Submitted to MFPS 22

Category-Graded Algebraic Theories and Effect Handlers

Takahiro Sanada'+?

Research Institute for Mathematical Sciences
Kyoto University
Kyoto, Japan

Abstract

We provide an effect system CatEff based on a category-graded extension of algebraic theories that correspond to category-
graded monads. CatEff has category-graded operations and handlers. Effects in CatEff are graded by morphisms of the
grading category. Grading morphisms represent fine structures of effects such as dependencies or sorts of states. Handlers
in CatEff are regarded as an implementation of category-graded effects. We define the notion of category-graded algebraic
theory to give semantics of CatEff and prove soundness and adequacy. We also give an example using category-graded effects
to express protocols for sending receiving typed data.

Keywords: Algebraic theory, algebraic effect, effect handler, category-graded monad

1 Introduction

1.1 Background

Moggi [14] used monads to capture computational effects. Monads have a close relationship with algebraic
theories [7]. Algebraic effects [17] are effects based on algebraic theories. Handlers of algebraic effects
[18] provide clear ways to implement effects. Algebraic effects and handlers are useful notions to make
programs with effects.

There are several extensions of monads [1,8,15,16]. These variations of monads enable us to reason
about computational effects in more detail.

Parameterised monads [1] are monads with parameters which represent initial and terminal states of
computational effects such as change of type of state. In an effect system based on parameterised monads,
each computational term is graded by an object of a parameter category S. For example, we can capture
the feature of mutable state of mutable type. To see this, let S be a discrete category whose objects
are int and 1. The parameter indicates the type of state. We can construct computational terms, M
with parameter int and N with parameter 1. We can know that the computations M and N have states
of type int and 1 respectively. Let us consider lookup and update operations for this mutable state
of mutable type. There are two lookup operations and four update operations lookup;,.(),lookup; (),
update; .1 (V), update; _;ne (V), update; . in: (V) and update;_,1 (V). lookup,,. () is an operation that

1 T would like to thank the people of computer science group at RIMS, especially Masahito Hasegawa and Soichiro
Fujii for discussions and comments, and the anonymous reviewers for comments. This work was supported by JST,
the establishment of university fellowships towards the creation of science technology innovation, Grant Number
JPMJFS2123 and JST ERATO Grant Number JPMJER1603.

2 Email: tsanada@kurims.kyoto-u.ac.jp

MFPS 22 Proceedings will appear in Electronic Notes in Theoretical Informatics and Computer Science

mailto:tsanada@kurims.kyoto-u.ac.jp

SANADA

reads the state of type int and returns the value in it. We can use lookup;,.() only when the type of
the state is int. lookup, () is similar. update,_,3(V') is an operation that writes the value V' in the state
changing the type of state from « to 5. The parameter category S does not need to be a discrete category.
If S has nontrivial morphisms, the intuition is that morphisms mean subtyping relations between the types
of the state.

Graded monads [8,12] are monads graded by a partially ordered monoid. Elements of the partially
ordered monoid express quantity of effects such as memory locations that effects affect. Its formal theory
was given in [5], and its algebraic theories were given in [20,4,9]. For example, let L = {ly,ls,...,l,} be
a set of memory locations. Then we can get a partially ordered monoid 2% where the product - of 2%
is the union of sets U and the order < of 2% is the inclusion C. If a computation term M is graded by
A € 2% we can know that M may access the memory locations contained in A. The role of the order is
weakening of a set of locations which may be accessed. If a computation term M is graded by A € 2% and
A < B, we can deduce that M is also graded by B. The intuition is that computation that may access
the locations in A may access the locations in B which is larger than A. Let us consider memory lookup
and update operations. Let lookup;() be an operation that reads location /; and returns its value and
update; (V') be an operation that writes V' on the location [; and returns the unit value. lookup,() and
update; (V) are graded by {l;} and {I;} respectively. If M is graded by A € 2L, let z < lookup;() in M
and let _ < update;(V) in M are graded by {l;} - A and {l;} - A, respectively.

Category-graded monads [15] are introduced to unify parameterised and graded monads. Graded
monads are 2-category-graded monads with a single object. Parameterised monads are category-graded
monads with generalised units. Category-graded monads and the constructions of these Eilenberg-Moore

and Kleisli categories are a special case of lax functors and these two constructions are studied by Street
[21].

1.2 Overview
In this paper, we provide

e category-graded extensions of algebraic theories,

¢ a category-graded effect system CatEff with effect handlers based on category-graded algebraic theories,
and

e operational and denotational semantics of the effect system.

In category-graded algebraic theories, terms are graded by morphisms of a grading category S. In the
effect system that corresponds to category-graded algebraic theories, we will define a judgement I' =y M : A
for computational term M and a morphism f in §. This judgement means that the computation M will
return a value of type A under the environment I' and invoke effects graded by f. The term M will be
denoted by a map [I'] — T[A], where T' is a category-graded monad. Grading morphisms can express a
finer structure of computational effects than elements of monoids in ordinary graded monads or parameters
in parameterised monads can, especially structures of dependency and sorts of state.

1 _ int
For instance, let us consider the following morphisms f = (1 = int sendine, jpg [int) and

1 .
g=(1 Mt LN P int) in a category S. A computational term M graded by f is a computation

that behaves as follows.

(i) The type of the initial state is unit type 1.

(ii) Some effects are invoked in M and a value of type int is stored in the state. Thus, the type of state
is changed from 1 to int. These effects are graded by 7l ., which means internal computation with
a change of types of the state.

(iii) An effect sending the value of the state to another process is invoked. It is graded by sendint. The
type of the state is not changed by the sending effect, so the domain and codomain of send;; are the
same.

(iv) An effect receiving graded by recvift is invoked. It receives a value of type int and stores it in the
state. In this case, the types of state before receiving and after receiving are the same, but in general,

2

SANADA

they may be changed.
A computational term N graded by g is a computation that behaves as follows.
(i) The type of the initial type is unit type 1.

(i) An effect graded by recvl, is invoked. It receives a value of type int and stores it in the state. The
type of state before receiving and the type of receiving value are different, so the type of state is
changed from 1 to int.

(iii) An effect graded by sendiyt is invoked. It sends a value of the state.

Thanks to the grading morphisms, we can know the transition of the type of the state, and deduce that
M and N can interact with each other and yield values. We think of morphisms in S as protocols of
communication.

We can construct handlers of category-graded effects. As ordinary handlers are the morphisms induced
by the universality of free models of algebraic theories, category-graded handlers are the morphisms induced
by the universality of free models of category-graded algebraic theories. We can regard category-graded
handlers as an implementation of category-graded effects. (Monoid-)graded monads without order and
parameterised monads whose parameterising category is discrete are special category-graded monads, so
we can get handlers for effects corresponding to these monads automatically.

Contents. In Section 2, we introduce notations and review some categorical notions. In Section 3, we
define category-graded algebraic theory and describe the free construction for the theory. In Section 4, we
explain our effect system based on category-graded algebraic theory. We call the effect system CatEff. The
effect system has handlers of category-graded effects. In Section 5 and Section 6, we describe operational
and denotational semantics of our effect system, respectively. In Section 7, we show the soundness and
adequacy of the semantics.

2 Category-Graded Monads

We assume that readers are familiar with basic notions of category theory such as monads [11]. Throughout
this paper, we use the following notations.

e Let CAT be the 2-category of all categories, functors and natural transformations.
¢ Let Set be the category of all sets and maps.

e For a category C, Id¢ is the identity functor on C.

e For a category C, Endo(C) is the full 2-subcategory of CAT whose 0-cell is only C.

e For a category C with finite and countable products and coproducts, an object C of C, and a finite or
countable set X, CX is the X-fold product of C, that is] C and X x C'is the X-fold sum of C,

X reX
that is Y C.

2.1 Lax Functors and Category-Graded Monads

Category-graded monads are introduced by Orchard et al. [15]. In this section, we fix a category C and a
small category S.

Definition 2.1 [Lax functor| Let C be a 2-category. A lax functor F: S B Cisa tuple F' = (F,n", uf)
where

¢ For each object a of S, Fa is a 0-cell of C.
¢ For each morphism f:a —bof S, Ff: Fa — Fbis a 1-cell of C.
¢ For each object a of S, 775: idp, = Fid, is a 2-cell of C.

e For each morphism f:a — band g: b — c of S, ,u,f;f: FgoFf= F(gof)isa2-cell of C
3

SANADA

satisfying the following commutative diagrams:

- Fhut
Fp I g pid, FhoFgoFf —2{ FhoF(go f)
nFFfﬂ \ ﬂufid“ “ﬁgFfﬂ ﬂugg(]f
FldbOFf:>Ff (hogFf:>F(hogof)
p’ldbf :uhogf

We call 7" and pf" unit and multiplication of F respectively.

We use string diagrams [19] for diagrammatic reasoning. In string diagram, a region of a diagram
represents a 0-cell of a 2-category, a string between two regions represents a 1-cell from the 0-cell of the
left regions to the 0-cell of the right region, and a node on strings represents a 2-cells from the 1-cell of
bottom strings to the 1-cell of top strings. We can depict unit and multiplication, and the axioms of lax
functor by string diagrams as follows:

Ff Ff Ff
Fid, F(gof)
na - i 9 M}F‘:g: /J\ 9 = = 9
e wh,
Ff Fg Ff Ff Ff
F(hogof) F(hogof)

Ff Fg Fh Ff Fg Fh

Definition 2.2 [Category-graded monads| A category-graded monad (or an S-graded monad) on C is a

lax functor S°P 2% Endo(C). That is, an S-graded monad consists of mapping of objects and morphisms
T: S°° — Endo(C) and families of natural transformations 7, : Ide = Tiq, for a € S and py4: T5Ty = T,y
for f: a — b and g: b — ¢ in S that make the following diagrams commute.

