
Algebraic Effects and Effect Handlers
Takahiro Sanada

RIMS, Kyoto University, https://www.kurims.kyoto-u.ac.jp/~tsanada/, tsanada@kurims.kyoto-u.ac.jp,

Introduction

The mathematical treatment of a program is important to
verify that it does not contain bugs or to prove some good
properties. Although a program takes arguments and re-
turns the result of the computation, it cannot simply be re-
graded as a mathematical function. This is because, in the
process of computation, a program may perform I/O, read
or write memory, throw errors, or loop indefinitely. Such be-
havior is called computational effects. Monads and algebras
are known as a concept to capture computational effects.
An algebra consists of a carrier set, operations and equa-
tions. For example, the set N of natural numbers has an
algebraic structure (N,+N, 0N) determined by operations +
of arity 2 and 0 of arity 0, and equations x + y = y + x and
0 + x = x . The set of programs which may perform com-
putational effects can be seen as an algebra. For example,
consider the set P of programs which can read a memory
cell of type of boolean value. Consider the operation on P is
get : P2 → P . The program r = get(p, q) ∈ P for p, q ∈ P
means that r reads the memory cell and executes the pro-
gram p if its value is true, otherwise it executes the pro-
gram q. The equations on P are get(get(p, q), get(r , s)) =
get(p, s) and get(p, p) = p, which means that the value in
the memory cell does not change during the execution of
the program.

Natural numbers Programs

Carrier set N P

Operation(s)
+N : N2 → N
0N : N0 → N getP : P2 → P

Equation(s)
x +N y = y +N x

0 +N x = x

getP(p, p) = p
getP(getP(p, q), getP(r , s))

= getP(p, s)

The viewpoint of programs as algebra allows us to discuss
various properties about programs in terms of category the-
ory. Error handlers can be interpreted as homomorphisms
between algebras, and the notion of handler can be defined
for other effects.

Algebraic Theory

A signature Σ = (Σ, ar) consists of

� a set Σ of operation symbols and

� a function ar : Σ→ N, which assigns the arity ar(op) for
each op ∈ Σ.

For a signature Σ and a set X , the set of Σ-terms TermΣ(X )
generated by X is defined as the smallest set such that

� X ⊆ TermΣ(X ) and

� for any op ∈ Σ and t1, . . . , tar(op) ∈ TermΣ(X ),
op(t1, . . . , tar(op)) ∈ TermΣ(X ).

An equation is a pair (`, r) of Σ-terms `, r ∈ TermΣ(V ).
We sometime write an equation (`, r) as V ` ` = r .

An algebraic theory T is a pair (Σ, E) of a signature Σ and
a set of equations E = {Vi ` `i = ri}i∈I .

Example: Algebraic Theory of Commutative Monoid

An algebraic theory of commutative monoid is Tcmon =
(Σ, E) where

� Σ = {+, e}, ar(+) = 2, ar(e) = 0 and

� E =

 {x , y} ` x + y = y + x ,
{x , y , z} ` (x + y) + z = x + (y + z),
{x} ` e + x = x

.

Example: Algebraic Theory of Read Only State

An algebraic theory of read only state is Tread = (Σ, E)
where

� Σ = {get}, ar(get) = 2 and

� E =

{
{x , y , z ,w} ` get(get(x , y), get(z ,w)) = get(x ,w)
{x} ` get(x , x) = x

}

Model of Algebraic Theory

Let T = (Σ, E) be an algebraic theory. A T-model A
consists of

� a carrier set A, and

� for each op ∈ Σ, its interpretation opA : Aar(op) → A

satisfying all equations in E , that is

� for each (V ` ` = r) ∈ E and s : V → A, s(`) = s(r) holds

where for a function s : V → A and a term m ∈ TermΣ(V ),
s(m) ∈ A is defined as follows:

� s(v) = s(v)

� s(op(m1, . . . ,mn)) = opA(s(m1), . . . , s(mn))

Example: Models of Theory of Commutative Monoid

The following triples are Tcmon-models.

� (N,+N, 0)

� (N,×N, 1)

� (PX ,∪,∅) for a set X where PX is the power set of X .

Homomorphism and Category of Models

Let T be (Σ, E) and A, A′ be T-models. A homomorphism
φ : A → A′ is a function φ : A → A′ between their car-
rier sets such that for each op ∈ Σ, φ(opA(a1, . . . , an)) =

opA
′
(φ(a1), . . . , φ(an)) holds where n = ar(op), that is the

following diagram commutes:

An A′n

A A′

φn

opA opA
′

φ

(1)

We can check that all models of T and homomorphisms
forms a category. We write the category of models as
Mod(T).

