Algebraic effects and handlers for arrows

Takahiro Sanada ¹

¹Fukui Prefectural University, Japan

ICFP 2024

Background and contribution

Background 1: algebraic effects and handlers

- ► The set of programs with effects is an algebra [Plotkin and Power 2001].
- ▶ Programmers can implement effects by handlers [Plotkin and Pretnar 2009].

Background 2: arrows

Arrows are a generalization of monads in Haskell [Hughes 2000][Lindley, Wadler and Yallop 2010][Lindley 2014][Asada 2010].

Contribution: algebraic effects and handlers for arrows

- ▶ We reveal the semantic structure of algebraic effects and handlers for arrows.
- ► Syntax and operational semantics are extracted by the semantic structure.
- Soundness and adequacy theorems are proved.

Semantics

Syntax

Arrows [Hughes 2000]

Arrows are generalization of monads.

The following is the type class of arrows in Haskell.

```
class Arrow a where
  arr :: (x -> y) -> a x y
  (>>>) :: a x y -> a y z -> a x z
  first :: a x y -> a (x, z) (y, z)
```

The following is the type class of monads in Haskell.

```
class Monad m where
  return :: x -> m x
  (>>=) :: m x -> (x -> m y) -> m y
```

Profunctor

A profunctor is a categorical analogue of a relation.

Set theory Category theory a function $f: A \to B$ a relation $F: \mathbb{C} \to \mathbb{D}$ a functor $r: B \times A \to 2$ a profunctor $R: \mathbb{D}^{\mathrm{op}} \times \mathbb{C} \to \mathbf{Set}$

- ▶ A relation $r: A \rightarrow B$ is a function $r: B \times A \rightarrow 2$.
- ▶ A profunctor $R: \mathbb{C} \to \mathbb{D}$ is a functor $R: \mathbb{D}^{op} \times \mathbb{C} \to \mathbf{Set}$.

An example of a profunctor

The hom-functor $I_{\mathbb{C}} := \mathbb{C}(-,-) : \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$ is a profunctor $I_{\mathbb{C}} : \mathbb{C} \to \mathbb{C}$.

Let Prof be the bicategory of categories and profunctors.

Profunctor

A profunctor is a categorical analogue of a relation.

Set theory Category theory a function $f: A \to B$ a relation $F: \mathbb{C} \to \mathbb{D}$ a functor $r: B \times A \to 2$ a profunctor $R: \mathbb{D}^{op} \times \mathbb{C} \to \mathbf{Set}$

- ▶ A relation $r: A \rightarrow B$ is a function $r: B \times A \rightarrow 2$.
- ▶ A profunctor $R: \mathbb{C} \to \mathbb{D}$ is a functor $R: \mathbb{D}^{op} \times \mathbb{C} \to \mathbf{Set}$.

An example of a profunctor

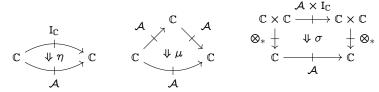
The hom-functor $I_{\mathbb{C}} := \mathbb{C}(-,-) : \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$ is a profunctor $I_{\mathbb{C}} : \mathbb{C} \to \mathbb{C}$.

Let **Prof** be the bicategory of categories and profunctors.

Arrows are strong monads[Asada 2010]

Arrows are strong monads in **Prof**

A strong monad in **Prof** is a profunctor $\mathcal{A}:\mathbb{C} \to \mathbb{C}$ and 2-cells



satisfying appropriate axioms.

$$\frac{\eta_{X,Y} \colon I_{\mathbb{C}} \Rightarrow \mathcal{A}}{\mathbb{C}(X,Y) \xrightarrow{\eta_{X,Y}} \mathcal{A}(X,Y)} \xrightarrow{\mu \colon \mathcal{A} \circ \mathcal{A} \Rightarrow \mathcal{A}} \frac{\mu \colon \mathcal{A} \circ \mathcal{A} \Rightarrow \mathcal{A}}{\mathcal{A}(X,Y) \times \mathcal{A}(Y,Z) \xrightarrow{\mu_{X,Y,Z}} \mathcal{A}(X,Z)}$$
$$\frac{\sigma \colon \bigotimes_{*} \circ (\mathcal{A} \times I_{\mathbb{C}}) \Rightarrow \mathcal{A} \circ \bigotimes_{*}}{\mathcal{A}(X,Y) \xrightarrow{\sigma_{X,Y,Z}} \mathcal{A}(X \otimes Z,Y \otimes Z)}$$

Our idea

We construct a strong promonad \mathcal{A}_{Σ} on **Set** in **Prof** from a signature Σ .