Ty BRI T, Ty Ty T, T, Lt T Tyn
Tm%/Q\\\\§ wmaf /ﬁ¢&ﬂ wah
TyTa, =5a> 1 TrgTh Z75 Trigh

If S is the trivial category, that is the category with a single object and the identity morphism on
it, S-graded monad is a usual monad [3]. If S is a category with single object and endomorphisms on
it, the endomorphisms form a monoid and S-graded monad is a (monoid-)graded monad without order.
To consider parameterised monads as category-graded monads introduced in [15], we have to introduce
generalised units, see [15].

2.2 FEilenberg-Moore Construction on Lax Functors

According to [21], there are two functors obtained from a lax functor. The two constructions correspond
to Eilenberg-Moore and Kleisli construction on a monad, respectively. In this subsection, we review the
Eilenberg-Moore construction on lax functors.

Let S be a small category and F': S — CAT be a lax functor. The Eilenberg-Moore construction gives
a functor F': S — CAT.

SANADA

Definition 2.3 For a lax functor F = (F,n!", uf"): S — CAT, the functor F: 8 — CAT is defined as
follows:

e For an object a € Ob S, the category Fa is defined as follows.
- Objects are pairs (A, &) where A is a map which assigns to each morphism f: a — b of S an object
A; € Ob Fb and ¢ is a family of morphisms {{f4: FfA; — Afog}fg such that the following diagrams
commute:

FaA
Ay 20 Ry, Ay FuF,Ap 250 B A

\ lﬁldb f Hp, gAfl lfh gof

FhogAf T) Ahogof

foreach fra—b,g:0—c,h:c—din S.
- Morphisms are a: (A, h) — (A’,¢’) where « is a family of morphisms {af: Ap — A’f}f such that the
following diagram commutes:

FA; —%5 R AL

5%{ lf.f;,f

foreach f:a—0b,9:b— c.

e For a morphism f: a — b, a functor F f: Fa — Fb is defined as follows:
. Ff assigns an object (B,¢) := (Ff)(A,&) of Fb to an object (A,&) of Fa where By = Agp and
Chg = Ehygoy for g: b — ¢, h:c—d.
. For a morphism a: (4,&) — (4',€') of Fa, a morphism

(Ff)a: (Ff)(A € — (Ff)(A,€)

is defined as ((Ff)a)g = oy for g: b — cin S.

Since S-graded monad T': S°® — Endo(C) is a special case of lax functor S°? — CAT, the category of
Eilenberg-Moore algebras of S-graded monad T is obtained by the above construction.

Next, we describe an adjunction between Fa and Fa for a € ObS. A functor J,: Fa — Fa is defined
as follows.

* For an object X € Ob Fa, J,X := (A,¢) € ObFa where Ay = FyX and & ¢ = pul ;o FyAp — Agog
for fra—b,9g:0b—cinS.

e For a morphism x: X — Y in Fa, ja:L‘: jaX — jaY is a family of jaacf = Fyx.
A functor E,: Fa — Fa is defined as follows.

e For an object (A,&) € Ob Fa, E,(A,€) := Ay, € Fa.

e For a morphism a: (A4,&) — (4, &) in Fa, E,a = ajq, .

We will show that .J is a left adjoint to E. To do so, we construct a unit and a counit of the adjunction.
The unit 7, : Idpa = F,J, is a natural transformation whose components are 7, x = 17X X — Fg,X.
The counit &,: J,E, = Id; g 18 @ natural transformation whose components are

A N . F
foa0) = €O (Flo A, (Kg. 1410,) f) — (4,9).

Proposition 2.4 The tuple (ja, Ea,ﬁa,éa) forms an adjunction.
)

SANADA

Proof. Follows by definition. For detail, see [21]. O

For a morphism f: a — b, let us calculate the functor EyF fJ,: Fa — Fb. For an object X € Fa,
we have EyEfJ,(X) = EyF f (F(_)X, (uF, X)g?k) — B, (F(_)o S X (s X)g,k) = Fiq,or X = F;X. For a
morphism z: X — Y, we have EpF fJ,(v) = EyF f(F_x) = Ey(F_opx) = Fig,orx = Frx. Therefore, we
have Ff = Ebﬁfja.

2.8 A Lax Functor Induced by Adjunctions and a Functor

In Section 2.2, a lax functor F': § — CAT gives adjunctions and a functor. Conversely, we will show that
adjunctions and a functor determine a lax functor. The construction of lax functor is a generalization of
the construction [5,13] of lax M-action from an adjunction and a strict M-action where M is a monoid.

Theorem 2.5 Given a functor G: S — CAT, a map F: ObS — Ob CAT and adjunctions (J,: Fa —
Ga,E,: Ga — Fa,n,,e,) for each a € ObS, F is extended to a lax functor F: S — CAT.

Proof. For each morphism f: a — b of S, we define Ff := EyoGfoJ,: Fa — Fb. The unit n’ of F is
induced by the units of the adjunctions. For each a € ObS, we define 775 i=1g: Idpq = Fiq,.-

FCLLGa Jo Gf Ey Fa%Ga Ja Fa

Fy! le = ‘ I ; Idpal Je_ lGida:IdGa = %j
< a

o= G LGPE, Fa cg—Ga idpq

The multiplication uf” of F is induced by the counits of adjunctions. We define /{5 5= JacoEc: FgoF f=
F(go f)foreach f:a—band g: b — cof S.

G(gof)
/ﬂ\
JG(go fE.
Ga 51 gp Mev, g ©9
wl o om]oay Al
Fa — > Fb o Fb —

JoGfEy J, GgE,

We claim that (F,7n%, uf) is a lax functor. To show this claim, we have to show that the axioms of lax
functors hold. The following equations of string diagrams imply the axioms hold.

G(hogo fl, G(hogo fl,
J.GfEy JyGgE, J.GhEy, J.GfEy Jy GgE J.GhE,

SANADA

Ja Gf Eb Ja GfEb Ja Gf Eb
(JEA‘I\‘ i i
Na b
J.GfEy J G E, JoGfEy

O

Corollary 2.6 Given a functor G: §S°® — CAT, a category C and adjunctions (J,: C — Ga, E,: Ga —
C,Nas€a) for each a € ObS, there exists an S-graded monad T': S°® — Endo(C) such that Ty = EyG fJ,
for each f:b—ain S.

3 Category-Graded Algebraic Theories

We explain category-graded extensions of algebraic theories. In this section, we fix a small category S and
a category C with countable products.

3.1 Category-Graded Terms

In a category-graded algebraic theory, each term is graded by a morphism in a grading category S. This
is analogous to parameterised and (monoid-)graded algebraic theories [1,9].

Definition 3.1 [Signature] An (S-graded) signature ¥ is a set of symbols. For each o € ¥, countable or
finite sets P and A, and a morphism f in S are assigned. o € ¥ is called an operation. P, A and f are
called a parameter, arity and grade of o, respectively. We write o: P ~~ A; f for an operation o whose
parameter, arity and grade are P, A, f, respectively.

Definition 3.2 [X-term] Let X be a set. The set of X-terms Termy(f, X) for each f: b — a in S is

defined recursively as follows.
ac€0bS zeX
e(a,r) € Termy(id,, X)
peEP o: P~ Afic—b {ti};cy CTermg(g: b— a,X)
dO(O’,p, {tl}zeA) € Termz(f; g, X)
We sometimes write do(o, p, Ai.t;) instead of do(o, p, {ti},c4). Intuitively, do(o,p, Ai.t;) is the term
that performs the operation o with parameter p, binds the result to ¢, and invokes the continuation ¢;.

Note that, when A is the arity of o, the term do(o, p, Ai.t;) is a term that takes A-many terms {t;};ca as
arguments.

Definition 3.3 [S-model] Let ¥ be a signature. A S-model I = (I,|—|") at a € S is a pair of

a map I: [[;csS(b,a) — C and an interpretation |a\£: P x I(k)* — I(f;k) for each operation
o: P~ A; f:c— b€ X and morphism k: b — @ in S.

A homomorphism «: I — J between two X-models I and J at a is a family of morphisms
{og: I(k) — J(k)}y. p_, such that for every operation o: P ~» A; f: b— ¢ and morphism k: ¢ — a,
the following diagram commutes:

A F)XC&};:4 A
P x I(k)" —= P x J(k)

I J
olt] I

I(f;k) —5— J(fi k)

Afik

The map I : [[, S(b,a) — C assigns a “carrier set” I(k) to each k : b — a. Given a ¥-model I, we can
interpret YX-terms by extending the interpretation of I.

7

SANADA

Definition 3.4 [Interpretation of X-terms] Let ¥ be a signature and I be a ¥-model at a € ObS.
For each Y-term ¢ € Termy(f:b— a,X), the element [t|', called its interpretation, of the set
[oeskesa) C(I(k)™,I(f;k)) is defined recursively as

le(a,2)|" = {me: I(R)™ = 100}y, amsars
|do (0, p, \i-ti)| " = {(p X {[til)ic) [olg: T(R)Y = I(f3g5k)}

k: a—a’
where (0: P~ A; f:c—b) € ¥ and ¢; € Termy(g: b — a, X).
Intuitively, grading morphisms are sequences of sorts of effects that will be invoked by executing terms.

