
Submitted to MFPS 22

Category-Graded Algebraic Theories and Effect Handlers

Takahiro Sanada1,2

Research Institute for Mathematical Sciences
Kyoto University

Kyoto, Japan

Abstract

We provide an effect system CatEff based on a category-graded extension of algebraic theories that correspond to category-
graded monads. CatEff has category-graded operations and handlers. Effects in CatEff are graded by morphisms of the
grading category. Grading morphisms represent fine structures of effects such as dependencies or sorts of states. Handlers
in CatEff are regarded as an implementation of category-graded effects. We define the notion of category-graded algebraic
theory to give semantics of CatEff and prove soundness and adequacy. We also give an example using category-graded effects
to express protocols for sending receiving typed data.

Keywords: Algebraic theory, algebraic effect, effect handler, category-graded monad

1 Introduction

1.1 Background

Moggi [14] used monads to capture computational effects. Monads have a close relationship with algebraic
theories [7]. Algebraic effects [17] are effects based on algebraic theories. Handlers of algebraic effects
[18] provide clear ways to implement effects. Algebraic effects and handlers are useful notions to make
programs with effects.

There are several extensions of monads [1,8,15,16]. These variations of monads enable us to reason
about computational effects in more detail.

Parameterised monads [1] are monads with parameters which represent initial and terminal states of
computational effects such as change of type of state. In an effect system based on parameterised monads,
each computational term is graded by an object of a parameter category S. For example, we can capture
the feature of mutable state of mutable type. To see this, let S be a discrete category whose objects
are int and 1. The parameter indicates the type of state. We can construct computational terms, M
with parameter int and N with parameter 1. We can know that the computations M and N have states
of type int and 1 respectively. Let us consider lookup and update operations for this mutable state
of mutable type. There are two lookup operations and four update operations lookupint(), lookup1(),
updateint→1(V), update1→int(V), updateint→int(V) and update1→1(V). lookupint() is an operation that

1 I would like to thank the people of computer science group at RIMS, especially Masahito Hasegawa and Soichiro
Fujii for discussions and comments, and the anonymous reviewers for comments. This work was supported by JST,
the establishment of university fellowships towards the creation of science technology innovation, Grant Number
JPMJFS2123 and JST ERATO Grant Number JPMJER1603.
2 Email: tsanada@kurims.kyoto-u.ac.jp

MFPS 22 Proceedings will appear in Electronic Notes in Theoretical Informatics and Computer Science

mailto:tsanada@kurims.kyoto-u.ac.jp

Sanada

reads the state of type int and returns the value in it. We can use lookupint() only when the type of
the state is int. lookup1() is similar. updateα→β(V) is an operation that writes the value V in the state
changing the type of state from α to β. The parameter category S does not need to be a discrete category.
If S has nontrivial morphisms, the intuition is that morphisms mean subtyping relations between the types
of the state.

Graded monads [8,12] are monads graded by a partially ordered monoid. Elements of the partially
ordered monoid express quantity of effects such as memory locations that effects affect. Its formal theory
was given in [5], and its algebraic theories were given in [20,4,9]. For example, let L = {l1, l2, . . . , ln} be
a set of memory locations. Then we can get a partially ordered monoid 2L where the product · of 2L

is the union of sets ∪ and the order ≤ of 2L is the inclusion ⊆. If a computation term M is graded by
A ∈ 2L, we can know that M may access the memory locations contained in A. The role of the order is
weakening of a set of locations which may be accessed. If a computation term M is graded by A ∈ 2L and
A ≤ B, we can deduce that M is also graded by B. The intuition is that computation that may access
the locations in A may access the locations in B which is larger than A. Let us consider memory lookup
and update operations. Let lookupi() be an operation that reads location li and returns its value and
updatej(V) be an operation that writes V on the location lj and returns the unit value. lookupi() and

updatej(V) are graded by {li} and {lj} respectively. If M is graded by A ∈ 2L, letx ← lookupi() inM
and let ← updatej(V) inM are graded by {li} ·A and {lj} ·A, respectively.

Category-graded monads [15] are introduced to unify parameterised and graded monads. Graded
monads are 2-category-graded monads with a single object. Parameterised monads are category-graded
monads with generalised units. Category-graded monads and the constructions of these Eilenberg-Moore
and Kleisli categories are a special case of lax functors and these two constructions are studied by Street
[21].

1.2 Overview

In this paper, we provide

• category-graded extensions of algebraic theories,

• a category-graded effect system CatEff with effect handlers based on category-graded algebraic theories,
and

• operational and denotational semantics of the effect system.

In category-graded algebraic theories, terms are graded by morphisms of a grading category S. In the
effect system that corresponds to category-graded algebraic theories, we will define a judgement Γ `f M : A
for computational term M and a morphism f in S. This judgement means that the computation M will
return a value of type A under the environment Γ and invoke effects graded by f . The term M will be
denoted by a map [[Γ]]→ Tf [[A]], where T is a category-graded monad. Grading morphisms can express a
finer structure of computational effects than elements of monoids in ordinary graded monads or parameters
in parameterised monads can, especially structures of dependency and sorts of state.

For instance, let us consider the following morphisms f = (1
τ1int−−→ int

sendint−−−−→ int
recvintint−−−−→ int) and

g = (1
recv1int−−−−→ int

sendint−−−−→ int) in a category S. A computational term M graded by f is a computation
that behaves as follows.

(i) The type of the initial state is unit type 1.

(ii) Some effects are invoked in M and a value of type int is stored in the state. Thus, the type of state
is changed from 1 to int. These effects are graded by τ1int, which means internal computation with
a change of types of the state.

(iii) An effect sending the value of the state to another process is invoked. It is graded by sendint. The
type of the state is not changed by the sending effect, so the domain and codomain of sendint are the
same.

(iv) An effect receiving graded by recvintint is invoked. It receives a value of type int and stores it in the
state. In this case, the types of state before receiving and after receiving are the same, but in general,

2

Sanada

they may be changed.

A computational term N graded by g is a computation that behaves as follows.

(i) The type of the initial type is unit type 1.

(ii) An effect graded by recv1int is invoked. It receives a value of type int and stores it in the state. The
type of state before receiving and the type of receiving value are different, so the type of state is
changed from 1 to int.

(iii) An effect graded by sendint is invoked. It sends a value of the state.

Thanks to the grading morphisms, we can know the transition of the type of the state, and deduce that
M and N can interact with each other and yield values. We think of morphisms in S as protocols of
communication.

We can construct handlers of category-graded effects. As ordinary handlers are the morphisms induced
by the universality of free models of algebraic theories, category-graded handlers are the morphisms induced
by the universality of free models of category-graded algebraic theories. We can regard category-graded
handlers as an implementation of category-graded effects. (Monoid-)graded monads without order and
parameterised monads whose parameterising category is discrete are special category-graded monads, so
we can get handlers for effects corresponding to these monads automatically.

