Takahiro Sanada !

IRIMS, Kyoto University

6 September 2022
ERATO MMSD Colloquium

Overview

I propose a novel effects system based on a
category-graded extension of algebraic theories that
correspond to category-graded monads.

effect system
with handlers
category-graded
effect system
with handlers

monad algebraic theory

category-graded category-graded
monad algebraic theory

2/28

Lax functors and extensions of monads
Category-Graded Algebraic Theories

Category-Graded Effect System with Effect Handlers

3/28

Lax functors and extensions of monads

4/28

Monads are used to capture computation in terms of
category theory.
A monad is a functor T: C — C with

C
T/
Id T
C ?’
T\
C

that satisfies appropriate axioms.

5/28

Lax functors

Monads can be seen as a special case of Lax functor.
F :S — K where K is a 2-category.

S K S K

ar— Fa a— Fa
fl Ff/

idrg | —> | F(idg) b'HFbﬁ F(f:9)
gl Fg\

ar— Fa c— Fc

that satisfies appropriate axioms.
If nq and o are identities, the Lax functor is an
ordinary functor.

6/28

A monad is a Llax functor T: 1 — Endo(C) [Benabou,

1967].
1 Endo(C) 1 Endo(C)
C
i T/
i id T
| Idgc =77%
i TK‘
C

7/28

Graded monads as Lax functors

For a monoid M = (M, e, -), an M-graded monad
(w/o order) is a Lax functor T: M — Endo(C)
[Katsumata, 2014].

>M Endo(C) >M Endo(C)
o~ C o~ C
o~/
e idc ? Te ¢——C—>|Tmn

Umn
nl Tn\

e (C e (C

8/28

Category-graded monads as Lax functors

For a category S, an S-graded monad is a Lax functor
T : S°° — Endo(C) [Orchard, Wadler and Eades III, 2020].

SoP Endo(C) SoP Endo(C)
ar——— C ar——C
i/
idg idc | = | Tida br—— C—>| Trog
n Ky.g

ol T\

ar— C c——C

9/28

Category-Graded Algebraic Theories

10/28

(Ordinary) algebraic theories

Let X = {op, ...} be a set of operations

For each op € X, a set called coarity P and a set
called arity Q are assigned (op: P — Q).
The set Terms(X) of terms on a set X is defined

inductively by:
Tz e X

T € Terms(X)
op: P—+Q peEP {titico C Terms(X)
do(op, », {ti}icq) € Terms(X)

doop. . {110

op, P Terms(—): Set — Set

= / \ forms a monad.
tn

ty---
Q—many 11/28

Examples of terms

Consider algebraic theories for a state. Let S be a set
of values of the state.

>={put:S—+1, get:1—~ S}

For example, a term do(get, (), {do(put, s, 5)}s)
gets a value from state, put it to state again, and
return the value s.

Equations for this signature are:

do(put, s, do(put, s’,t)) = do(put, s’, t)
do(put, s, do(get, (), {ts}scs)) = do(put, s, ts)

do(get, (), {do(put, s, ts) }ses) = do(get, (), {ts}s)
dO(get, ()r {do(getv ()1 {tss’}s’)}s) = do(getr ()r {tSS}S)-

12/28

Category-graded algebraic theories

For each op € %, a coarity P, an arity Q, and a grade
f:b—ain S are assigned (op: P — Q); f).

The set Terms(f, X) of terms graded by f on a set X
is defined inductively by:

a€S € X
T € Terms(idg, X)
op: P—-Q;9 DPEP {titico C Term=(f, X)
do(op, », {titico) € Term=(f o g, X)

do(op., {1 hee

g {Terms=(f, —)}s forms an
op. P S-graded monad.

e
ftl---ftn---

Q-many

13/28

Category-Graded Effect System with Effect Handlers

14 /28

Example

Let S be the category generated by the following
graph

T TR Consider a situation where we
Q P s— Q, have a state of types that can
nat _ * " bool change, and we can send or
U ’QET// U receive its stored value.
Sn on Sb
sendz : 1 — 1; sz, reCvgy : 1 — 1; Ty,
s = put,, :nat — 1; 7y, put,, : bool — 1; 7

put,, :nat — 1;idpar, put,, : bool — 1;idpoor
get, : 1 —»nat;idns, get,: 1 — bool;idpoor
If we have 50°T°Tnn N A then M is a computation
of type A that receives a data of type nat and then
sends a data of type bool with some operations on
the state.

15 /28

Category-graded effect system

Fix a grading category S and a signature X.

Type A:=1|A—>B,f|AXB|A+B

Value VWi =z |(O|Xxz: AM]| ...

Computation M,N :=val,V | letz < MinN
| op(V) | VW | ...

The type A — B; f means that a value which has this
type is a function from A to B and performs effects
graded by f.

16 /28

Typing rule

=V : A for values

Judgements r+~/ M : A for computations

The judgement ' -/ M : A means that the
computation M has a type A and invokes effects
graded by f.