Example 3.5 Category graded algebraic theories are useful to deal with “order-sensitive” operations. To
illustrate this, we provide an example that contains operations for mutable state and sending and receiving
data. In this example, grading morphisms represent orders of sending and receiving effect and types of
data, analogously to session types. Let S be a category whose objects are base types and morphisms are

Tecv

recvg sendq U B _« o o - . .
B, o o, o0 — B, 7 oTg = T3, and 75 = id,. Let recvinty: 1 ~» 1; 0 —— int,

generated by «

sendint: 1 ~» 1;int send, int, lookupint: 1 ~» int;int o, int, updateint,: int ~» 1;« L int, and ¥
be {recvint,, updateint, } , U {sendint, lookupint}. We have the following X-terms:

t :=do(updateint, 2, A_. do(sendint, *, A_. do(recvint;pg, *, A_.

do(lookupint, x, \n. e(int, n))))) € Termy(7; sendins; recvill int),

s :=do(recvinty, *x, A_. do(lookupint, x, A\n. do(updateint, n + 1, A_.
do(sendint;,g, *, A_. e(int,*))))) € Termy(recvl,,; sendine, 1).

int
Sendint . T int
int

The term ¢ is graded by the morphism 1 5 int int in §. This means that the term
t executes internal effect 7, sends data of type int, and then receives data of type int. The term s is

1 i
graded by the morphism 1 ——% int sendis, 3 nt. This means that the term s receives data of type int

and then sends data of type int. We can know from grading morphisms of ¢ and s that they can interact
with each other.

3.2 FEquations

Next, we introduce equations to represent the equational theory on terms. The equation is defined as a pair
of terms as in the non-graded case. However, the pairs of terms must have the same grading morphism.

Definition 3.6 [Equations and category-graded algebraic theory] A graded family of equations for ¥ is a
family of sets E = (Ey)y where Ey is a set of pairs of terms in Termy(f, X). We write t = s for a pair
(t,s) € Ey. An S-graded algebraic theory is a pair T = (X, E) of S-graded signature 3 and equations F
for 3.

Definition 3.7 [Model for category-graded algebraic theory| Let 7 = (X, F) be an S-graded algebraic

theory and a be an object of S. A model for T at a is a S-model I at a that satisfies [t|’ = |s|’ for
each morphism f: ¢ — b in § and equation t = s € Ey. We denote the category of models for 7 at a by

Mod” (C).
3.8 Free Models and Adjunctions

We explain free models of a category-graded algebraic theory and its universal property.

Definition 3.8 Let 7 = (X, E) be an S-graded algebraic theory. We define a functor F : Set —
Mod7 (Set) by (FJ X)(k) = Termy(k, X)/ ~ for k: b— a in S and |o|5 ¥ (p, {[t:]},c.4) = [do(o, p, Xi.t;)]
for each X € Set, k: b — ain § and o: P ~ A;f where ~ is the equivalence relation induced by

8

SANADA

the equations F and [t] is the equivalence class of . We also define a map 7x: X — (FJ X)(id,) by
nx(xz) = [e(a, z)] € Termy(idy, X)/ ~.

We can show that the model FaT X with nx has the universal property of a free model.

Proposition 3.9 Let T = (¥, E) be an S-graded algebraic theory. Given a model A in Set for T at a
and a map ¢: X — Aidg, there exists a unique homomorphism ¢: F X — A such that Gig, O Nx = P.

X 5 (FTX)(ide) FIX

Proof. For each f: b — a, we define a map $f: Termy(f, X) — Af from the set of X-terms to Af
recursively by: ¢iq, (e(a,z)) = ¢(z) and gisf(do(a,p, Xit;) = || (p, Mi.d(t;)). Since A is a model for T,
all equations in E holds in A. Therefore, the map ¢([t]) := [(t)] is well-defined. We can show iq, 0Nx = @
by definition. a

The forgetful functor for models U] : Mod/ (Set) — Set is the evaluation at id,, that is U (4) = Ajq, .
By the universality of the free construction, we have isomorphisms Mod! (Set)(F X, A) = C(X, U A) for
each a € ObS. Thus, we have adjunctions F.) < U/ .

C € Mod! (Set) .

\/

We can define Mod] (Set): Mod! (Set) — Mod/ (Set) for a morphism k: b — a in S to make
Mod” (Set) a functor S — CAT. For a model A in Mod (Set), a map Mod] (Set)A: [].S(c,b) — Set

is defined as (Mod] (Set)A)(f) = A(f;k). Interpretation of operations |—|MOdkT(SQt)A is defined as
Mod] (Set)A A . T . T T
o]y = |o|}.;- 1t is easy to check that Mody (Set) is a functor from Mod, (Set) to Mod, (Set).

More generally, we can define a category of models ModZ—(C) for a category C in the same way as
C = Set, and we can apply the same argument as above if the left adjoint of forgetful functor exists.

Applying Corollary 2.6, we obtain an S-graded monad S°® — Endo(C). We denote the category-graded
monad by 77. The unit and multiplication of T7 are depicted as follows.

Modf g(C)
FT ur
FZ—UJ a c
T T
= O -
Ide

FI UJr] Ul
ModT(C)ModT(C)

4 A Category-Graded Effect System

In this section, we introduce an effect system with category-graded operations based on category-graded
algebraic theories. We call the effect system CatEff. We also construct handlers of category-graded
algebraic operations. We fix small categories S and &', and S, §'-signatures X, ¥'.

9

SANADA

4.1 Language

Syntax. Our effect system CatEff is based on fine-grained call-by-value calculus [10]. The syntax is
divided into two parts, values and computations.

Values V,W u=z | |inlV |inrV | (V,W) | Nz : A M

Computations M, N :=val,V |letz + Min N | VIV | op(V)
| projV as (z,y).M | match V{z.My;y.M>}

where a is an object in §, and f is a morphism in §. Values are usual except for lambda abstraction. The
lambda abstraction A'z : A.M means that this function has effects represented by the morphism f. We
sometimes write Vy and My to specify its signature.

Types. Types are defined by the following BNF"

PQu=1|PxQ|P+Q, AB:=1|AxB|A+B|A— Bialb

where f: a — b is a morphism in §. The key idea is that a function type A — B;a Iy b indicates
that a function of this type consumes an argument of type A and returns a result of type B with effects
represented by f. We call P a primitive type. We assume that parameters and arities of operations in the
signatures ¥ and Y’ are primitive types.

Typing rules. There are value judgements of the form I' V' : A and computation judgements of
the form I’ I—? M : A where T is a list of distinct variables with types and f is a morphism in §. The
judgement I' I—JZC M : A means that the computation M returns a result of type A under type environment

I' and causes effects represented by f. We omit X in the judgement I' l—? M : A if it is clear from the
context. The typing rules for terms in CatEff are presented in Figure 1.

Values
I'e:A+r M : B
r:Ael ’ f
_ LA _ Tv-ABs
FI—*:lTVUNIT FI—x:ATVVAR Mz M:A— B; f
I'cVvV:A FI—W:BTV_PAIR
Tr(V,W):AxB
r-v:A I'-v:B
TFinlv:41B VL preyv.aq g TV-IWR
Computations
f
TFV:A I'tV:P op:P~Q;a—=>beXx
TP, val, VA LC-VAL TFrop(V):Q Tc-Or
Fl_f:a—ﬂ)M:A Fax:AFg:b—N?N:BT L F"VA*)B,f FI—WAT A
Trygletz < MinN : B e-LET TH, VW :B C-APP
F'_V:AleQ P,(L‘:Al,y:Agl—fMiB
'k projVas(z,y).M : B Tc-ProJ
'EV:A+A Tax:Aikp M :B Ty: Ay My: B
Tc-MATCH

I' Ff match V{z.M;y.M>} : B

Fig. 1. Typing rules.

10

SANADA

4.2 Handlers

Handlers for ordinary algebraic theories [18] are homomorphisms from a free model for a theory to another
one. We can also construct handlers for category-graded algebraic theories in a similar way to the ordinary
handlers. Let G: & — &’ be a functor and 7 = (3, E), T' = (¥, E’) be S-, and S’-graded algebraic

theories, respectively. For an object a of S and sets X and Y, a handler from F X to (EJ Y)(G—) is

obtained by the universality of the free model F;/ X. To obtain the handler, (FZ_Y)(G—) must be a model
for 7 at a. So we need the following data:

s amap ¢: X — (FLY)(Gid,), and

T/ ’ U
* interpretations]J\,(CFG“Y)G: P x (Fg;aY)(Gk)Q — (FL.Y)(G(f;k)) of operations in ¥ for every o: P ~
Q;cLbEEandk:b—)a.

satisfying all equations in F, that is the interpretations of terms in Termy/(f, X) induced by]a|(F &ie
satisfies |t|(Fg;Y)G = |s|(Fgf;Y)

Together with the above data, (FJ.Y)(G—) becomes a model for 7T at a, and there is a homomor-
phism ¢: FT X — (Fg(;Y)G such that aida omnx = ¢ by the universal property of free model. We
can calculate the homomorphism ¢ = {¢;};.,_,, as ¢iq, ([€(a,v)]) = ¢(v) and ¢;. ,_,,([do(o, p, Ni.t;)]) =

(FIIY)G .= T
o], (p, Mi.dy,([ti])) where t; € (FA,Y)(GE).

We add syntax and typing rules for handlers as follows. Note that the following constructions of handlers
don’t care about equations of algebraic theories. Programmers must ensure on their responsibilities that
handlers they are constructing respect proper equations of effects.

Additional syntax. To construct handlers for CatEff, we need data that corresponds to ¢: X —

U T/ U !’
(FLY)(Gid,) and \o[é,FG“Y)G: P x (FgaY)(Gk)Q — (FL.Y)(G(f;k)) as argued above. Thus, we extend

the syntax of CatEff as follows:

¢ for everyt =s € E.