Contents. In Section 2, we introduce notations and review some categorical notions. In Section 3, we
define category-graded algebraic theory and describe the free construction for the theory. In Section 4, we
explain our effect system based on category-graded algebraic theory. We call the effect system CatEff . The
effect system has handlers of category-graded effects. In Section 5 and Section 6, we describe operational
and denotational semantics of our effect system, respectively. In Section 7, we show the soundness and
adequacy of the semantics.

2 Category-Graded Monads

We assume that readers are familiar with basic notions of category theory such as monads [11]. Throughout
this paper, we use the following notations.

• Let CAT be the 2-category of all categories, functors and natural transformations.

• Let Set be the category of all sets and maps.

• For a category C, IdC is the identity functor on C.
• For a category C, Endo(C) is the full 2-subcategory of CAT whose 0-cell is only C.
• For a category C with finite and countable products and coproducts, an object C of C, and a finite or

countable set X, CX is the X-fold product of C, that is
∏
x∈X C and X × C is the X-fold sum of C,

that is
∑

x∈X C.

2.1 Lax Functors and Category-Graded Monads

Category-graded monads are introduced by Orchard et al. [15]. In this section, we fix a category C and a
small category S.

Definition 2.1 [Lax functor] Let C be a 2-category. A lax functor F : S lax−−→ C is a tuple F = (F, ηF , µF)
where

• For each object a of S, Fa is a 0-cell of C.

• For each morphism f : a→ b of S, Ff : Fa→ Fb is a 1-cell of C.

• For each object a of S, ηFa : idFa ⇒ F ida is a 2-cell of C.

• For each morphism f : a→ b and g : b→ c of S, µFg,f : Fg ◦ Ff ⇒ F (g ◦ f) is a 2-cell of C

3

Sanada

satisfying the following commutative diagrams:

Ff Ff ◦ F ida

F idb ◦ Ff Ff

FfηFa

ηFb Ff µFf,ida

µFidb,f

Fh ◦ Fg ◦ Ff Fh ◦ F (g ◦ f)

F (h ◦ g)Ff F (h ◦ g ◦ f)

FhµFg,f

µFh,gFf µFh,g◦f

µFh◦g,f

We call ηF and µF unit and multiplication of F respectively.

We use string diagrams [19] for diagrammatic reasoning. In string diagram, a region of a diagram
represents a 0-cell of a 2-category, a string between two regions represents a 1-cell from the 0-cell of the
left regions to the 0-cell of the right region, and a node on strings represents a 2-cells from the 1-cell of
bottom strings to the 1-cell of top strings. We can depict unit and multiplication, and the axioms of lax
functor by string diagrams as follows:

ηFa =

F ida

ηFa

, µFf,g =

F (g ◦ f)

Ff Fg
µFf,g

,

Ff

Ff

=

Ff

Ff

=

Ff

Ff

,

F (h ◦ g ◦ f)

Ff Fg Fh

=

F (h ◦ g ◦ f)

Ff Fg Fh

.

Definition 2.2 [Category-graded monads] A category-graded monad (or an S-graded monad) on C is a

lax functor Sop lax−−→ Endo(C). That is, an S-graded monad consists of mapping of objects and morphisms
T : Sop → Endo(C) and families of natural transformations ηa : IdC ⇒ Tida for a ∈ S and µf,g : TfTg ⇒ Tf ;g

for f : a→ b and g : b→ c in S that make the following diagrams commute.

Tf TidaTf

TfTidb Tf

ηaTf

Tfηb µida,f

µf,idb

TfTgTh TfTg;h

Tf ;gTh Tf ;g;h

Tfµg,h

µf,gTh µf,g;h

µf ;g,h

If S is the trivial category, that is the category with a single object and the identity morphism on
it, S-graded monad is a usual monad [3]. If S is a category with single object and endomorphisms on
it, the endomorphisms form a monoid and S-graded monad is a (monoid-)graded monad without order.
To consider parameterised monads as category-graded monads introduced in [15], we have to introduce
generalised units, see [15].

2.2 Eilenberg-Moore Construction on Lax Functors

According to [21], there are two functors obtained from a lax functor. The two constructions correspond
to Eilenberg-Moore and Kleisli construction on a monad, respectively. In this subsection, we review the
Eilenberg-Moore construction on lax functors.

Let S be a small category and F : S → CAT be a lax functor. The Eilenberg-Moore construction gives
a functor F̂ : S → CAT.

4

Sanada

Definition 2.3 For a lax functor F = (F, ηF , µF) : S → CAT, the functor F̂ : S → CAT is defined as
follows:

• For an object a ∈ ObS, the category F̂ a is defined as follows.
· Objects are pairs (A, ξ) where A is a map which assigns to each morphism f : a → b of S an object
Af ∈ ObFb and ξ is a family of morphisms {ξf,g : FfAg → Af◦g}f,g such that the following diagrams
commute:

Af FidbAf

Af

ηFb Af

ξidb,f

FhFgAf FhAg◦f

Fh◦gAf Ah◦g◦f

Fhξg,f

µFh,gAf ξh,g◦f

ξh◦g,f

for each f : a→ b, g : b→ c, h : c→ d in S.

· Morphisms are α : (A, h)→ (A′, ξ′) where α is a family of morphisms
{
αf : Af → A′f

}
f

such that the

following diagram commutes:

FgAf FgA
′
f

Ag◦f A′g◦f

Fgαf

ξg,f ξ′g,f

αg◦f

for each f : a→ b, g : b→ c.

• For a morphism f : a→ b, a functor F̂ f : F̂ a→ F̂ b is defined as follows:

· F̂ f assigns an object (B, ζ) := (F̂ f)(A, ξ) of F̂ b to an object (A, ξ) of F̂ a where Bg = Ag◦f and
ζh,g = ξh,g◦f for g : b→ c, h : c→ d.

· For a morphism α : (A, ξ)→ (A′, ξ′) of F̂ a, a morphism

(F̂ f)α : (F̂ f)(A, ξ)→ (F̂ f)(A′, ξ′)

is defined as ((F̂ f)α)g = αg◦f for g : b→ c in S.

Since S-graded monad T : Sop → Endo(C) is a special case of lax functor Sop → CAT, the category of
Eilenberg-Moore algebras of S-graded monad T is obtained by the above construction.

Next, we describe an adjunction between Fa and F̂ a for a ∈ ObS. A functor Ĵa : Fa→ F̂ a is defined
as follows.

• For an object X ∈ ObFa, ĴaX := (A, ξ) ∈ Ob F̂ a where Af = FfX and ξg,f = µFg,f,X : FgAf → Ag◦f
for f : a→ b, g : b→ c in S.

• For a morphism x : X → Y in Fa, Ĵax : ĴaX → ĴaY is a family of Ĵaxf := Ffx.