Value

T:AET rz:AF M: A
NM~-z: A THFXT:AM: A—>B;f

Computation

rv: A Fr=Vv:P op:P—-Q,;f
MY valg vV : A = op(V): @

FHICPM:A Tz AH/PC N B
FrH/°9 etz + MinN : B

17 /28

Example of typing

Tnn Tnb Tob

N =

nat _ " bool

Y =

Sn Ton Sb
|_SDO’TbO’I"nn |_'rnbosn
let _ < recvpn()in let _ < put, (3)in
letz < get,_()in let . + send,()in
let _ < put_,(true)in let _ < recvpp()in
let _ «+ sendw()in letz < get, ()in
valz : nat valz : bool
The above program The above program
receives data before sends receives data after sends

data. data.

18/28

Denotational semantics

We define denotation of ' -/ M : A using S-graded
monad { Terms(f, —)}r.

Value [T =V : A]: ['] — [A]
Computation [= M : A]: [F] — Terms(f, [A])
> [F H% vaLVv : A](s) := na([VI(s)) €
Terms (idg, [A])
> [9 letz «— MinN : B][(s) :=

pr.g(Term(g, [N1(s, =) (IM1(s))) €
Term(f o g, [B])

We can also define operational semantics, and show
soundness and adequacy theorem.

19/28

Handlers for exception

An exception handler catches an exception and
executes exception handling.

handle
ifz =20
thenraise(“devided by zero”)
elsel/x
with{
raise(e) — valO

by

20/28

Handlers for effects

Effect handlers [Plotkin and Pretner, 2009] are
generalization of exception handlers.

handle
letz < op,(V)inL
with{
vaL z — N
op,(p1), 71 — M

op,,(Pn), Tn +— Mn
ks

Effect handlers catch general effect operations and
continuation, and execute operation handling.

21/28

Handlers are homomorphism from the free
algebra

Categorically, effect handlers are homomorphism from
the free algebra.

handle X —" 3y Tx (W TTX = TX)

L |

with{ X l@ i
valz — N Y (x: TY =Y)
op,(p1), 71— M

» The term N determines the
morphism ¢: X — Y.

» The terms My, ..., My
determine the algebra a.

The handler is interpreted by ¢.

22/28

op,,(Pr), Tn — Mn
+

Typing rule for handlers

Typing rule for handlers are as follows:

Mrxz: A N: B

(Fp:P7T:Q— Bhls Mop : B)(op:PwQ)EX

M Fe=s {valz — N} U {op(p), T — Mop}topes : A~> B

MNMssL:A THHH: A~ B
s handle L with H : B

Operational semantics:

handle val V with H — N[V/z]

handle E[op(V)] with H
— Mop[V/P, Ay. handle(E[val y]) with H/7]

23/28

Handlers for category-graded effects

Category-graded version of effect handlers can also be
constructed. Let S and §’ be grading categories,
S={op: P—-Q;f, ...} (fisin§S) and

S =A{op: P - Q' f,...} (f/ isin §) signatures.

handle
L
with{val, z — N}

L’{Opl(pl),Tl — Aﬂlk}k:bﬁa

U {op,,(pn), Tn F+'A4nk}k:m+a

24 /28

Handlers for category-graded effects

If we have
» a functor G: S —+ §/, a € ObS,
» ¢: X - Terms/(idsge, Y), and
» |opl|,.: P X Terms/(Gk,Y)® —
Terms:/(G(ko f),Y) for each op € X, k: b = a in
S

then

X Xy Terms (idq, X) Terms(—, X)

|
oL, Tl
¢ ld ~

Terms:(idGa, Y) Terms/(G—,Y)

25 /28

Typing rules for handlers

By the above argument, we can construct a handler
H := {val, z — N} U {op(p), T — /\/Iéﬂp}’c‘”;pez from the
following judgements:
>, z: Ardee N: B
> p:Pr:Q— B, Gk CGkof) /\/l<’§p : B for each
k:b—a,op: P—Q;f€ZX.
Operational semantics is defined as follows:

handle val, V with H — N[V/x]

handle E[op(V)] with H

— ME[V/p, Ay. handle(E[valgs y]) with H/T]

26 /28

Example of Handlers

Tnn Tb Tbb

(L ps— | (L
G: | nat _ [° " bool | — (nat + bool)
ISy

Sn Ton Sb

T : A ldvootnat yal ¢ 1 A

p:1,7:nat — A;id
letz < recv()in
match z with for recvpn, - -
int(n) > ™
inp(b) —» raise() : A

p:nat,r:1— A id+H¢
) . for send,, - - -
let _ «+ send(ini(p))inr() : A 27/28

effect system
with handlers
r=mM: A
category-graded
effect system
with handlers
r="M: A

monad algebraic theory
T:1— Endo(C) Terms (X)

category-graded category-graded
monad algebraic theory
T : S°° — Endo(C) Terms(f, X)

28 /28

	Lax functors and extensions of monads
	Category-Graded Algebraic Theories
	Category-Graded Effect System with Effect Handlers