Computations Msyy ::= --- | handle My with Hy_ y

Handlers Hy_.y == {valyz — My}

k k:ic—b
U{Op<p)’ Tk (ME/)OP}op: PwQ;d%CEZ

Additional typing rules. We add a new judgement I' I—bG H : R = R where R and R’ are primitive
types. This means that the handler H handles operations in computation of type R and then produces a

computation of type R’. Let A be an environment x1 : Py,..., 7, : Pp.
A7, wM:R TH/H:R=R ACT
5 : ; Tc-HANDLE
r I—G(f) handle M with H : R

Tz:RES M:R

, k:c—b

. .) s k.
{F’p :Pr:Q— R Gk '_G(g;k) Moy : R,}op: PQd-ces

o ok ; TH-HANDLER
'y {valyz — M} U {op(p),r —]\40p}0pEE ‘R=R

Note that the environment A contains only variables typed by primitive types. If it contained a type
A — B; f, the morphism f is in § while the morphism must be in another grading category S’ after a
computation graded by f is handled. This is impossible in general.

We omit the morphism k& in op(p),r — pr and write simply op(p),r — Mop when Mg, = pr for
all k. This convention is used in Example 5.9.

11

SANADA

S-App Nz M)V — M[V/x]
S-LET letz < val, Vin M — M[V/x]
S-ProJ proj (Vi, Vo) as (z,y).M — M[Vi/x,Va/y]

S-MATCHLEFT match (inlV){z.M;y.Ma} — M;[V/z]
S-MATCHRIGHT match (inr V){z.M;y.Ma} — Ms[V/y]

S-HANDLERET handle (val, V) with H — M[V/z]
S-HANDLEOP handle E[op(V)|withH — N
S-LIFT FM] - FIM'] it M — M

where H = {val,x — M} U {op(p),r — pr}ip in S-HANDLERET and S-HANDLEOP, and
N = ME: =tV /p, A“*y. handle £[val, y] with H/r] in S-HANDLEOP.

Fig. 2. Small-step operational semantics
5 Operational Semantics

To define the operational semantics of CatEff, we need some auxiliary notions.

Definition 5.1 [Evaluation context] Evaluation contexts & and F are defined by the following BNF:
52 L= H | let x + 52 inMg

.FE/ n= H ‘ let z + .FE/ in ME’ | handle}'g with HE:>2/

We write ' = F : A ~ B;G(V) EINAT: 'z : Aty Flvaly x| : B is derived where G is a functor that
corresponds to handlers in F and x does not appear in F as a free variable.

Figure 2 gives the small-step operational semantics for CatEff. It is based on [6]. The rules of
operational semantics are usual except for S-HANDLEOP. In S-HANDLEOP, the grading morphism plays
an important role. Let £ be letx,, < (... (letzy < [|inM;)...)in M, and f; be the grading morphism
of M; for each i =1,...,n. Consider a term handle E[op(V)] with H. The handler H handles op(V') with

the term Mé}l,;'”;f" in H. For example, see Example 5.8.
The goal of the rest of this section is to show the progress lemma and the preservation lemma for
CatEff. We start by proving the following lemmas by induction on derivations.

Lemma 5.2 (Substitution) If ',z : Ay,... 2, : Ay by M : B and I' = V; : A; for each i =1,...,n,
then I' ¢ M[Vi/xy1,...,Vo/as] : B.
Lemma 5.3 IfT'+ F: A~ B;b ER a, Ty oy M: A, and GIV') = b, then T Fggy.¢ F[M]: B
Lemma 5.4 IfT't;, F[M]: B, then we have 't M : A and '+ F : A~ B; f satisfying h = G(¢'); f.
Lemma 5.5 (Progress) Ifty. o M : A then one of the following holds.

(i) f=1idg and M =val, V' for some value term V,

(ii) M = Elop(V)] for some &, op and V', or
(iii) there exists a computation term N such that M — N.

Lemma 5.6 (Preservation) Ifty.p ., M : A and M — N then b¢ N : B is derivable.

Together with the progress lemma(Lemma 5.5) and preservation lemma(Lemma 5.6), we have a safety
theorem. The safety theorem says that if a computation term is well-typed then the term comes from
value (val, V') or is about to perform an operation.

12

SANADA

Theorem 5.7 (Safety) If F¢.pq M : A is a terminating term then there exists a value term V' such
that M = val, V', or M calls an operation, that is M = E[op(V)] for some £, op € ¥ and V.

Example 5.8 [Handler] We present an example of small-step evaluation with handlers. Let S be a
category such that ObS = {¢,d, e} and morphisms are identities and g: ¢ — d and h: d — e, and &’
be a category such that ObS’ = {e} and the identity is the only morphism. There is a unique functor
G: S — &', which sends all objects in S to @ in §'. Let S-signature X be {op;: P ~ A;g,0py: Q ~> B;h}
and S&’-signature ¥’ be (). Given terms

N =letz < op;(V)inlety < opy(W)inval.(x,y),
Mh =rV! Mg =W/,

Oop1
H = {val, z — vals z; op;(p),r = M}, ; opa(p), T +—ia, My}
such that =V : P, - W :Q, F V' : A, W :B, b N:AxBand -0 H: Ax B = Ax B. By
the handler H, op; and op, are implemented as constant operations that always return values V' and W’

for any arguments, respectively. By TC-HANDLE, we have a judgement I—Ed handle N with H : A x B.
Therefore, the term handle N with H is evaluated to the form val, U by “the safety theorem. Indeed,
handleN with H is evaluated as follows:

handle N with H

— (AY"v. handle (let z + valgvinlety « op,(W)inval,(z,y)) with H)V'
—* handle (let y < opy(W) inval. (V' y)) with H

— M" [W/p, \“". handle let y + val, winval.(V’,y) with H /7|

Op2

= (A\Ydeyy. handlelet y + val, winval,(a,y) with H)W’' —* val,(V', W’).

We have I—i%. valo (V/, W') : A x B.

Example 5.9 [Mutable store of mutable type with a plan] We can make a program with a mutable store
of mutable type with a mutation plan. Let A and B be primitive types, V and W are value terms such
that FV : Aand F W : B. Let S be a category such that ObS = {1, A, B} and morphisms are generated
by f§:a — B for a, 8 € ObS and &' be a category such that ObS" = {1 + (A + B)} and morphism is
only identity. There is a unique functor G: & — &', which sends all objects in S to 1+ (A + B) in §'.
Intuitively, objects are possible types of mutable store and morphisms are plans of mutations of types of
the store. Let 3 be an S-signature {updateg}aﬁemjs U {lookup, } ,cons Where the type of updatef € X

is B~ 1;f§: o — B and the type of lookup, is 1 ~ a;id, for each a, 8 € ObS. Let X' be an S'-
signature {update,lookup} where the type of update is 1+ (A + B) ~» 1;id and the type of lookup is
1~ 1+ (A+ B);id.

We can implement the behavior of mutable types by the following handlers: Hy
valyy(agp)inlz} U Hop, Ha = {valaz +— valy (aypinr(inlz)} U Hy,p, and Hp
valy | (a4p)inr(inrz)} U Hop, where

{valj z —
{valpz

H,, = {updatei(_),r — let _ <+ update(inlx) in r«

updateB (b), r — let _ + update(inr(inr b)) in rx
lookup, (-), 7 — let x < lookup () in

match z{inl y.r*; inr y. match y{inl a.r; inr b.rx} }
lookup 4(-), 7 + let x < lookup (%) in

match z{inly.rV;inry. match y{inla.rq;inr b.rV}}
lookupg(-),r — let x < lookup(x) in

match z{inl y.rW;inr y. match y{inl a.rW;inr b.rb}}

13

SANADA

We have judgements - H, : a = 1+ (A + B) for all @ € Ob(S). Let us consider the term

N = let _ + updately (V) inlet _ « updates W inlet z + lookup (%) in valg z

)

yfh
N stores a value of type A and then stores a value of type B. Handling operations in ¥ by Hp, a mutable
store of mutable type with a plan is transformed to a mutable store of fixed type 1 + (A + B). We have

- handle N with Hg : 1 + (A + B).

idy 4 (a+B)

We have a judgement N : B. The grading morphism f}l, f‘g :1 - A — B implies that the program

6 Denotational Semantics

In this section, we give denotational semantics for CatEff. The denotational semantics is based on [2].
Let X, ¥ be S- and S’-signatures, respectively. For the sake of simplicity, we work in Set. To interpret
computation terms that return a value in X, we use the sets Termy(f: b — a,X) = UbMod?(Set)FaX
defined in section 3. We don’t care about equations and so consider free models without any equations.
Each computational term is interpreted by a term of a category-graded algebraic theory. We can think of
elements of Termy(f: b — a, X) as trees whose leaves are labelled by elements of X, and internal nodes
are labelled by operations and their arguments. For example, e(a,v) € Termy(idy: a — a, X) is a tree
with only one node labelled by v. Note that, for any tree ¢ € Termy(f, X), we obtain f by composing
morphisms of label op of nodes in a path from the root to a leaf.

Definition 6.1 We define the interpretation of types [A] € Set as follows:

[1] = {+}, [A— B;bL a] = Terms(f, [B])W,
[A+ B] =[A]U[B], [Ax B]=][A] x[B].

For a context I' = 1 : Ay, ..., 2y : Ay, we define [I'] = [A1] x -+ x [4,].

We interpret value I' = V : A, computation I' =y M : A and handler I' Fg" H: R =R
as maps [['FV : A]: [[] — [A], [T+ M : A]: [I] — Terms(f,[A]) and [+ H: R= R']: [I'] —
Termy (G f, [[R’]])Termz(f LR, respectively. We write the lift of a morphism ¢: X — Termy(g,Y) as
¢'7 = py4(Termy(f, ¢)) and often simply write ¢ when f is clear from the context.