A functor Êa : F̂ a→ Fa is defined as follows.

• For an object (A, ξ) ∈ Ob F̂ a, Êa(A, ξ) := Aida ∈ Fa.

• For a morphism α : (A, ξ)→ (A′, ξ′) in F̂ a, Êaα = αida .

We will show that Ĵ is a left adjoint to Ê. To do so, we construct a unit and a counit of the adjunction.
The unit η̂a : IdFa ⇒ ÊaĴa is a natural transformation whose components are η̂a,X := ηFX : X → FidaX.

The counit ε̂a : ĴaÊa ⇒ IdF̂ a is a natural transformation whose components are

ε̂a,(A,ξ) := ξ(−),ida :
(
F(−)Aida , (µ

F
g,f,Aida

)
g,f

)
→ (A, ξ).

Proposition 2.4 The tuple (Ĵa, Êa, η̂a, ε̂a) forms an adjunction.

5

Sanada

Proof. Follows by definition. For detail, see [21]. 2

For a morphism f : a → b, let us calculate the functor ÊbF̂ f Ĵa : Fa → Fb. For an object X ∈ Fa,

we have ÊbF̂ f Ĵa(X) = ÊbF̂ f
(
F(−)X, (µ

F
g,k,X)

g,k

)
= Êb

(
F(−)◦fX, (µ

F
g,k◦f,X)

g,k

)
= Fidb◦fX = FfX. For a

morphism x : X → Y , we have ÊbF̂ f Ĵa(x) = ÊbF̂ f(F−x) = Êb(F−◦fx) = Fidb◦fx = Ffx. Therefore, we

have Ff = ÊbF̂ f Ĵa.

2.3 A Lax Functor Induced by Adjunctions and a Functor

In Section 2.2, a lax functor F : S → CAT gives adjunctions and a functor. Conversely, we will show that
adjunctions and a functor determine a lax functor. The construction of lax functor is a generalization of
the construction [5,13] of lax M -action from an adjunction and a strict M -action where M is a monoid.

Theorem 2.5 Given a functor G : S → CAT, a map F : ObS → Ob CAT and adjunctions (Ja : Fa →
Ga,Ea : Ga→ Fa, ηa, εa) for each a ∈ ObS, F is extended to a lax functor F : S → CAT.

Proof. For each morphism f : a→ b of S, we define Ff := Eb ◦Gf ◦ Ja : Fa→ Fb. The unit ηF of F is
induced by the units of the adjunctions. For each a ∈ ObS, we define ηFa := ηa : IdFa ⇒ Fida .

Fa Ga

Fb Gb

Ja

Ff Gf

Eb

=

JaGfEb

JaGfEb

,

Fa Ga

Fa Ga

Ja

IdFa Gida=IdGa

Ea

ηa =

Ja Ea

idFa

ηa

The multiplication µF of F is induced by the counits of adjunctions. We define µFg,f = JaεbEc : Fg ◦Ff ⇒
F (g ◦ f) for each f : a→ b and g : b→ c of S.

Ga Gb Gb Gc

Fa Fb Fb Fc

Gf

G(g◦f)

Eb

IdGb Gg

EcJa

Ff IdFb

Jb

Fg

εb = εb

JaG(g ◦ f)Ec

JaGfEb JbGgEc

We claim that (F, ηF , µF) is a lax functor. To show this claim, we have to show that the axioms of lax
functors hold. The following equations of string diagrams imply the axioms hold.

JaGfEb JbGgEc JcGhEd

JaG(h ◦ g ◦ f)Ed

εb

εc
=

JaGfEb JbGgEc JcGhEd

JaG(h ◦ g ◦ f)Ed

εb

εc

6

Sanada

Ja Gf Eb

JaGfEb
ηa

εa =

JaGfEb

JaGfEb

=

Ja Gf Eb

JaGfEb
ηb

εb

2

Corollary 2.6 Given a functor G : Sop → CAT, a category C and adjunctions (Ja : C → Ga,Ea : Ga →
C, ηa, εa) for each a ∈ ObS, there exists an S-graded monad T : Sop → Endo(C) such that Tf = EbGfJa
for each f : b→ a in S.

3 Category-Graded Algebraic Theories

We explain category-graded extensions of algebraic theories. In this section, we fix a small category S and
a category C with countable products.

3.1 Category-Graded Terms

In a category-graded algebraic theory, each term is graded by a morphism in a grading category S. This
is analogous to parameterised and (monoid-)graded algebraic theories [1,9].

Definition 3.1 [Signature] An (S-graded) signature Σ is a set of symbols. For each σ ∈ Σ, countable or
finite sets P and A, and a morphism f in S are assigned. σ ∈ Σ is called an operation. P , A and f are
called a parameter, arity and grade of σ, respectively. We write σ : P A; f for an operation σ whose
parameter, arity and grade are P , A, f , respectively.

Definition 3.2 [Σ-term] Let X be a set. The set of Σ-terms TermΣ(f,X) for each f : b → a in S is
defined recursively as follows.

a ∈ ObS x ∈ X
e(a, x) ∈ TermΣ(ida, X)

p ∈ P σ : P A; f : c→ b {ti}i∈A ⊂ TermΣ(g : b→ a,X)

do(σ, p, {ti}i∈A) ∈ TermΣ(f ; g,X)

We sometimes write do(σ, p, λi.ti) instead of do(σ, p, {ti}i∈A). Intuitively, do(σ, p, λi.ti) is the term
that performs the operation σ with parameter p, binds the result to i, and invokes the continuation ti.
Note that, when A is the arity of σ, the term do(σ, p, λi.ti) is a term that takes A-many terms {ti}i∈A as
arguments.

Definition 3.3 [Σ-model] Let Σ be a signature. A Σ-model I = (I, |−|I) at a ∈ S is a pair of

a map I :
∏
b∈S S(b, a) → C and an interpretation |σ|Ik : P × I(k)A → I(f ; k) for each operation

σ : P A; f : c→ b ∈ Σ and morphism k : b→ a in S.
A homomorphism α : I → J between two Σ-models I and J at a is a family of morphisms

{αk : I(k)→ J(k)}k : b→a such that for every operation σ : P A; f : b→ c and morphism k : c → a,
the following diagram commutes:

P × I(k)A P × J(k)A

I(f ; k) J(f ; k)

P×αAk

|σ|Ik |σ|Jk

αf ;k

The map I :
∏
b S(b, a)→ C assigns a “carrier set” I(k) to each k : b→ a. Given a Σ-model I, we can

interpret Σ-terms by extending the interpretation of I.

7

Sanada

Definition 3.4 [Interpretation of Σ-terms] Let Σ be a signature and I be a Σ-model at a ∈ ObS.