- ► From this semantic structure, a programming language is derived.
 - ► The language is a extension of the arrow calculus [Lindley, Wadler, Yallop 2010].
 - The language has effects which correspond to arrows and effect handlers.
- ▶ Denotational semantics is given by A_{Σ} .
- c.f. $|\text{Term}_{\Sigma}|$ is the (strong) monad on **Set** in **Cat**

Construction of A_{Σ}

 $\mathcal{A}_{\Sigma}(X,Y) = \operatorname{Arr}_{\Sigma}(X,Y)/\sim$ is a set of sequences of operations mod \sim .

$$\frac{f \colon X \to Y \text{ in } \mathbf{Set}}{X - \int Y \in \mathsf{Arr}_{\Sigma}(X, Y)} - \mathsf{id} - \mathsf{a} - \mathsf{a} - \mathsf{id}$$

$$\frac{\mathsf{op} \colon \gamma \to \delta \in \mathcal{A}_{\Sigma}}{\llbracket \gamma \rrbracket - \mathsf{op} - \llbracket \delta \rrbracket \in \mathsf{Arr}_{\Sigma}(\llbracket \gamma \rrbracket, \llbracket \delta \rrbracket)} \qquad \vdots$$

$$X - \boxed{a - Y \in \mathsf{Arr}_{\Sigma}(X, Y)}$$

 $Y - b - Z \in Arr_{\Sigma}(Y, Z)$

 $X - a - b - Z \in Arr_{\Sigma}(X, Z)$

 $b \vdash Y \in Arr_{\Sigma}(X,Y)$

 $-Y \in Arr_{\Sigma}(X \times Z, Y \times Z)$

 A_{Σ} is a strong promonad on **Set** in **Prof**!

 $\mathcal{A}_{\Sigma} \colon \mathbf{Set} \nrightarrow \mathbf{Set}$

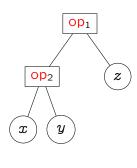
A model is a \mathbb{C} -small strong monad \mathcal{A} on a CCC \mathbb{C} in \mathbb{C}' -**Prof**, where \mathbb{C}' is a sufficiently cocomplete CCC with a fully faith-

ful cartesian functor $J: \mathbb{C} \to \mathbb{C}'$. 8/16

Free algebras for arrows

 $Arr_{\Sigma}(X,Y)$

 $\mathsf{Term}_{\Sigma}(X)$



Comparison: Arrows and Monads

Arrows

A strong promonad A_{Σ} : **Set** \rightarrow **Set** in **Prof**.

 $\mathcal{A}_{\Sigma}(X,Y)$ is a set of sequences.

An A-algebra is a presheaf $G: \mathbb{C}^{op} \to \mathbf{Set}$ with $\alpha: A \circ G \Rightarrow G$.

$$\mathbf{Set}(X,Y) \xrightarrow{\eta_{X,Y}} \mathcal{A}_{\Sigma}(X,Y)$$

$$\downarrow^{h}$$

$$G(X)$$

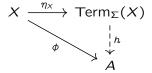
Interpretation of handlers is given by h.

Monads

A (strong) monad Term_{Σ}: **Set** \rightarrow **Set** in **Cat**.

 $\operatorname{Term}_{\Sigma}(X)$ is a set of trees.

A \mathcal{T} -algebra is a set A with $\alpha \colon \mathcal{T}A \to A$.



Interpretation of handlers is given by h.