Definition 6.2 Let I" be a typing context. Given s € [I'], we define the interpretation of terms as follows:

[TEx:1]s =%, [k (Vi,Va): Ax B]s=([Vi]s, [V2]s),
[CFinlV: A+ B]s=in; [V]s, [['FinrV :A+ B]s=iny[V]s,
[T,x: Ak a: Als =7.(s), [[FMNz.M:A—= B;f]s=[M](s,—),

[T Fiq, val, V : A]s = e(a,[V]s), [k VW :B]s=([V]s)([W]s),
[T 5 op(V) : Als = do(op, [V]s, {e(@,2)}acpa))
D kg letz < MinN : B]s = ([N](s,) ([M]s),
[I'FfprojVas(z,y).M : B]s = [M](s,m1([V]s), m([V]s)),
[I' -y match V{z.y; Mi.Ms} : B]s = [[M1](s,—), [M2](s, =)]([V]s),
[T +&} handle M with H : R'|s = ([H]s)([M]s),
e(a,v) — [M](s,v)
do(op, p, {ti};) = [Mg](s,p, {[H](s,t:)};)
where H = {val, z — M} U{op(p),r — pr}lspez.
14

[[FI—GGH:R:>R’]3:{

SANADA

7 Soundness and Adequacy

We show soundness and adequacy. These theorems assert that operational semantics and denotational
semantics are compatible with each other.

Theorem 7.1 (Soundness) If-y M : A and M — M’ then [F§ M : A] = [F5 M’ : A].

To show adequacy(Theorem 7.5), we define relations <4 for values and QJ;‘ for computations as done
in [2].
Definition 7.2 For v € [A] and a closed value term - V' : A, we define v <4 V' as follows:
e v Viftv=1land V = .
e v<daxp Vifv=(v1,v2), V= (V1,Va), v1 <4 Vi and vy <p Va.
e v <dgyp V if either v =inj vy, V =inlVj and v; <4 Vi, or v = ingwe, V = inr V5 and vy < V5.

* v<asp Vif v(w) <£ VW for each w € [A] and closed value - W : A satisfying w <14 W.

Simultaneously, for ¢ € Termy(f, [A]) and a closed computation term Fy M : A, ¢ <1£ M holds if
(i) f=idg, c =e(a,v), M —=*val, V and v <4 V, or
(ii) ¢ =do(o,v,{tz},c[cp) M =" Elop(V)], v<ap V, and if w <¢ W then t,, <k Elval, W].

Lemma 7.3 Ifc<1J:1 M’ and M — M’ thenc<l£M.

Proof. By assumption ¢ <1£ M’, we have two cases:
(i) f =1idg, c=e(a,v), M —=* val, V and v <4 V. In this case, we have M —* val, V.
(ii) ¢=do(o, v, {tz},eqcp): M =" Elop(V)], v <4p V, and if w ¢ W then t,, <k E[val, W]. In this case,
we have M —* E[op(V)].

In both cases, we can conclude ¢ <1£ M as required. a

Lemma 7.4 Let I' be a typing context x1 : A1, ..., Tn : An, and = W; . A; be a closed value term and w;
be an element of [A;] with w; <a, W; for each 1 < i <n. Then followings hold.

(i) IfTEV: A then [V](wi,...,wy) <a VIWi/x1,..., Wy /xy].
(ii) If T k; M : A then [M](w, ..., wy) < MW /a1, ..., Wy/z,).

Theorem 7.5 (Adequacy) Iftiq, M :1 and [Fiq, M : 1] = e(a,x) then M —* val, *.

Proof. By Lemma 7.4, we have [M] <lilda M. Thus, we have e(a,*) <lild“ M by assumption. By the
definition of <111d“7 we obtain M —* val, V' and x <11 V. Therefore, by definition of <1, we conclude V = %
and M —* val, *. O

8 Future Work

User-defined grading category and graded operations. The grading categories of CatEff are con-
sidered to be built-in in this paper. To provide user-defined grading operations, the syntax to write grading
categories and graded operations is needed. This is future work.

Category-graded Lawvere theories. Graded Lawvere theories which correspond to graded alge-
braic theories were developed in [9]. Category-graded extensions of Lawvere theories are future work.

2-category-graded monads. Graded monads are graded by partially ordered monoids in general.
We must consider 2-category-graded monads, whose grading category is 2-category, to generalise partially
ordered monoid-graded monads. This situation is beyond [21]. Thus, the Eilenberg-Moore and Kleisli
constructions on these monads are not trivial.

15

SANADA

References

[1] Atkey, R., Algebras for parameterised monads, in: A. Kurz, M. Lenisa and A. Tarlecki, editors, CALCO 2009, Lecture
Notes in Computer Science 5728 (2009), pp. 3-17.

[2] Bauer, A. and M. Pretnar, An effect system for algebraic effects and handlers, Log. Methods Comput. Sci. 10 (2014).

[3] Bénabou, J., Introduction to bicategories, in: Reports of the Midwest Category Seminar, Lecture Notes in Mathematics
47 (1967), pp. 1-77.

[4] Dorsch, U., S. Milius and L. Schréder, Graded monads and graded logics for the linear time - branching time spectrum,
in: W. J. Fokkink and R. van Glabbeek, editors, CONCUR 2019, LIPIcs 140 (2019), pp. 36:1-36:16.

[5] Fujii, S., S. Katsumata and P. Melliés, Towards a formal theory of graded monads, in: B. Jacobs and C. Loding, editors,
FoSSaCS 2016, Lecture Notes in Computer Science 9634 (2016), pp. 513-530.

[6] Hillerstrom, D. and S. Lindley, Shallow effect handlers, in: S. Ryu, editor, APLAS 2018, Lecture Notes in Computer
Science 11275 (2018), pp. 415-435.

[7] Hyland, M. and J. Power, The category theoretic understanding of universal algebra: Lawvere theories and monads,
Electron. Notes Theor. Comput. Sci. 172 (2007), pp. 437-458.

[8] Katsumata, S., Parametric effect monads and semantics of effect systems, in: S. Jagannathan and P. Sewell, editors,
POPL 1} (2014), pp. 633-646.

[9] Kura, S., Graded algebraic theories, in: J. Goubault-Larrecq and B. Konig, editors, FoSSaCS 2020, Lecture Notes in
Computer Science 12077 (2020), pp. 401-421.

[10] Levy, P. B., J. Power and H. Thielecke, Modelling environments in call-by-value programming languages, Inf. Comput.
185 (2003), p. 182-210.

[11] MacLane, S., “Categories for the Working Mathematician,” Springer-Verlag, New York, 1971, ix+262 pp., graduate Texts
in Mathematics, Vol. 5.

[12] Melligs, P., Parametric monads and enriched adjunction, LOLA 2012. Manuscript available on the author’s web page.
[13] Mellies, P., The parametric continuation monad, Math. Struct. Comput. Sci. 27 (2017), pp. 651-680.
[14] Moggi, E., Notions of computation and monads, Inf. Comput. 93 (1991), pp. 55-92.

[15] Orchard, D., P. Wadler and H. Eades, 111, Unifying graded and parameterised monads, in: M. S. New and S. Lindley,
editors, MSFP 2020, EPTCS 317, 2020, pp. 18-38.

[16] Orchard, D. A., T. Petricek and A. Mycroft, The semantic marriage of monads and effects, CORR abs/1401.5391 (2014).
URL http://arxiv.org/abs/1401.5391

[17] Plotkin, G. D. and J. Power, Adequacy for algebraic effects, in: F. Honsell and M. Miculan, editors, FoSSaCS 2001, Lecture
Notes in Computer Science 2030 (2001), pp. 1-24.

[18] Plotkin, G. D. and M. Pretnar, Handlers of algebraic effects, in: G. Castagna, editor, ESOP 2009, Lecture Notes in
Computer Science 5502 (2009), pp. 80-94.

[19] Selinger, P., A survey of graphical languages for monoidal categories, in: B. Coecke, editor, New Structures for Physics,
Lecture Notes in Physics 813, Springer, 2010 pp. 289-355.

[20] Smirnov, A. L., Graded monads and rings of polynomials, J. Math. Sci. 151 (2008), pp. 3032-3051.
[21] Street, R., Two constructions on lax functors, Cahiers de topologie et géométrie différentielle catégoriques 13 (1972),

pp. 217-264.

A Generalised Units and Generalised Counits

Generalised units were introduced to unify category-graded monads and parameterised monads in [15].
In this section, we introduce generalised counits of adjunctions that corresponds to generalised units of
monads and investigate the role of generalised units in CatEff.

16

http://arxiv.org/abs/1401.5391

SANADA

A.1 Generalised Units of Category-Graded Monads
First, we review the definition of categroy-graded monads with generalised units.

Definition A.1 [Category-graded monads with generalised unit, [15]] A category-graded monads with

lax

generalised unit is a category-graded monad (T': S°® — Endo(C), n, u) together with the following data:

e A wide subcategory R of S, that is a subcategory R C S satisfying ObR = ObS. We denote the
inclusion functor by ¢ : R — § and usually omit ¢ when no confusion arises.

e For each morphism f in R and object C' in C, a morphism (7¢) o € = TyC, satisfying the following
commutative diagrams.

¢ e 1o ¢ e, 1, ¢
(ﬁgOf)cl |7 (n_d)\J |
da/C
TyosC o T4T,C Tia,C

Let G: 8§ — CAT be a functor and (J,: C — Ga,Fa: Ga — C,n,,e,) be adjunctions for each
a € ObS such that Ty = EpG fJa for every f:a — bin §. We depict the generalised units by string
diagrams as follows.

¢ty go JCIE
Idcl——nf——>l6‘ f = _.
Ny
C +——— Gb
Ey
Then, the above two rules are depicted as follows.
G (gof G (gof
idg,
j t w Jo B, Jo FEa
Tid, Mla

A category-graded monad with generalised unit whose wide subcategory is a discrete category is an
ordinary parameterised monad. Every parameterised monad can be seen a category-graded monad with
generalised units using pair completion, see [15] and Appendix C.

A.2 Generalised Counits of Adjunctions

We introduce generalised counits of adjunctions and show that generalised units of monads correspond to
generalised counits of adjunctions.

