldots
\end{gathered}
$$

The type $A \rightarrow B ; f$ means that a value which has this type is a function from A to B and performs effects graded by f.

Typing rule

Judgements

$$
\ulcorner\vdash V: A \text { for values }
$$

$\Gamma \vdash^{f} M$: A for computations
The judgement $\Gamma \vdash^{f} M: A$ means that the computation M has a type A and invokes effects graded by f.
Value

$$
\frac{x: A \in \Gamma}{\Gamma \vdash x: A} \quad \frac{\Gamma, x: A \vdash^{f} M: A}{\Gamma \vdash \lambda x: A \cdot M: A \rightarrow B ; f}
$$

Computation

$$
\begin{aligned}
& \frac{\Gamma \vdash V: A}{\Gamma \vdash^{i d} a} \operatorname{val}_{a} V: A \\
& \frac{\Gamma \vdash V: P \quad \text { op }: P \rightarrow Q ; f}{\Gamma \vdash^{f} \operatorname{op}(V): Q} \\
& \Gamma \vdash^{g \circ g} \operatorname{let} x \leftarrow M: A \quad \Gamma, x: A \vdash^{f: b \rightarrow a} N: B \\
& \ldots
\end{aligned}
$$

Example of typing

$1 s_{b} O \tau_{b} O r_{n n}$
let $\quad \leftarrow \operatorname{rec}_{n n}()$ in
let $x \leftarrow \operatorname{get}_{n}()$ in
let ${ }_{-} \leftarrow$ put $_{n b}$ (true) in
let $\leftarrow \operatorname{send}_{b b}()$ in
val x : nat
The above program receives data before sends data.

$$
\vdash r_{n b} \circ s_{n}
$$

Let ${ }_{-} \leftarrow \operatorname{put}_{n n}(3)$ in let $-\leftarrow \operatorname{send}_{n}()$ in
let $\operatorname{rec}_{n b}()$ in
Let $x \leftarrow \operatorname{get}_{b}()$ in
val x : bool
The above program
receives data after sends data.

Denotational semantics

We define denotation of $\Gamma \vdash^{f} M: A$ using \mathbb{S}-graded monad $\left\{\operatorname{Term}_{\Sigma}(f,-)\right\}_{f}$.

$$
\begin{aligned}
& \text { Value } \llbracket\ulcorner\vdash V: A \rrbracket: \llbracket\ulcorner\rrbracket \rightarrow \llbracket A \rrbracket \\
& \text { Computation } \llbracket\left\ulcorner\vdash^{f} M: A \rrbracket: \llbracket\left\ulcorner\rrbracket \rightarrow \operatorname{Term}_{\Sigma}(f, \llbracket A \rrbracket)\right.\right. \\
& \text { - } \llbracket \Gamma^{\vdash^{i d}} \text { val } V: A \rrbracket(s):=\eta_{a}(\llbracket V \rrbracket(s)) \in \\
& \operatorname{Term}_{\Sigma}\left(\mathrm{id}_{a}, \llbracket A \rrbracket\right) \\
& \text { - } \llbracket \Gamma^{f \circ g} \text { Let } x \leftarrow M \text { in } N: B \rrbracket(s):= \\
& \mu_{f, g}(\operatorname{Term}(g, \llbracket N \rrbracket(s,-))(\llbracket M \rrbracket(s))) \in \\
& \operatorname{Term}(f \circ g, \llbracket B \rrbracket)
\end{aligned}
$$

We can also define operational semantics, and show soundness and adequacy theorem.

Handlers for exception

An exception handler catches an exception and executes exception handling.

handle

if $x=0$
then raise("devided by zero")
else $1 / x$
with\{
raise $(e) \mapsto$ val 0
\}

Handlers for effects

Effect handlers [Plotkin and Pretner, 2009] are generalization of exception handlers.

```
handle
    Let }x\leftarrow\mp@subsup{\textrm{op}}{i}{}(V)\mathrm{ in L
    with{
    val }x\mapsto
    op
    \vdots
    op}n(\mp@subsup{p}{n}{}),\mp@subsup{r}{n}{}\mapsto\mp@subsup{M}{n}{
}
```

Effect handlers catch general effect operations and continuation, and execute operation handling.

Handlers are homomorphism from the free algebra

Categorically, effect handlers are homomorphism from the free algebra.

```
handle
    L
with{
    val }x\mapsto
    op
    \vdots
    op
}
```

$(\mu: T T X \rightarrow T X)$

- The term N determines the morphism $\phi: X \rightarrow Y$.
- The terms M_{1}, \ldots, M_{n} determine the algebra α.
The handler is interpreted by ϕ^{\dagger}.