For each Σ-term t ∈ TermΣ(f : b→ a,X), the element |t|I , called its interpretation, of the set∏
a′∈S,k∈S(a,a′) C(I(k)X , I(f ; k)) is defined recursively as

|e(a, x)|I := {πx : I(k)X → I(k)}k : a→a′ ,

|do(σ, p, λi.ti)|I := {(p× 〈|ti|Ik〉i∈A); |σ|Ig;k : I(k)X → I(f ; g; k)}
k : a→a′

where (σ : P A; f : c→ b) ∈ Σ and ti ∈ TermΣ(g : b→ a,X).

Intuitively, grading morphisms are sequences of sorts of effects that will be invoked by executing terms.

Example 3.5 Category graded algebraic theories are useful to deal with “order-sensitive” operations. To
illustrate this, we provide an example that contains operations for mutable state and sending and receiving
data. In this example, grading morphisms represent orders of sending and receiving effect and types of
data, analogously to session types. Let S be a category whose objects are base types and morphisms are

generated by α
recvαβ−−−→ β, α

sendα−−−−→ α, α
ταβ−→ β, τβγ ◦ταβ = ταγ , and ταα = idα. Let recvintα : 1 1;α

recv−−→ int,

sendint : 1 1; int
send−−−→ int, lookupint : 1 int; int

idint−−−→ int, updateintα : int 1;α
τ−→ int, and Σ

be {recvintα, updateintα}α ∪ {sendint, lookupint}. We have the following Σ-terms:

t := do(updateint, 2, λ .do(sendint, ?, λ .do(recvintint, ?, λ .

do(lookupint, ?, λn. e(int, n))))) ∈ TermΣ(τ ; sendint; recv
int
int, int),

s := do(recvint1, ?, λ .do(lookupint, ?, λn.do(updateint, n+ 1, λ .

do(sendintint, ?, λ . e(int, ?))))) ∈ TermΣ(recv1int; sendint,1).

The term t is graded by the morphism 1
τ−→ int

sendint−−−−→ int
recvintint−−−−→ int in S. This means that the term

t executes internal effect τ , sends data of type int, and then receives data of type int. The term s is

graded by the morphism 1
recv1int−−−−→ int

sendint−−−−→ int. This means that the term s receives data of type int
and then sends data of type int. We can know from grading morphisms of t and s that they can interact
with each other.

3.2 Equations

Next, we introduce equations to represent the equational theory on terms. The equation is defined as a pair
of terms as in the non-graded case. However, the pairs of terms must have the same grading morphism.

Definition 3.6 [Equations and category-graded algebraic theory] A graded family of equations for Σ is a
family of sets E = (Ef)f where Ef is a set of pairs of terms in TermΣ(f,X). We write t = s for a pair
(t, s) ∈ Ef . An S-graded algebraic theory is a pair T = (Σ, E) of S-graded signature Σ and equations E
for Σ.

Definition 3.7 [Model for category-graded algebraic theory] Let T = (Σ, E) be an S-graded algebraic

theory and a be an object of S. A model for T at a is a Σ-model I at a that satisfies |t|I = |s|I for
each morphism f : c → b in S and equation t = s ∈ Ef . We denote the category of models for T at a by

ModTa (C).

3.3 Free Models and Adjunctions

We explain free models of a category-graded algebraic theory and its universal property.

Definition 3.8 Let T = (Σ, E) be an S-graded algebraic theory. We define a functor F Ta : Set →
ModTa (Set) by (F Ta X)(k) = TermΣ(k,X)/ ∼ for k : b→ a in S and |σ|F

T
a X
k (p, {[ti]}i∈A) = [do(σ, p, λi.ti)]

for each X ∈ Set, k : b → a in S and σ : P A; f where ∼ is the equivalence relation induced by

8

Sanada

the equations E and [t] is the equivalence class of t. We also define a map ηX : X → (F Ta X)(ida) by
ηX(x) = [e(a, x)] ∈ TermΣ(ida, X)/ ∼.

We can show that the model F Ta X with ηX has the universal property of a free model.

Proposition 3.9 Let T = (Σ, E) be an S-graded algebraic theory. Given a model A in Set for T at a
and a map φ : X → Aida, there exists a unique homomorphism φ : F Ta X → A such that φida ◦ ηX = φ.

X (F Ta X)(ida)

Aida

ηX

φ φida

F Ta X

A

φ

Proof. For each f : b → a, we define a map φ̂f : TermΣ(f,X) → Af from the set of Σ-terms to Af

recursively by: φ̂ida(e(a, x)) = φ(x) and φ̂f (do(σ, p, λi.ti)) = |σ|A(p, λi.φ̂(ti)). Since A is a model for T ,

all equations in E holds in A. Therefore, the map φ([t]) := [φ̂(t)] is well-defined. We can show φida ◦ηX = φ
by definition. 2

The forgetful functor for models UTa : ModTa (Set)→ Set is the evaluation at ida, that is UTa (A) = Aida .

By the universality of the free construction, we have isomorphisms ModTa (Set)(F Ta X,A) ∼= C(X,UTa A) for
each a ∈ ObS. Thus, we have adjunctions F Ta a UTa .

C ModTa (Set)

FTa

UTa

a

.

We can define ModTk (Set) : ModTa (Set) → ModTb (Set) for a morphism k : b → a in S to make

ModT−(Set) a functor Sop → CAT. For a model A in ModTa (Set), a map ModTk (Set)A :
∏
c S(c, b)→ Set

is defined as (ModTk (Set)A)(f) = A(f ; k). Interpretation of operations |−|ModTk (Set)A is defined as

|σ|ModTk (Set)A
f = |σ|Af ;k. It is easy to check that ModTk (Set) is a functor from ModTa (Set) to ModTb (Set).

More generally, we can define a category of models ModTa (C) for a category C in the same way as
C = Set, and we can apply the same argument as above if the left adjoint of forgetful functor exists.

Applying Corollary 2.6, we obtain an S-graded monad Sop → Endo(C). We denote the category-graded
monad by T T . The unit and multiplication of T T are depicted as follows.

ηT
T

a =

F Ta U
T
a

IdC

, µT
T

g,f =

F Ta

ModTf ;g(C)
UTc

F Ta
ModTf (C)

UTb F
T
b

ModTg (C)
UTc

.

4 A Category-Graded Effect System

In this section, we introduce an effect system with category-graded operations based on category-graded
algebraic theories. We call the effect system CatEff . We also construct handlers of category-graded
algebraic operations. We fix small categories S and S ′, and S, S ′-signatures Σ, Σ′.

9

Sanada

4.1 Language

Syntax. Our effect system CatEff is based on fine-grained call-by-value calculus [10]. The syntax is
divided into two parts, values and computations.

Values V,W ::= x | ? | inlV | inrV | 〈V,W 〉 | λfx : A.M

Computations M,N ::= vala V | letx←M inN | VW | op(V)

| projV as 〈x, y〉.M |matchV {x.M1; y.M2}

where a is an object in S, and f is a morphism in S. Values are usual except for lambda abstraction. The
lambda abstraction λfx : A.M means that this function has effects represented by the morphism f . We
sometimes write VΣ and MΣ to specify its signature.