Definition A.2 [Generalised counits of adjunctions] Let G: S°® — CAT be a functor and (J,: S —
Ga,E,: Ga — 8,1n4,¢4) be adjunctions. A generalised counit of those adjunctions consists of the following
data.

e A wide subcategory R of S.

* For each morphism f: b — a in R, a natural transformation €;: JyE, = G f, satisfying the following
commutative diagrams.

Je JE
JoELA M b g B AT B Gga TE,A 4 4

l(g,«og)A l@f)GgA ld\ H

G(fog)A GfGgA
17

SANADA

We depict generalised counits by string diagrams as follows:

¢ <2 Ga Gf

e == [=
C——_>Gf

€
c— s £, ! I

The following string diagrams are equivalent to the above diagrams:

G(geo f) G(go f)
idcq
E, Je E, Je By J, E, J,

Next proposition is analogous to the usual unit law of monads:

Proposition A.3 The following equations hold.

Ja GfEb JaGfEb Ja GfEb Ja GfEb
Jy By Jp By Jo Eq Jo Eq
Proof. We can easily check by deformation of strings. |

Theorem A.4 Let G: 8°°® — CAT be a functor and (J,: S — Ga,E,: Ga — S,n4,€4) be adjunctions.
There is a one to one correspondence between generalised units of the category-graded monad induced by
G and (Jq, Eq,Na,€a) and generalised counits of the adjunctions.

Proof. We can define a map from generalised counits to generalised units as follows.

Ja Gf Eb
. OV
= &f
Ef
Ea Jb

Indeed we can check that the right-hand side satisfies the axioms of generalised units using the axioms

18

SANADA

generalised counits and deformation of strings. The inverse of this map is as follows.

Gf
J,GfEy
@ .
Ny Ny
E, Ja

The following equations show that the above two maps are inverse of each other.

Gf Gf

JoGfEy

A.3 Generalised Units in CatEff

We can introduce generalised units to CatEff. We fix a grading category S and wide subcategory R of it.
The typing rule corresponding to generalised units is as follows.

g:dsainR ThrfpapyM:A h:b—=VinR
T Fhofog M < A

Tc-GUuNIT

If we think of objects in grading category as conditions of states, the rule Tc-GUNIT represents weakening
of the condition along the grading morphism. For example, if objects in the grading category are types of
states, generalised units represent the subtyping relation of the types.

The denotation of a judgement derived by T'C-GUNIT is defined as follows.

[[F I_hOfog M - A]]S = .ufog,h(TermE(f o gaﬁh)(ﬂg,f(ﬁg([[r I_f M : A]]S))))

B Recursion

In this section, we add recursion to CatEff. We have to take care of grading morphisms when we construct
recursive functions.
We add value terms to construct recursive functions.

Values V :=...|rec’ “b f(z: A).M

Typing rule for recursive functions is given as follows:

If:A—->Bkx: A, M : B
I'Freck f(z:A).M:A— Bk

19

Tv-REC

SANADA

The key point is that the grading morphisms of f and M are the same in the premise of Tv-REC.
Reduction of application of recursive functions is defined as follows:

S-RECAPP (rec® f(z: A).M)W — M[W/xz,rect f(z : A).M/f]

We can show the safety theorem for this extension.

To give denotational semantics, we need domain theoretical construction to interpret recursively defined
function. We believe that we can construct such domains as done in [2] and show soundness and adequacy
for CatEff with recursion.

C Correspondence of Parameterised Monads to Category-Graded Monads with Gen-
eralised Units

In this section, we describe correspondence of parameterised monads to category-graded monads with
generalised units. This correspondence was shown by [15], but it needs some modification.

Definition C.1 [[1]] A parameterised monad consists of the following data:

e a functor P: S°°? x § — [C,(],

e for each a € ObS, a natural transformation ! : Ide = P(a a), and

e for each a,b,c € ObS, a natural transformation ! bt Pla,b)P(b,c) = P(a,c)

satisfying the following commutative diagrams:

Pla,b) 2229 pog a)P(a,b) Pla, \p(e, dir)P(c, d)
(a,b)n ﬂ \ ﬂ 1L oy P(‘va)”b,c,dl L“f,c,d
P(a,b)P(b,b) === P(a,a) P(a,b)P(b,d) ———F—— P(a,d)
a,b,b a,b,d

and 1! is dinatural in a and ,ui b 18 dinatural in b and natural in a,c, that is satisfying the following
commutative diagrams:

Ide —2— P(a,a) Pla,0) PV, L2 Do 1) PV,)
nf;ﬂ ﬂp(a,f) P(a,b)P(g,c)ﬂ ﬂ#f’,b/,c
P(d,d) s P(a,a’) P(a,b)P(b,c) T P(a,c)
P(d',b)P(b,c) % P(d,¢) P(a,b)P(b, c) Hobe, P(a,c)
P(f,b)P(b,c)ﬂ ﬂP(f,c) P(a,b)P(b,h)ﬂ ﬂP(a,h)
P(a,b)P(b,c) == P(a,c) P(a,b)P(b,c') == P(a,c)
a,b,c a,b,c!

for all a,a’,b,b',c,d € ObS and f:a —d’, g: b— b and h: c — (.

We introduce pair completion to unify parameterised monads and category-graded monads with gen-
eralised units.

Definition C.2 [[15]] Let S be a small category. The pair completion SV of S is a category whose objects
are the objects of S and homsets are SV (a,b) = S(a,b) L {(a,b)}. Composition of morphisms are defined

20

SANADA

as follows:
injgoiny f =iny(go f)

in; g oing g = ing(a,c)

ing (b, ¢) oiny f = ina(a,)

(a,c)

ing(b, ¢) o ing(a,b) = inz(a, c

where a,b,c € ObS, f:a—band g: b — c.

The following two propositions show the correspondence of parameterised monads to category-graded
monads with generalised units.

Proposition C.3 (Category-graded monads with generalised units from parameterised monads)
Let P: 8 x S — [C,C] be a parameterised monad. We define (Tp,n"?, 7, 717) as follows:

e Tp(a) :=C, Tp(f) := P(a,b) for f:a—binSY,

o nlr .=l 1de = Tp(id,) for a € Ob S,

. u?’; = uibp: Tp(f) o Tp(g) = Tp(go f) for a,b,c € ObS, f:a—band g: b— c inSY and
. ﬁgﬁf .= P(a, f)ont:1de = Tp(f) fora,b €S and f: a — b in S.

Then (Tp,n™", u™? , 77P) is a SV -graded monad with a generalised unit.

Proposition C.4 (Parameterised monads from category-graded monads with generalised units)
Let T: (SV)°°? — Endo(C) with (ﬁ};: Ide = Tf)fes be a category-graded monad with generalised unit

satisfying Tiny id, = Ting(a,a)- 3 We define a functor Pr: S°° x 8§ — [C,C] and natural transformations
nPr and ptr as follows:

* PT(a7 b) = ﬂng(a,bﬁ
® PT(a7 CL) = Tiru idg — Ting(a,a)7
® PT(fa g) is

7 o
77f Tin2(a,b Tinl fTinQ(a,b)
PT(aa b) = T’ing(a,b) — lin; fﬂng(a,b) — 1im fﬂng(a,b)ﬂnl g

T 1
ﬂuinl f,ing(a,b),Tml g
ﬂng (a’,b) Tinl g

T
ﬂ“inQ(a’,b),inl g

T’ing(a’,b’) - PT(a/7 bl)

fora,d’,b,b/ € ObS and f:d" — a and g: b =V,
o nPr.=nl':1de = P(a,a),
P
 Hope = N£2(a,b),in2(b,c): P(a,b)P(b,c) = P(a,c)
Then (Pr,n"r, ur) is a parameterised monad.

Theorem C.5 Parameterised monads correspond to category-graded monads with generalised units. More
precisely, there is a one to one correspondence between the set of S-parameterised monads and the set of
SV -graded monads with generalised units (T,7) satisfying Tin, 7 = Tiny(ap) for alla,b€ ObS and f:a—b
inS.

3 The condition Tiy, iq, = Ting(a,a) is necessary for the construction of Pr(f,g) to be well-defined, but it was not
imposed in [15].

21

SANADA

C.1 Correspondence of Eilenberg-Moore Constructions

Let P: 8°? x § — [C,C] be a parameterised monad. We obtain the functor TP, (SV)? — CAT by
Eilenberg-Moore construction on Tp: (SV)™ Lo, Endo(C). In this section, we describe the relation
between P-algebras and Tp-algebras. For a € ObS, Recall that the category of T'-algebra at a, T (a),
consists of the following data.
e Objects are (A, h) Whereforf a—b,g:b—cinSY A: Y, (SV)(b,a) — C and &y TrAg — Agos
are compatible with n’? and u’P
e A morphism from (4,¢) to (A", ¢) is a natural transformation «: A = A’ which compatible with £ and
g
On the other hand, the category of P-algebra C¥ consists of the following data [1].
¢ Objects are (B, () where B: §°° — C and (,: P(a,b)By — B, are compatible with n” and p”.
e A morphism from (B, () to (B’,{’) is a natural transformation 8: B = B’ which compatible with ¢ and
¢
Construction of Tp-algebras from P-algebras. Given a P-algebra (B, (), we can construct a
Tp-algebra (A,¢) at a for any a € Ob S as follows.

Ag = By, gf,g = gc,b: TPng = P(Cv b)Bb — B = Agof

where f: ¢ — band g: b — a are morphisms in SV. This Tp-algebra (A, ¢) satisfies Ay, F = Ainy(v,a) for
albe ObSand f: b —ain S

Next, we consider a construction of morphisms of Tp-algebras from morphisms of P-algebras. Given a
morphism 3: (B,({) — (B’,{’) between P-algebras. Recall that (3 is a natural transformation g: B = B’
satisfying the following commutative diagram.

P, ¢)B. "% p(b,) B!

