
Category-Graded Effect System and Algebraic Theory
Takahiro Sanada

RIMS, Kyoto University, https://www.kurims.kyoto-u.ac.jp/~tsanada/, tsanada@kurims.kyoto-u.ac.jp

Introduction

An important aspect of the theory of programming languages
is the treatment of computational effects. Computational ef-
fects are the behavior of a program that breaks its feature
as a mathematical function, such as input/output, nonde-
terministic choice, and state reading/writing. Monads and
algebraic theories have been studied since 1990s as a no-
tion to treat such computational effects in a unified man-
ner. Recently, category-graded monads are introduced to
unify graded monads and parameterised monads. We de-
fine category-graded algebraic theory that corresponds to
the category-graded monad, and propose an effect system,
CatEff, which use it and can safely treat states and in-
put/outputs of varying types.

Examples of Computatinal Effect and Motivation

Consider the following program with a single state. We as-
sume that the initial state has a value of type Int.

fun ppa : Intq : Int

letpx : Intq be read pq

letpy : Unitq bewritepaq

return x

The program p reads an integer from the state and bind it to
the variable x of type Int, then updates the state with the
argument a, and returns the integer x . Next, we consider
the following programs:

fun qpa : Intq : Int

letpx : Intq be read pq

if isEvenpaq

then letpy : Unitq bewriteptrueq

else letpy : Unitq bewritepfalseq

return x

The program q is intended to write a boolean value to the
state. Unfortunately, this program may cause problematic
behavior. Consider calling the program q twice: qpqp42qq.
The first call completes execution successfully, In the second
call, x is expected to be an integer, but actually a boolean
value. There are several solutions to this problem.

1. Keep the programmer aware of the state of the program and
make sure that type inconsistencies do not occur. This
solution allows the type of the state to change.

2. Fix the type of state, and detect such a type inconsistency
automatically by type checking. This solution frees
programmers from using their brains. Programs such as q are
no longer accepted.

We propose another solution to this problem by introducing
novel notions, called category-graded algebraic theory and
category-graded effect. This solution allows the type of the
state to change and detects type inconsistencies automati-
cally.

References

1. Bauer, A., Pretner, M.: An effect system for algebraic effects
and handlers. Log. Methods Comput. Sci. 10(4), 2014.

2. Orchard, D., Wadler, P., Eades III, H.: Unifying graded and
parameterised monads. MSFP 2020. EPTCS, vol. 317. pp
18–38, 2020.

3. Street, R.: Two constructions on lax functors. Cahiers de
Topologie et Géométrie Différentielle Catégoriques. 13(3),
217–264, 1972.

Category

A category C is a directed graph satisfying the following conditions:

� For each vertex A of C, there exists an
edge idA : A Ñ A, called identity on A.

AidA

� For each pair of edges f : A Ñ B , and
g : B Ñ C , there exists an edge
g ˝ f : A Ñ C , called composition of f
and g .

A B Cf

g˝f

g

� The following equations hold for any vertices A,
B and edge f : A Ñ B .

f ˝ idA “ f , idB ˝ f “ f

A A

B

idA

f
f

A B

B

f

f
idB

We write obpCq for the set of vertex of C, and CpA,B q for the set of edges from A P obpCq to
B P obpCq of C. We call a vertex of a category an object, and an edge a morphism.

An Example of Category-Graded Effect

Let S be the category “freely generated” by the graph: Int Bool

ib

bi

. We consider the

following read and write operations graded by the morphisms of S.

read idInt, read idBool, write idInt, write idBool, write ib, writebi .

Intuition of the graded morphism f : A Ñ B of operations op
f

is that A and B represent
precondition and postcondition of the effect op

f
, respectively. For instance, write ib can be used

under the circumstance that the type of the state is Int, and write boolean value to the state.
The programs corresponding to p and q in the left column can be written as follows:

fun p1pa : Intq : Int; idInt ˝ idInt
letpx : Intq be read idIntpq

letpy : Unitq bewrite idIntpaq

return x

fun q1pa : Intq : Int; ib ˝ idInt
letpx : Intq be read idIntpq

if isEvenpaq

then letpy : Unitq bewrite ibptrueq

else letpy : Unitq bewrite ibpfalseq

return x
Program Graded by

p1 idInt
q1 ib

p1 ˝ p1 idInt
q1 ˝ p1 ib
p1 ˝ q1

Î

q1 ˝ q1
Î

The left figure shows some programs and these grading
morphisms.

Î

means that the program is not allowed
because the programs cause problematic behavior. Such a
type inconsistency is detected by type checking, so we can
prevent runtime errors. In summary, by grading effect and
program, we can prevent runtime errors by type checking
while maintaining flexibility of programs.

CatEff[Sanada, 2021]: A Category-Graded Effect System

We give the formal language for category-grade effect and its type system:

Values: V ,W ::“ x | true | false | n | . . .

where x and n ranges over a set of variables and natural numbers, respectively.

Computations: M ,N ::“ returna V | let x beM inN | oppV q | . . .

where a ranges over obpSq. We define the rule to derive a typing judgement Γ $f M : β where
Γ “ px1 : α1, . . . , xn : αnq, and αi and β are type.

Γ $ V : α
Γ $ida returna V : α

Γ $f M : α Γ, x : α $g N : β
Γ $g˝f let x beM inN : β

Γ $ V : α
Γ $fop oppV q : β ¨ ¨ ¨

Category-Graded Algebraic Theory

The theoretical background of category-graded effect is category-graded
algebraic theory. The right figure is a tree representation of the term
σf pτ g px q, τ g py qq of a category-graded algebraic theory. The formal definition
of terms of category graded algebraic theory is as follows.

σ

τ τ

x y

f

g g

ida ida

Definition[Sanada, 2021] Let X be a set, S be a category, and Σ be S-graded signature, that
is a set of operation symbols. For each operation symbol σ P Σ, a morphism fσ of S and a
natural number nσ are assigned. The set TermΣpf ,X q of f -graded Σ-term is defined inductively
as follows:

a P obpSq x P X
epa, x q P TermΣpida,X q

σ P Σ

ti P TermΣpg ,X q
(nσ
i“1

σpt1, . . . , tnσq P TermΣpg ˝ fσ,X q

International Symposium on Advanced Quantum Technology for Future 2022

https://www.kurims.kyoto-u.ac.jp/~tsanada/