Semantics

Syntax

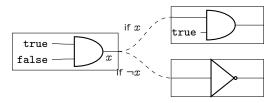
Logical circuit simulation

OK: we can write logical circuit using algebraic effects.

$$P = \begin{pmatrix} \det x \leftarrow \mathsf{NAND}(\mathsf{true}, \mathsf{false}) \, \mathsf{in} \\ \det y \leftarrow \mathsf{OR}(x, \mathsf{false}) \, \mathsf{in} \, \mathsf{AND}(y, \mathsf{true}) \end{pmatrix}$$

FORBIDDEN: arrow does not admit the following conditional expression because an element of free algebra is a sequence, not a tree.

$$Q = \begin{pmatrix} \text{let}\,x \Leftarrow \text{AND(true,false)\,in} \\ \text{if}\,x\,\text{then}\,\text{AND}(x,\text{true})\,\text{else}\,\text{NOT}(x) \end{pmatrix}$$



Implementation of logic gates by handlers

We can simulate the logic circuit P using handler.

handle(handle P with H_1) with $H_2 \rightarrow^* [true]$.

$$H_1 = \left\{ \begin{array}{l} \mathsf{NAND}, k : \mathsf{bool} \leadsto \mathsf{bool} \, ; z : \mathsf{bool} \times \mathsf{bool} & \mapsto \\ \mathsf{let} \, u \Leftarrow \mathsf{AND}(z) \, \mathsf{in} \\ \mathsf{let} \, v \Leftarrow \mathsf{NOT}(u) \, \mathsf{in} \, k \bullet v \\ \\ \mathsf{OR}, k : \mathsf{bool} \leadsto \mathsf{bool} \, ; z : \mathsf{bool} \times \mathsf{bool} & \mapsto \\ \mathsf{let} \, u \Leftarrow \mathsf{NOT}(\mathsf{fst} \, z) \, \mathsf{in} \\ \mathsf{let} \, v \Leftarrow \mathsf{NOT}(\mathsf{snd} \, z) \, \mathsf{in} \\ \mathsf{let} \, w \Leftarrow \mathsf{AND}(\langle u, v \rangle) \, \mathsf{in} \, k \bullet w \\ \end{array} \right\}$$

$$H_2 = \left\{ \begin{array}{l} \mathsf{AND}, k : \mathsf{bool} \leadsto \mathsf{bool} \, ; z : \mathsf{bool} \times \mathsf{bool} \mapsto \\ \mathsf{if}(\mathsf{fst} \, z) \\ \mathsf{then}(\mathsf{if}(\mathsf{snd} \, z) \, \mathsf{then} \, \mathsf{true} \, \mathsf{else} \, \mathsf{false}) \\ \mathsf{else} \, \mathsf{false} \\ \mathsf{NOT}, k : \mathsf{bool} \leadsto \mathsf{bool} \, ; x : \mathsf{bool} \mapsto \\ k \bullet \, (\mathsf{if} \, x \, \mathsf{then} \, \mathsf{false} \, \mathsf{else} \, \mathsf{true}) \end{array} \right\}$$

Algebraic effects and handlers for arrows

We define a programming language, which is interpreted by a strong monad ${\cal A}$ in **Prof**.

We extend arrow calculus (Lindley, Wadler and Yallop, 2011).

For each operation op $\in \Sigma$, types γ and δ are assigned.

$$(op : \gamma \rightarrow \delta) \in \Sigma$$

Denotational Semantics

(Roughly speaking) A model is a strong monad $\mathcal{A}: \mathbb{C} \to \mathbb{C}$ in **Prof**. \mathcal{A}_{Σ} is a model.

Typing judgements:

(Pure) terms
$$\Gamma \vdash M : A$$

(Efefctful) commands $\Gamma ; \Delta \vdash P ! A$
Handlers $\vdash H : C \Rightarrow D$

Interpretation:

Soundness and adequacy

We can define call-by-value operational semantics: $M \to M'$ and $P \to P'$.

Soundness

- ▶ If $M \rightarrow M'$ then [M] = [M'].
- ▶ If $P \rightarrow P'$ then $\llbracket P \rrbracket = \llbracket P' \rrbracket$.

Adequacy

- ▶ If $\diamond \vdash M$: unit and $\llbracket M \rrbracket = \star \in \llbracket \text{unit} \rrbracket$ then $M \to^* \langle \rangle$.
- ▶ If \diamondsuit ; $\diamondsuit \vdash P$! unit and $\llbracket P \rrbracket = \operatorname{arr}(\star) \in \mathcal{A}_{\Sigma}(1, \llbracket \operatorname{unit} \rrbracket)$ then $P \to^* \lfloor \langle \rangle \rfloor$.

The proof of the adequacy is by defining logical relations.