Cb,cl lCL,c

By —— Bj
b

Let (A,&) and (A, &) be the Tp-algebras constructed from (B, () and (B’,(’), respectively. We define
a natural transformation a: A = A’ to be ay.pq == fy: Ay = By = B} = A’f. This « becomes a

Tp-homomorphism at a. Indeed, for all f: b — c and g: ¢ = a in SV the following commutative diagram
hold.

T,
TpAg —2 Tp, AL

P, ¢)B. "% p(v, ¢) B

hf,g lkb,c lkg,c h,f7g

B,—> B

gf Qg f A

Summarizing the above discussion, we obtain a functor F,: C* — Tp(a) where a € ObS. In particular,

we get F,: C¥ — CIP where CI7 be the full subcategory of Tp(a) whose objects are (A, &) satisfying
Ain = Ainy(b,a) for all be ObS and f:b—ain S

22

SANADA

Construction P-algebras from Tp-algebras. Conversely, given a Tp-algebra (A, ¢) at a satisfying
Ain, f = Ainy(ba) for allb € ObS and f: b — a in S, we can construct a P-algebra (B, () as follows.

By = Aing (b,a)

_T
nfp

§f,in (c,a)
Bf = (B. = Aing(c,a) — TPfAing(c,a) :

’ Aing(c,a)of = By >

Cb,c = ging(b,c),ing(c,a) : P(b7 C>BC = TPing(b,c)Aing(c,a) - Aing(b,a) = By
We prove that B is a functor. Firstly, we have

_ —Tp _ TP — 3
Bid, = &idyina(b,a) © Tid, Ains(b,a) = idy,ina(b,a) © M” Aina(b,a) = 1A,)

Bia,

anPAba &idy,ba
Apg = Tiq, Ape —— Apa -

N S

Secondly, we have

_Tp
Aing(d,(j)g Az ’TPgAing(d,a) Loy (te) Ainy(d,a)og
lﬁ?PAinz(d,a)og
ByoBy = TP Ainy(d,a)og
lgf,ing(d,a)og
Aing (d,a)ogof

and

_T
779;3 Ain2(d,a ggof,iDQ(d,

a)
BgOf = (Aing(d,a) - TPgofAinz(d,a) — Aing(d,a)ogof >

for f: b — cand g: ¢ — din §. These two morphisms are equal because the following diagram commutes.

_T
TgetAing (d,a)

Aing(d,a)
_Tp
Mg Ainz(dml T T
=Tp P
Mt ToAing (d.a) Heig Aing (d,
TrgAmy(dd) —— 3 TP Ty Aiyda) 2 TPgos Ans(da)
5g4n2<¢a>j_ _17}5gan2(¢a> l§90fﬁn2(¢a)

Aing (d,a)ogTP—> TPfAing (d,a)

nf ing(d,a)og

Ogéf,ing(d,a)og ina(d,a)ogo f

In the above diagram, the top triangle is commutative by the definition of generalised unit, the left bottom
square is commutative by the naturality of 777 and the right bottom square is commutative the definition
of T'p-algebra (A,¢).

Summarizing the above discussion, we obtain a functor G,: CI7 — CF.

We can easily check the following theorem by the definition of F, and G,.

23

SANADA

Theorem C.6 The category C¥ of P-algebras is isomorphic to the category CIP of Tp-algebras at a.
F,:cP=clr.q,

D Proofs of propositions

D.1 Progress Lemma

Proof. By induction on the derivation of - M : A.

Case T'c-VAL. In this case, f =id,, M = val, V for some V. Thus, the claim holds.

Case Tc-Op. We have M = op(V) for some V. Thus, the claim holds.

Case Tc-LET. We have M = let x < M’ in N for some x, M’ and N, and f = g; h for some morphisms
g: b— b and h: b — a. The root of the derivation is as follows:

FgM':B xz:BF, N:A
Fgnletz <~ M'inN : A

Tc-LET

By applying the induction hypothesis to k-, M’ : B, we obtain three cases:
(i) g =idy and M’ =val, V. We have f = h and M =letz + val,Vin N — N[V/x] by S-LET.
(il) M' = &'Jop(V)]. We have M = E[op(V)] where E[—] = letx + E'[-]in N.

(iii) There exists M” such that M — M". Using S-L1FT, we have M = E[M'] — E[M"] where E[—] =
let x < [~]in N.

Case Tc-ArP. We can show that the root of the derivation is as follows:
z:BFy M : A
Tv-ABS
FXMz:BM :B— A;f FW:B
Fe (Mo B.M)W : A

Tc-AppP

Thus we have M = (A x : B.M")W — M'[W/z] by S-ApP.

Case T'c-PRrRoJ and Tc-MATCH. Straightforward.

Case Tc-HANDLE. We have f = G(f’) for some f': b — o, and M = handle M’ with H for some
handler H. The root of the derivation is as follows:

/

e M B G H:B= A
I—g handle M’ with H : A

Tc-HANDLE
(f")

By applying the induction hypothesis to I—JZC,/ M' : B, we obtain three cases:

(i) f' =idy and M’ = val, V. We have M = handle (val,, V) with H. By TH-HANDLER, H contains
val, x — N. So we get
M = handle (val, V) with H — N[V/z]
by S-HANDLERET.

(i) M’ = E[op(V)] for some &, op € X' and V. Let k: ¢ — b be the grading morphism that corresponds
to £. By TH-HANDLER, H contains (op(p), r — ME)). So we get M = handle £[op(V)] with H and

M — M} [V/p, \°*y. handle £[val, y] with H/r]

by S-HANDLEOP.

(iii) There exists M" such that M" — M". By S-LirT, M = handle M’ with H — handle M" with H.
(]

24

SANADA
D.2 Preservation Lemma

Proof. By induction on the derivation of -y M : A.

Case Tc-VAL. We have M = val, V for some a and V, but there is no term N such that M — N. So
this cannot happen.

Case Tc-Op. We have M = op(V) for some op and V, but there is no term N such that M — N. So
this cannot happen.

Case Tc-LET. We have M = letx < M'in L for some x, M’, N. The root of the derivation is as

follows:
Fgibse M':B x:Bbp cyqL: A

Fgnletaz <~ M'inL : A
By the assumption that there is a term N such that M = letxz < M’in L — N, we obtain two cases:

(i) M — N is derived by S-LET. In this case, M’ = val, V for some V, and N = L[V/z]. The root of
the derivation is as follows:

Tc-LET

_kV:iB
Fiq, val, V' : B r:BFyL:A
Frletx < val,VinL: A

Tc-VAL

Tc-LET

We have =V : Band x: Bty L : A, so we have ¢ L[V/x] : A by substitution lemma.

(i) M — N is derived by S-L1FT. In this case, M — N’ and M = F[M'| — F[N'] = N for some N’
where F = let x <— [—]in L. Applying the induction hypothesis to 4 M’ : B and M’ — N’, we have
k4 N’ : B. We obtain the following derivation:

FgN':B z:BFpL:A
Fonletz <~ N'inL : A

Tc-LET

Thus we conclude 4., N : A.

Case Tc-App. We have M = VW for some V and W. By the assumption that VW — N and
¢ VW i A, we have V = Mz : B.M' for some B and M’ and N = M'[W/z]. The root of the derivation
is as follows:

z:BFs M A A
- S
FMz:BM B Af 0 Lw.B
Fr Mz B.M)W : A
Thus we have ¢ M'[W/x] : A by substitution lemma, as required.

Case Tc-ProJ. We have M = projV as (x,y).M' for some V, x, y and M’. The root of the derivation
is as follows:

Tc-ApPpP

I—V:Bl><BQ x:Bl,thgl—fM:A
FrprojVas (z,y).M' : A
By the assumption that there is N such that M = projV as (z,y).M’ : A — N, we have V = (V,V3),
FVi:Bi, FVo: Byand N = M'[Vi/x,Va/y]. Thus, we have -y M'[Vi/x,V2/y] : A by substitution
lemma.
Case Tc-MATCH. Straightforward.

Case Tc-HANDLE. We have M = handle M’ with H for some M’ and H. The root of the derivation
is as follows:

Tc-ProJ

/

Y . G .
I—f,:b,_m,M’.B by H:B= A
% handle M’ with H : A
By the assumption that there is a term N such that M = handle M’ with H — N, we have three cases:

25

Tc-HANDLE

SANADA

(i) M — N is derived by S-HANDLERET. In this case, we have M’ = val,, V for some V and N = L[V/x]
where (valy z — L) € H. The root of the derivation is as follows:

z: B l_izd,a L:A
: P,
Y FG(kig) L]gp A
. r:Q — A;Gk
VB TH-HANDLER
-3 valy VB FGH:B= A

Tc-HANDLE
3, handle (val, V) with H : A

Thus, we have kg, L[V/x] : A by substitution lemma as required.

(i) M — N is derived by S-HANDLEOP. In this case, we have M’ = E[op(V)] for some £ and V.
Let k: ¢ — d be the grading morphism that corresponds to £. By the assumption that M =
handle Eop(V)] with H — N, we have (op(p),r ngp) € H and

N = LK [V/p,\°*y. handle £ |val. y] with [/7].

Applying Lemma 5.4 to ¢ Elop(V)] : B, we have gy op(V) : Q and F £ : Q ~ B;k satisfying
f'=¢'; k. The derivation of ' - H: B = A is as follows:
z:BH L:A
{p tPr i Q — A; Gk Fogn ngp : A}
FS H:B= A

TH-HANDLER

By applying Lemma 5.3 to - & : Q ~ B; ky o and y:QFvalyy:Q, weobtainy : Qi E[valy y] :
B. We have the following derivation:

y:QrFp&valyy]:B FH:B=A

y: Q Fgr handle E]val, y|with H : A

- A&y, handle E[val, y] with H : Q — A; Gk

Tc-HANDLE
Tv-ABS

Then we obtain
Fa(y LE,V/p, A"y, handle €[val y] with H] : A
by substitution lemma as required.
(ii) M — N is derived by S-LiFT. In this case, we have M’ — N’ and M = F[M'] - F[N'] = N
for some N’ where 7 = handle [-] with H. Applying the induction hypothesis to ¢ M’ : B and
M' — N’, we have ¢ N’ : B. Thus, we obtain the following derivation:
FEN':B FSH:B= A
l—g(f,) handle N’ with H' : A

Tc-HANDLE

Therefore we have Fgy) N : A as required.