Typing rule for handlers

Typing rule for handlers are as follows:

$$
\begin{gathered}
\Gamma, x: A \vdash_{\Sigma^{\prime}} N: B \\
\frac{\left(\Gamma, p: P, r: Q \rightarrow B \vdash_{\Sigma^{\prime}} M_{\mathrm{op}}: B\right)_{(\mathrm{op}: P \rightarrow Q) \in \Sigma}}{\Gamma \operatorname{val} x \mapsto N\} \cup\left\{\mathrm{op}(p), r \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op} \in \Sigma}: A \rightsquigarrow B} \\
\frac{\Gamma \vdash_{\Sigma} L: A \Gamma \vdash H: A \rightsquigarrow B}{\Gamma \vdash_{\Sigma^{\prime}} \text { handle } L \text { with } H: B}
\end{gathered}
$$

Operational semantics:
handle val V with $H \rightarrow N[V / x]$
handle $\mathcal{E}[o p(V)]$ with H
$\rightarrow M_{\mathrm{op}}[V / p, \lambda y$. handle $(\varepsilon[\operatorname{val} y])$ with $H / r]$

Handlers for category-graded effects

Category-graded version of effect handlers can also be constructed. Let \mathbb{S} and \mathbb{S}^{\prime} be grading categories, $\Sigma=\{$ op: $P \rightarrow Q ; f, \ldots\}(f$ is in $\mathbb{S})$ and
$\Sigma^{\prime}=\left\{\mathrm{op}^{\prime}: P^{\prime} \rightarrow Q^{\prime} ; f^{\prime}, \ldots\right\}\left(f^{\prime}\right.$ is in $\left.\mathbb{S}^{\prime}\right)$ signatures.
handle

$$
\begin{aligned}
& \quad L \\
& \text { with }\left\{\operatorname{val}_{a} x \mapsto N\right\} \\
& \quad \cup\left\{\mathrm{op}_{1}\left(p_{1}\right), r_{1} \mapsto M_{1}^{k}\right\}_{k: b \rightarrow a} \\
& \vdots \\
& \quad \cup\left\{\mathrm{op}_{n}\left(p_{n}\right), r_{n} \mapsto M_{n}^{k}\right\}_{k: b \rightarrow a}
\end{aligned}
$$

Handlers for category-graded effects

If we have

- a functor $G: \mathbb{S} \rightarrow \mathbb{S}^{\prime}, a \in \operatorname{Ob} \mathbb{S}$,
- $\phi: X \rightarrow \operatorname{Term}_{\Sigma^{\prime}}\left(\mathrm{id}_{G a}, Y\right)$, and
$-\operatorname{lop}_{k}: P \times \operatorname{Term}_{\Sigma^{\prime}}(G k, Y)^{Q} \rightarrow$
$\operatorname{Term}_{\Sigma^{\prime}}(G(k \circ f), Y)$ for each op $\in \Sigma, k: b \rightarrow a$ in S
then

Typing rules for handlers

By the above argument, we can construct a handler $H:=\left\{\mathbf{v a l}_{a} x \mapsto N\right\} \cup\left\{\mathrm{op}(p), r \mapsto M_{\mathrm{op}}^{k}\right\}_{\mathrm{op} \in \Sigma}^{k}$ from the following judgements:
$\rightarrow \Gamma, x: A \vdash^{\mathrm{id}}{ }_{G a} N: B$

- $\Gamma, p: P, r: Q \rightarrow B ; G \kappa \vdash^{G(k \circ f)} M_{\mathrm{op}}^{k}: B$ for each $k: b \rightarrow a$, op: $P \rightarrow Q ; f \in \Sigma$.
Operational semantics is defined as follows:
handle val ${ }_{a} V$ with $H \rightarrow N[V / x]$
handle $\mathcal{E}[o p(V)]$ with H
$\rightarrow M_{\mathrm{op}}^{k}\left[V / p, \lambda y . \operatorname{handle}\left(\varepsilon\left[\operatorname{val}_{G b} y\right]\right)\right.$ with $\left.H / r\right]$

Example of Handlers

$$
\begin{aligned}
& x: A \vdash^{\mathrm{id}_{\text {bool }+ \text { nat }}} \operatorname{val} x: A
\end{aligned}
$$

$p: 1, r:$ nat $\rightarrow A$; id $\vdash^{\text {id }}$
let $x \leftarrow \operatorname{recv}()$ in
match x with for $\operatorname{recv}_{n n}, \cdots$

$$
\begin{aligned}
& \operatorname{in}_{1}(n) \rightarrow r n \\
& \operatorname{in}_{2}(b) \rightarrow \operatorname{raise}(): A
\end{aligned}
$$

$p:$ nat, $r: 1 \rightarrow A$; id $\vdash^{\text {id }}$
Let $\leftarrow \operatorname{send}\left(\operatorname{in}_{1}(p)\right)$ in $r() \cdot A$ for $\operatorname{send}_{n}, \cdots$
let $-\leftarrow \operatorname{send}\left(\mathrm{in}_{1}(p)\right)$ in $r(): A$

Conclusion

$T: \stackrel{\text { monad }}{\rightarrow \text { Endo(} \mathbb{C})}$	algebraic theory $\operatorname{Term}_{\Sigma}(X)$	effect system with handlers $\Gamma \vdash M: A$
$\begin{gathered} \text { category-graded } \\ \text { monad } \\ T: \mathbb{S}^{\mathscr{P}} \rightarrow E \operatorname{Endo}(\mathbb{C}) \end{gathered}$	category-graded algebraic theory $\operatorname{Term}_{\Sigma}(f, X)$	```category-graded effect system with handlers \Gamma\vdashf}M:```