Free Model

Given a theory T = (Σ, E) and a set X , the free T-model
generated by X is TermΣ(X )/∼E where ∼E is the equiva-
lence relation on TermΣ(X ) generated by the following rules:

� for each equation (V ` ` = r) ∈ E and substitution
s : V → TermΣ(X ), s(`) ∼E s(r), and

� op(t1, . . . , tn) ∼E op(t ′1, . . . , t
′
n) if tk ∼E t ′k for every

1 ≤ k ≤ n.

We write the free model TermΣ(X )/∼E as FX . We can
make F a functor Set → Mod(T). The forgetful functor
U : Mod(T) → Set sends models to its carrier sets. Then
there is an adjunction F a U :

Set

a

Mod(T).

F

U

The unit of this adjunction is η : X → UFX . The universal
property of the free algebra is described as follows:

X UFX

UA

η

f
Uφ

FX

A

φ

Programming Language

Syntax
Type A,B ::= 0 | bool | int | A→ B
Value V ,W ::= x | true | false | n | λx .M
Computation M ,N ::= retV | let x ← N inM | op
Environment Γ ::= x1 : A1, . . . , xn : An

Typing

x : A ∈ Γ
Γ ` x : A

c : τ
Γ ` c : τ

Γ, x : A `c M : B
Γ ` λx .M : A→ B

Γ ` V : A
Γ `c retV : A

Γ `c N : A Γ, x : A `c M : B
Γ `c let x ← N inM : B

op ∈ Σ ar(op) = A
Γ `c op : A

Semantics of the Language

Let T be the monad U ◦ F . We write the unit, multiplica-
tion, and strength of T as ηX : X → T X , µX : T T X →
T X , and stA,B : A× T B → T (A× B), respectively.

Type

[[bool]] = {t, f}, [[int]] = N,
[[A× B ]] = [[A]]× [[B ]], [[A→ B ]] = (T [[B ]])[[A]]

Environment [[Γ]] = [[A1]]× · · · × [[An]]

Value [[Γ ` V : A]] : [[Γ]]→ [[A]]

[[true]] = t, [[false]] = f, [[n]] = n

[[Γ ` x : A]] = πx, [[Γ ` λx .M : A→ B ]] = Λ[[M ]]

Computation [[Γ `c M : A]] : [[Γ]]→ T [[A]]

[[Γ `c retV : A]] = η[[A]] ◦ [[V ]]

[[Γ `c let x ← N inM : B ]] = µ[[B ]] ◦ T [[M ]] ◦ st[[Γ]],[[A]] ◦ 〈id, [[N ]]〉
[[Γ `c op : A]] = op(λa.a)

Error Handler

Consider the signature Σe = {e} where the arity of e is
0. The monad Te associated the theory Te = (Σe,∅) is
TeX = X t {⊥}.
For example the following program throw an error before
executing M . Hence, M is not executed.

let x ← e inM

Error handler provide a way to recover errors. For example,
the following program in the handler throw an error, and it
is caught by the handler. Then, the program N is executed
to recover the error.

handle (let x ← e inM) with{e 7→ N}
From the algebraic point of view, the handler defines a struc-
ture of Te-model A in some set A. Therefore, by the uni-
versality of the free Te-model, there exists a unique homo-
morphism φ : FeA→ A which makes the following diagram
commutes:

A TeA

A = UA

ηA

idA
Uφ

FeA

A.

φ

The morphism Uφ can be regarded as the interpretation of
the error handler:

[[handleM with{e 7→ N}]]s = (Uφ)([[M ]]s)

where s ∈ [[Γ]].

Effect Handler

Effect handler is generalisation of error handler. Similar to
error handlers, the interpretation of effect handlers is given
by the homomorphism obtained by the universality of free
algebra. The general form of effect handler is as follows:

handleM with{
ret x 7→ L

} ∪ {
op, k 7→ Nop

}op∈Σ

The term L determines the morphism A→ A′, and The set
of terms {Nop}op∈Σ determines an algebraic structure A′ of
T = (Σ,∅) with a carrier set A′.

A T A

A′ = UA′

ηA

[[L]]
Uφ

FA

A′.

φ

The morphism Uφ obtained by the universality of free T-
model FA is the interpretation of the handler.

[[handleM with{ret x 7→ L} ∪ {op(x), k 7→ Nop}op∈Σ]]

= (Uφ)([[M ]])

An example of effect handler for the theory of read only
state is

{x 7→ retλs.x} ∪ {get, k 7→ retλs.ks}.

References:
1. Plotkin, G. and Power, J.: Notions of Computation Determine Monads. FoSSaCS 2002. Foundations of Software Sciences and Computation Structures, pp 342–356. 2002.
2. Bauer, A. and Pretner, M.: An effect system for algebraic effects and handlers. Log. Methods Comput. Sci. 10(4), 2014.

https://www.kurims.kyoto-u.ac.jp/~tsanada/
https://www.kurims.kyoto-u.ac.jp/~tsanada/papers/alg-effect-poster.pdf