D.3 Soundness

Proof. We prove by case analysis of the rule used to derive M — M.
Case S-App.
[V M)V] = [Ma.M|([V]) = [MI([V]) = [M[V/<].

26

SANADA

Case S-LET.

—+
f:«/\f\

[let z < val, Vin M] = ﬂval 4]

(V)

I

=/ /=

555=
—

._.|=1

= —

Case S-PRoJ.

[proj (Vi,Vz) as (z,y).M] V1, Vo)), ma[(Vi, V2)])
][]“T[lﬂ][][§/2]]> ;m([Wa], [Va]))

, Va/yll.

(I T 1
/) / /3
SEEE
<A/\/—\
%?ii

Case S-MATCHLEFT.

[match (inl V'){z.My;y.Ms}] = [[M1], [M2]](in1[V])

= [M:]([V])
= [M:[V/=]].

Case S-MATCHRIGHT. Similar to S-MATCHLEFT.
Case S-HANDLERET. Let H = {val,z — M} U {op(p),r — M, p}

[handle val, V with H] =

Case S-HANDLEOP. Let H be {val,z + M} U {op(p),r —» ML} = & be letw,
(...(letzy < []in Ny)...)in N,, and k be the grading morphism that corresponds to £.

[handle Efop(
= [H]([€]op(

)| with H]
i)

= [HI(INI'(. .. (IN:]"(do(op, [V], {e(a, 2)}pepap))) -)
[H](do(op, [V], {[NaI"(... (IN:]Te(a, %)) .-)} ueap)
[METIVTATHIANAD (- (] e(a, 2)) -)Y perag)
[
[

Vv
v

MEN(V], [A\“*z. handle €[val, z] with H])

ME [V/p, \“* 2. handle £ [val, z] with H/r]].

Case S-LIrFT. Obvious. O

D.4 Lemma 7.4

Proof. Let s be a tuple (wy,..., wy,) and o be a substitution Wi /xq, ..., W, /x,. We prove by induction
on the derivation of the judgements.
Case Tv-UNIT, Tv-ID, Tv-PAIR, Tv-INJL and Tv-INJR. Straightforward.

27

SANADA

Case Tv-ABs. By the induction hypothesis, for all w € [A] and value terms - W : A with w <14 W,
we have

([0 M AM: B](s))(w) = [[,x: AF; M : B](s,w)
<f, Mo, W/x].

Here, we have

(Mz: AM)[o)W = Mz : AM[o])W
— Mo, W/x]

Then we can apply Lemma 7.3 and obtain
Mo AM[(s) <asspy (M AM : B)[s, W/a].

Case T'c-VAL. We have
[T g, val, V @ A](e(a, [V](s)).

s) =
By the induction hypothesis, we have [V](w1,...,w,) <a V[o]. Thus, we have [I" lq, val, V : A](s) Qig“
(val, V)[o] by definition of <1ﬁ“.
Case Tc-Op. We have

[T op(V) : Q](s) = do(op, [V](s), {e(a, 2)},epqp)-

By the induction hypothesis, [V](s)<igV[o]. Furthermore, for any w € [Q] and closed value term - W : @,
we have e(a, w) <llg‘l val, W. Thus, we have

[T ¢ op(V)](s) <, op(V)[o].
Case T'c-LET. We have
[F by leta — MinN : B](s) = (IN)(s,) ([M](s))-

By the induction hypothesis, we have [M](s) <1£ Mo] and [N](s,v) <% Nlo,V/z] for any v € [A] and
FV : A with v<q V. By the definition of <1£, there are two cases:
(i) [M](s) =e(a,v), f =ids, M[o] —=* val, V and v <p V. We have

(IND(s, =)' ([M]()) = (IND(s, =)' (e(a, v))
= [N](s,0)

and

(letz < Min N)[o] = let z < (M[o]) in (N]o])
—* let z < val, Vin (N[o])
— Nlo,V/z].

Therefore, by Lemma 7.3 we obtain

[let 2 < M in N](s) <t} (let < M in N)[o].
28

SANADA

(ii) [M](s) = do(op, v, {ta}t,efqp)> Mlo] = E[op(V)], v <p V, and if w < W' then <k E[val, W1.
Then, we have

([N (s, =) ([M](5)) = (IN](s,)" (do(op, v, {t.},)
= do(op, v, {([N](s, =)' (t2)},)

and

(letx < Min N)[o] = let z < (M]o]) in (N[o])
—*letx < Elop(V)]in (N]o]).

Given w € [Q] and - W : @ with w <g W, we show
[NT(s, =) (tw) <59 let & « E[val, W]in (No])
by induction on the height of the tree t,,.

e If t,, = e(c,u) then we have e(c,u) = t,, <¥ E[val, W] and then ¢ = b, & = [] and u <ig W by
definition of <¥. We have

[N1(s, =)¥(tw) = [NT(s, =)' (e(b, w))
= [[N]](Sv u)
<9 No, W]

and
let z < E[val, W]in (N[o]) = Nlo, W/z].

Therefore, by Lemma 7.3, we have
[NT(s, =) (tw) <9 let & E[val, W]in (N]o]).

e If t, = do(op,u, {t;}ye[Q’]]) then we have do(op’,u, {t;}y) = t, <% E[val, W] and then
Elval, W] —* &'[op’ (U)], u <pr U and if w’ <y W then !, <¥, &'[valy W’]. We have

let z + E[val, W]in (N|o]) —* let z < &'[valy W']in (N[o])
and by induction hypothesis,
[N1(s, =) () <¥9 let « &'[valy W]in (N[o]).
Thus, by Lemma 7.3, we have
[NT(s, =) (£,,) <% let « E[val, W]in (N[o]).

Therefore, we have
[N1(s, =) (tw) <59 let & « E[val, W]in (N]o])
by definition of <1]§g .
Case T'c-Aprp. By the induction hypothesis, we have
[VI(s) <ampiy Vo], [WI(s) <a Wlo].
29

SANADA

Thus, by definition of <14, p.r, we have

as required.
Case Tc-ProJ, Tc-MATcCH. Straightforward.

Case Tc-HANDLE. Let H be a handler {val,z — N} U {op(p),rHpr}ip. We have

[handle M with H[(s) = ([H](s))([M](s)) and T l—gf handle M with H : B. The root of derivation

is as follows:
AF}M:A TFYH:A=B ACT

I' -2} handle M with H : B

where A = 1 : Py,...,x, : P,. We write the restriction of s and o to A by s[a and o[a, respectively.
By the induction hypothesis, we have

Tc-HANDLE

[M](sla) <1£ Mlolal,
[N1(s,v) <% Nlo, V/al,
[ME](s,v, w) <GF ME [0, V/p, W/r]

where v € [A] and - V : A satisfying v<i4V in the second relation, and v € [P], -V : P, w € [Q — B; Gk]
and W : Q — B; Gk satisfying v <p V and w <@g, B.gx W in the third relation. We want to show

[handle M with H](s) <%/ (handle M with H)[o].

By the definition of Qf;, there are two cases:
(i) [M](sfa) =e(a,v), f =ids, M[o[a] =" val, V and v <p V. We have

([H](s)([M](sTa) = [H](s)(e(a,v))
IN](s,v

<Iigc“ Nlo,V/z]
and

(handle M with H)[o] = handle Mo [A] with H[o]
—* handle val, V with H|o|
— Nlo,V/x].

Therefore, by Lemma 7.3 we obtain
[handle M with H](s) <% (handle M with H)[o].

(ii) [M](sTa) =do(op, v, {ta},cop): Mlola] =" Elop(V)], v<apV and if w <g W then t,, <k Eval, W1.
We can show \z.[H](s)(t,) <F A%y : Q. handle £[val, y] with H by induction on the height of the
tree t, similarly to the case Tc-LET. We have

([H] () ([M](s1a)) = ([H](s))(do(op, v, {tz }reqr)
= [Mepl (s, 0, {TH](5) (ta) Y ae)
<Gk pr[a, V/p, A%y : Q. handle E[val, y] with H/r]
30

SANADA

and

(handle M with H)[o| = handle M[o[a] with H[o]
—™* handle Eop(V)] with H|o]
— M} [0, V/p,A\“"y : Q. handle [val, y] with H/r].

Therefore, we obtain

[handle M with H](s) <% (handle M with H)[o]

by Lemma 7.3 as required.

31

	Introduction
	Background
	Overview

	Category-Graded Monads
	Lax Functors and Category-Graded Monads
	Eilenberg-Moore Construction on Lax Functors
	A Lax Functor Induced by Adjunctions and a Functor

	Category-Graded Algebraic Theories
	Category-Graded Terms
	Equations
	Free Models and Adjunctions

	A Category-Graded Effect System
	Language
	Handlers

	Operational Semantics
	Denotational Semantics
	Soundness and Adequacy
	Future Work
	References
	Generalised Units and Generalised Counits
	Generalised Units of Category-Graded Monads
	Generalised Counits of Adjunctions
	Generalised Units in CatEff

	Recursion
	Correspondence of Parameterised Monads to Category-Graded Monads with Generalised Units
	Correspondence of Eilenberg-Moore Constructions

	Proofs of propositions
	Progress Lemma
	Preservation Lemma
	Soundness
	Lemma 7.4