Types. Types are defined by the following BNF:

P,Q ::= 1 | P ×Q | P +Q, A,B ::= 1 | A×B | A+B | A→ B; a
f−→ b.

where f : a → b is a morphism in S. The key idea is that a function type A → B; a
f−→ b indicates

that a function of this type consumes an argument of type A and returns a result of type B with effects
represented by f . We call P a primitive type. We assume that parameters and arities of operations in the
signatures Σ and Σ′ are primitive types.

Typing rules. There are value judgements of the form Γ ` V : A and computation judgements of
the form Γ `Σ

f M : A where Γ is a list of distinct variables with types and f is a morphism in S. The

judgement Γ `Σ
f M : A means that the computation M returns a result of type A under type environment

Γ and causes effects represented by f . We omit Σ in the judgement Γ `Σ
f M : A if it is clear from the

context. The typing rules for terms in CatEff are presented in Figure 1.

Values

Γ ` ? : 1
Tv-Unit

x : A ∈ Γ
Γ ` x : A

Tv-Var
Γ, x : A `f M : B

Γ ` λfx.M : A→ B; f
Tv-Abs

Γ ` V : A Γ `W : B
Γ ` 〈V,W 〉 : A×B Tv-Pair

Γ ` V : A
Γ ` inlV : A+B

Tv-InjL
Γ ` V : B

Γ ` inrV : A+B
Tv-InjR

Computations

Γ ` V : A
Γ `ida vala V : A

Tc-Val
Γ ` V : P op: P Q; a

f−→ b ∈ Σ

Γ `f op(V) : Q
Tc-Op

Γ `f :a→b M : A Γ, x : A `g:b→c N : B

Γ `f ;g letx←M inN : B
Tc-Let

Γ ` V : A→ B; f Γ `W : A

Γ `f VW : B
Tc-App

Γ ` V : A1 ×A2 Γ, x : A1, y : A2 `f M : B

Γ `f projV as 〈x, y〉.M : B
Tc-Proj

Γ ` V : A1 +A2 Γ, x : A1 `f M1 : B Γ, y : A2 `f M2 : B

Γ `f matchV {x.M1; y.M2} : B
Tc-Match

Fig. 1. Typing rules.

10

Sanada

4.2 Handlers

Handlers for ordinary algebraic theories [18] are homomorphisms from a free model for a theory to another
one. We can also construct handlers for category-graded algebraic theories in a similar way to the ordinary
handlers. Let G : S → S ′ be a functor and T = (Σ, E), T ′ = (Σ′, E′) be S-, and S ′-graded algebraic

theories, respectively. For an object a of S and sets X and Y , a handler from F Ta X to (F T
′

GaY)(G−) is

obtained by the universality of the free model F Ta X. To obtain the handler, (F T
′

GaY)(G−) must be a model
for T at a. So we need the following data:

• a map φ : X → (F T
′

GaY)(Gida), and

• interpretations |σ|(F
T ′
GaY)G

k : P × (F T
′

GaY)(Gk)
Q → (F T

′
GaY)(G(f ; k)) of operations in Σ for every σ : P

Q; c
f−→ b ∈ Σ and k : b→ a.

satisfying all equations in E, that is the interpretations of terms in TermΣ(f,X) induced by |σ|(F
T ′
GaY)G

satisfies |t|(F
T ′
GaY)G = |s|(F

T ′
GaY)G for every t = s ∈ E.

Together with the above data, (F T
′

GaY)(G−) becomes a model for T at a, and there is a homomor-

phism φ : F Ta X → (F T
′

GaY)G such that φida ◦ ηX = φ by the universal property of free model. We

can calculate the homomorphism φ = {φl}l : b→a as φida([e(a, v)]) = φ(v) and φl : b→a([do(σ, p, λi.ti)]) =

|σ|(F
T ′
GaY)G

k (p, λi.φk([ti])) where ti ∈ (F T
′

GaY)(Gk).
We add syntax and typing rules for handlers as follows. Note that the following constructions of handlers

don’t care about equations of algebraic theories. Programmers must ensure on their responsibilities that
handlers they are constructing respect proper equations of effects.

Additional syntax. To construct handlers for CatEff , we need data that corresponds to φ : X →
(F T

′
GaY)(Gida) and |σ|(F

T ′
GaY)G

k : P × (F T
′

GaY)(Gk)
Q → (F T

′
GaY)(G(f ; k)) as argued above. Thus, we extend

the syntax of CatEff as follows:

Computations MΣ′ ::= · · · | handleMΣ withHΣ⇒Σ′

Handlers HΣ⇒Σ′ ::= {valb x 7→MΣ′}
∪{op(p), r 7→k (MΣ′)

k
op}

k : c→b
op: P Q;d

g−→c∈Σ

Additional typing rules. We add a new judgement Γ `Gb H : R⇒ R′ where R and R′ are primitive
types. This means that the handler H handles operations in computation of type R and then produces a
computation of type R′. Let ∆ be an environment x1 : P1, . . . , xn : Pn.

∆ `Σ
f : a→b M : R Γ `Gb H : R⇒ R′ ∆ ⊆ Γ

Γ `Σ′

G(f) handleM withH : R′
Tc-Handle

Γ, x : R `Σ′
idGb

M : R′{
Γ, p : P, r : Q→ R′;Gk `Σ′

G(g;k) M
k
op : R′

}k : c→b

op: P Q;d
g−→c∈Σ

Γ `Gb {valb x 7→M} ∪ {op(p), r 7→k M
k
op}

k

op∈Σ
: R⇒ R′

Th-Handler

Note that the environment ∆ contains only variables typed by primitive types. If it contained a type
A → B; f , the morphism f is in S while the morphism must be in another grading category S ′ after a
computation graded by f is handled. This is impossible in general.

We omit the morphism k in op(p), r 7→k M
k
op and write simply op(p), r 7→ Mop when Mop = Mk

op for
all k. This convention is used in Example 5.9.

11

Sanada

S-App (λfx.M)V → M [V/x]

S-Let letx← vala V inM → M [V/x]

S-Proj proj 〈V1, V2〉as 〈x, y〉.M → M [V1/x, V2/y]

S-MatchLeft match (inlV){x.M1; y.M2} → M1[V/x]

S-MatchRight match (inrV){x.M1; y.M2} → M2[V/y]

S-HandleRet handle (vala V) withH → M [V/x]

S-HandleOp handle E [op(V)] withH → N

S-Lift F [M] → F [M ′] if M →M ′

where H = {vala x 7→M} ∪ {op(p), r 7→k M
k
op}

k

op
in S-HandleRet and S-HandleOp, and

N = Mk : c→b
op [V/p, λGky.handle E [valb y] withH/r] in S-HandleOp.

Fig. 2. Small-step operational semantics

5 Operational Semantics

To define the operational semantics of CatEff , we need some auxiliary notions.

Definition 5.1 [Evaluation context] Evaluation contexts E and F are defined by the following BNF:

EΣ ::= [] | letx← EΣ inMΣ

FΣ′ ::= [] | letx← FΣ′ inMΣ′ | handleFΣ withHΣ⇒Σ′

We write Γ ` F : A B;G(b′)
f−→ a if Γ, x : A `f F [valb′ x] : B is derived where G is a functor that

corresponds to handlers in F and x does not appear in F as a free variable.

Figure 2 gives the small-step operational semantics for CatEff . It is based on [6]. The rules of
operational semantics are usual except for S-HandleOp. In S-HandleOp, the grading morphism plays
an important role. Let E be letxn ← (. . . (letx1 ← [] inM1) . . .) inMn and fi be the grading morphism
of Mi for each i = 1, . . . , n. Consider a term handle E [op(V)] withH. The handler H handles op(V) with

the term Mf1;...;fn
op in H. For example, see Example 5.8.

The goal of the rest of this section is to show the progress lemma and the preservation lemma for
CatEff . We start by proving the following lemmas by induction on derivations.

Lemma 5.2 (Substitution) If Γ, x1 : A1, . . . , xn : An `f M : B and Γ ` Vi : Ai for each i = 1, . . . , n,
then Γ `f M [V1/x1, . . . , Vn/xn] : B.

Lemma 5.3 If Γ ` F : A B; b
f−→ a, Γ `g′ : c′→b′ M : A, and G(b′) = b, then Γ `G(g′);f F [M] : B

Lemma 5.4 If Γ `h F [M] : B, then we have Γ `g′ M : A and Γ ` F : A B; f satisfying h = G(g′); f .

Lemma 5.5 (Progress) If `f : b→a M : A then one of the following holds.

(i) f = ida and M = vala V for some value term V ,

(ii) M = E [op(V)] for some E, op and V , or

(iii) there exists a computation term N such that M → N .

Lemma 5.6 (Preservation) If `f : b→a M : A and M → N then `f N : B is derivable.

Together with the progress lemma(Lemma 5.5) and preservation lemma(Lemma 5.6), we have a safety
theorem. The safety theorem says that if a computation term is well-typed then the term comes from
value (vala V) or is about to perform an operation.

12

Sanada

Theorem 5.7 (Safety) If `f : b→a M : A is a terminating term then there exists a value term V such
that M = vala V , or M calls an operation, that is M = E [op(V)] for some E, op ∈ Σ and V .

Example 5.8 [Handler] We present an example of small-step evaluation with handlers. Let S be a
category such that ObS = {c, d, e} and morphisms are identities and g : c → d and h : d → e, and S ′
be a category such that ObS ′ = {•} and the identity is the only morphism. There is a unique functor
G : S → S ′, which sends all objects in S to • in S ′. Let S-signature Σ be {op1 : P A; g, op2 : Q B;h}
and S ′-signature Σ′ be ∅. Given terms

N = letx← op1(V) in let y ← op2(W) in vale〈x, y〉,
Mh

op1
= rV ′, M ide

op2
= rW ′,

H = {vale z 7→ val• z; op1(p), r 7→h M
h
op1

; op2(p), r 7→ide M
ide
op2
}

such that ` V : P , ` W : Q, ` V ′ : A, ` W ′ : B, `Σ
g;h N : A × B and `Ge H : A × B ⇒ A × B. By

the handler H, op1 and op2 are implemented as constant operations that always return values V ′ and W ′

for any arguments, respectively. By Tc-Handle, we have a judgement `Σ′
id•

handleN withH : A × B.
Therefore, the term handleN withH is evaluated to the form val• U by the safety theorem. Indeed,
handleN withH is evaluated as follows:

handleN withH

→ (λGhv.handle (letx← vald v in let y ← op2(W) in vale〈x, y〉) withH)V ′

→∗ handle (let y ← op2(W) in vale〈V ′, y〉) withH

→Mh
op2

[W/p, λGidew.handle let y ← valew in vale〈V ′, y〉withH/r]

= (λGidew.handle let y ← valew in vale〈a, y〉withH)W ′ →∗ val•〈V ′,W ′〉.

We have `Σ′
id•

val•〈V ′,W ′〉 : A×B.

Example 5.9 [Mutable store of mutable type with a plan] We can make a program with a mutable store
of mutable type with a mutation plan. Let A and B be primitive types, V and W are value terms such
that ` V : A and `W : B. Let S be a category such that ObS = {1, A,B} and morphisms are generated
by fαβ : α → β for α, β ∈ ObS and S ′ be a category such that ObS ′ = {1 + (A + B)} and morphism is

only identity. There is a unique functor G : S → S ′, which sends all objects in S to 1 + (A + B) in S ′.
Intuitively, objects are possible types of mutable store and morphisms are plans of mutations of types of
the store. Let Σ be an S-signature {updateαβ}α,β∈ObS ∪ {lookupα}α∈ObS where the type of updateαβ ∈ Σ

is β 1; fαβ : α→ β and the type of lookupα is 1 α; idα for each α, β ∈ ObS. Let Σ′ be an S ′-
signature {update, lookup} where the type of update is 1 + (A+B) 1; id and the type of lookup is
1 1 + (A+B); id.

We can implement the behavior of mutable types by the following handlers: H1 = {val1 x 7→
val1+(A+B) inlx} ∪ Hop, HA = {valA x 7→ val1+(A+B) inr(inlx)} ∪ Hop and HB = {valB x 7→
val1+(A+B) inr(inrx)} ∪Hop where

Hop = {update11(), r 7→ let ← update(inl ?) in r?

...

updateBB(b), r 7→ let ← update(inr(inr b)) in r?

lookup1(), r 7→ letx← lookup(?) in

matchx{inl y.r?; inr y.match y{inl a.r?; inr b.r?}}
lookupA(), r 7→ letx← lookup(?) in

matchx{inl y.rV ; inr y.match y{inl a.ra; inr b.rV }}
lookupB(), r 7→ letx← lookup(?) in

matchx{inl y.rW ; inr y.match y{inl a.rW ; inr b.rb}}
13

Sanada

We have judgements `Gα Hα : α⇒ 1 + (A+B) for all α ∈ Ob (S). Let us consider the term

N = let ← update1
A(V) in let ← updateABW in letx← lookupB(?) in valB x

We have a judgement `Σ
f1A;fAB

N : B. The grading morphism f1A; fAB : 1→ A→ B implies that the program

N stores a value of type A and then stores a value of type B. Handling operations in Σ by HB, a mutable
store of mutable type with a plan is transformed to a mutable store of fixed type 1 + (A + B). We have

`Σ′
id1+(A+B)

handleN withHB : 1 + (A+B).

6 Denotational Semantics

In this section, we give denotational semantics for CatEff . The denotational semantics is based on [2].
Let Σ, Σ′ be S- and S ′-signatures, respectively. For the sake of simplicity, we work in Set. To interpret
computation terms that return a value in X, we use the sets TermΣ(f : b→ a,X) = UbModΣ

f (Set)FaX
defined in section 3. We don’t care about equations and so consider free models without any equations.
Each computational term is interpreted by a term of a category-graded algebraic theory. We can think of
elements of TermΣ(f : b→ a,X) as trees whose leaves are labelled by elements of X, and internal nodes
are labelled by operations and their arguments. For example, e(a, v) ∈ TermΣ(ida : a→ a,X) is a tree
with only one node labelled by v. Note that, for any tree t ∈ TermΣ(f,X), we obtain f by composing
morphisms of label op of nodes in a path from the root to a leaf.

Definition 6.1 We define the interpretation of types [[A]] ∈ Set as follows:

[[1]] = {?}, [[A→ B; b
f−→ a]] = TermΣ(f, [[B]])[[A]],

[[A+B]] = [[A]] t [[B]], [[A×B]] = [[A]]× [[B]].

For a context Γ = x1 : A1, . . . , xn : An, we define [[Γ]] = [[A1]]× · · · × [[An]].

We interpret value Γ ` V : A, computation Γ `f M : A and handler Γ `Ga H : R ⇒ R′

as maps [[Γ ` V : A]] : [[Γ]] → [[A]], [[Γ `f M : A]] : [[Γ]] → TermΣ(f, [[A]]) and [[Γ `Ga H : R⇒ R′]] : [[Γ]] →
TermΣ′(Gf, [[R

′]])TermΣ(f,[[R]]), respectively. We write the lift of a morphism φ : X → TermΣ(g, Y) as
φ†f := µf,g(TermΣ(f, φ)) and often simply write φ† when f is clear from the context.

Definition 6.2 Let Γ be a typing context. Given s ∈ [[Γ]], we define the interpretation of terms as follows:

[[Γ ` ? : 1]]s = ?, [[Γ ` 〈V1, V2〉 : A×B]]s = 〈[[V1]]s, [[V2]]s〉,
[[Γ ` inlV : A+B]]s = in1 [[V]]s, [[Γ ` inrV : A+B]]s = in2 [[V]]s,

[[Γ, x : A ` x : A]]s = πx(s), [[Γ ` λfx.M : A→ B; f]]s = [[M]](s,−),

[[Γ `ida vala V : A]]s = e(a, [[V]]s), [[Γ `f VW : B]]s = ([[V]]s)([[W]]s),

[[Γ `f op(V) : A]]s = do(op, [[V]]s, {e(a, x)}x∈[[A]]),

[[Γ `f ;g letx←M inN : B]]s = ([[N]](s,−))†([[M]]s),

[[Γ `f projV as 〈x, y〉.M : B]]s = [[M]](s, π1([[V]]s), π2([[V]]s)),

[[Γ `f matchV {x.y;M1.M2} : B]]s = [[[M1]](s,−), [[M2]](s,−)]([[V]]s),

[[Γ `Σ′
Gf handleM withH : R′]]s = ([[H]]s)([[M]]s),

[[Γ `Ga H : R⇒ R′]]s =

{
e(a, v) 7→ [[M]](s, v)

do(op, p, {ti}i) 7→ [[Mk
op]](s, p, {[[H]](s, ti)}i)

where H = {vala x 7→M} ∪ {op(p), r 7→Mk
op}

k

op∈Σ
.

14

Sanada

7 Soundness and Adequacy

We show soundness and adequacy. These theorems assert that operational semantics and denotational
semantics are compatible with each other.

Theorem 7.1 (Soundness) If `f M : A and M →M ′ then [[`f M : A]] = [[`f M ′ : A]].

To show adequacy(Theorem 7.5), we define relations �A for values and �
f
A for computations as done

in [2].

Definition 7.2 For v ∈ [[A]] and a closed value term ` V : A, we define v �A V as follows:

• v �1 V if v = 1 and V = ?.

• v �A×B V if v = 〈v1, v2〉, V = 〈V1, V2〉, v1 �A V1 and v2 �B V2.

• v �A+B V if either v = in1 v1, V = inlV1 and v1 �A V1, or v = in2 v2, V = inrV2 and v2 �B V2.

• v �A→B;f V if v(w) �f
B VW for each w ∈ [[A]] and closed value `W : A satisfying w �AW .

Simultaneously, for c ∈ TermΣ(f, [[A]]) and a closed computation term `f M : A, c�f
AM holds if

(i) f = ida, c = e(a, v), M →∗ vala V and v �A V , or

(ii) c = do(σ, v, {tx}x∈[[C]]), M →∗ E [op(V)], v �P V , and if w �C W then tw �k
A E [valbW].

Lemma 7.3 If c�f
AM

′ and M →M ′ then c�f
AM .

Proof. By assumption c�f
AM

′, we have two cases:

(i) f = ida, c = e(a, v), M ′ →∗ vala V and v �A V . In this case, we have M →∗ vala V .

(ii) c = do(σ, v, {tx}x∈[[C]]), M
′ →∗ E [op(V)], v �P V , and if w�C W then tw �k

A E [valbW]. In this case,

we have M →∗ E [op(V)].

In both cases, we can conclude c�f
AM as required. 2

Lemma 7.4 Let Γ be a typing context x1 : A1, . . . , xn : An, and ` Wi : Ai be a closed value term and wi
be an element of [[Ai]] with wi �Ai Wi for each 1 ≤ i ≤ n. Then followings hold.

(i) If Γ ` V : A then [[V]](w1, . . . , wn) �A V [W1/x1, . . . ,Wn/xn].

(ii) If Γ `f M : A then [[M]](w1, . . . , wn) �f
AM [W1/x1, . . . ,Wn/xn].

Theorem 7.5 (Adequacy) If `ida M : 1 and [[`ida M : 1]] = e(a, ?) then M →∗ vala ?.

Proof. By Lemma 7.4, we have [[M]] �ida
1 M . Thus, we have e(a, ?) �ida

1 M by assumption. By the

definition of �ida
1 , we obtain M →∗ vala V and ?�1 V . Therefore, by definition of �1, we conclude V = ?

and M →∗ vala ?. 2

8 Future Work

User-defined grading category and graded operations. The grading categories of CatEff are con-
sidered to be built-in in this paper. To provide user-defined grading operations, the syntax to write grading
categories and graded operations is needed. This is future work.

Category-graded Lawvere theories. Graded Lawvere theories which correspond to graded alge-
braic theories were developed in [9]. Category-graded extensions of Lawvere theories are future work.

2-category-graded monads. Graded monads are graded by partially ordered monoids in general.
We must consider 2-category-graded monads, whose grading category is 2-category, to generalise partially
ordered monoid-graded monads. This situation is beyond [21]. Thus, the Eilenberg-Moore and Kleisli
constructions on these monads are not trivial.

15

Sanada

References

[1] Atkey, R., Algebras for parameterised monads, in: A. Kurz, M. Lenisa and A. Tarlecki, editors, CALCO 2009, Lecture
Notes in Computer Science 5728 (2009), pp. 3–17.

[2] Bauer, A. and M. Pretnar, An effect system for algebraic effects and handlers, Log. Methods Comput. Sci. 10 (2014).

[3] Bénabou, J., Introduction to bicategories, in: Reports of the Midwest Category Seminar, Lecture Notes in Mathematics
47 (1967), pp. 1–77.

[4] Dorsch, U., S. Milius and L. Schröder, Graded monads and graded logics for the linear time - branching time spectrum,
in: W. J. Fokkink and R. van Glabbeek, editors, CONCUR 2019, LIPIcs 140 (2019), pp. 36:1–36:16.

[5] Fujii, S., S. Katsumata and P. Melliès, Towards a formal theory of graded monads, in: B. Jacobs and C. Löding, editors,
FoSSaCS 2016, Lecture Notes in Computer Science 9634 (2016), pp. 513–530.

[6] Hillerström, D. and S. Lindley, Shallow effect handlers, in: S. Ryu, editor, APLAS 2018, Lecture Notes in Computer
Science 11275 (2018), pp. 415–435.

[7] Hyland, M. and J. Power, The category theoretic understanding of universal algebra: Lawvere theories and monads,
Electron. Notes Theor. Comput. Sci. 172 (2007), pp. 437–458.

[8] Katsumata, S., Parametric effect monads and semantics of effect systems, in: S. Jagannathan and P. Sewell, editors,
POPL ’14 (2014), pp. 633–646.

[9] Kura, S., Graded algebraic theories, in: J. Goubault-Larrecq and B. König, editors, FoSSaCS 2020, Lecture Notes in
Computer Science 12077 (2020), pp. 401–421.

[10] Levy, P. B., J. Power and H. Thielecke, Modelling environments in call-by-value programming languages, Inf. Comput.
185 (2003), p. 182–210.

[11] MacLane, S., “Categories for the Working Mathematician,” Springer-Verlag, New York, 1971, ix+262 pp., graduate Texts
in Mathematics, Vol. 5.

[12] Melliès, P., Parametric monads and enriched adjunction, LOLA 2012. Manuscript available on the author’s web page.

[13] Melliès, P., The parametric continuation monad, Math. Struct. Comput. Sci. 27 (2017), pp. 651–680.

[14] Moggi, E., Notions of computation and monads, Inf. Comput. 93 (1991), pp. 55–92.

[15] Orchard, D., P. Wadler and H. Eades, III, Unifying graded and parameterised monads, in: M. S. New and S. Lindley,
editors, MSFP 2020, EPTCS 317, 2020, pp. 18–38.

[16] Orchard, D. A., T. Petricek and A. Mycroft, The semantic marriage of monads and effects, CoRR abs/1401.5391 (2014).
URL http://arxiv.org/abs/1401.5391

[17] Plotkin, G. D. and J. Power, Adequacy for algebraic effects, in: F. Honsell and M. Miculan, editors, FoSSaCS 2001, Lecture
Notes in Computer Science 2030 (2001), pp. 1–24.

[18] Plotkin, G. D. and M. Pretnar, Handlers of algebraic effects, in: G. Castagna, editor, ESOP 2009, Lecture Notes in
Computer Science 5502 (2009), pp. 80–94.

[19] Selinger, P., A survey of graphical languages for monoidal categories, in: B. Coecke, editor, New Structures for Physics,
Lecture Notes in Physics 813, Springer, 2010 pp. 289–355.

[20] Smirnov, A. L., Graded monads and rings of polynomials, J. Math. Sci. 151 (2008), pp. 3032–3051.

[21] Street, R., Two constructions on lax functors, Cahiers de topologie et géométrie différentielle catégoriques 13 (1972),
pp. 217–264.

A Generalised Units and Generalised Counits

Generalised units were introduced to unify category-graded monads and parameterised monads in [15].
In this section, we introduce generalised counits of adjunctions that corresponds to generalised units of
monads and investigate the role of generalised units in CatEff .

16

http://arxiv.org/abs/1401.5391

Sanada

A.1 Generalised Units of Category-Graded Monads

First, we review the definition of categroy-graded monads with generalised units.

Definition A.1 [Category-graded monads with generalised unit, [15]] A category-graded monads with

generalised unit is a category-graded monad (T : Sop lax−−→ Endo(C), η, µ) together with the following data:

• A wide subcategory R of S, that is a subcategory R ⊆ S satisfying ObR = ObS. We denote the
inclusion functor by ι : R ↪→ S and usually omit ι when no confusion arises.

• For each morphism f in R and object C in C, a morphism (ηf)
C

: C → TfC, satisfying the following
commutative diagrams.

C TfC

Tg◦fC TfTgC

(ηf)
C

(ηg◦f)
C Tf (ηg)

C

µf,g

C TidaC

TidaC

(ηa)C

(ηida
)
C

Let G : Sop → CAT be a functor and (Ja : C → Ga,Ea : Ga → C, ηa, εa) be adjunctions for each
a ∈ ObS such that Tf = EbGfJa for every f : a → b in S. We depict the generalised units by string
diagrams as follows.

C Ga

C Gb

Ja

IdC Gf

Eb

ηf =

Ja EbGf

ηf

Then, the above two rules are depicted as follows.

G(g ◦ f)
Ja Ec

=

G(g ◦ f)
Ja Ec idGa

Ja Ea

ηida

=

Ja Ea

ηa

A category-graded monad with generalised unit whose wide subcategory is a discrete category is an
ordinary parameterised monad. Every parameterised monad can be seen a category-graded monad with
generalised units using pair completion, see [15] and Appendix C.

A.2 Generalised Counits of Adjunctions

We introduce generalised counits of adjunctions and show that generalised units of monads correspond to
generalised counits of adjunctions.

Definition A.2 [Generalised counits of adjunctions] Let G : Sop → CAT be a functor and (Ja : S →
Ga,Ea : Ga→ S, ηa, εa) be adjunctions. A generalised counit of those adjunctions consists of the following
data.

• A wide subcategory R of S.

• For each morphism f : b → a in R, a natural transformation εf : JbEa ⇒ Gf , satisfying the following
commutative diagrams.

JcEaA JcEbJbEaA JcEbGgA

G(f ◦ g)A GfGgA

Jc(ηb)EaA

(εf◦g)
A

JcEb(εg)A

(εf)
GgA

JaEaA A

A

(εa)A

(εida)A

17

Sanada

We depict generalised counits by string diagrams as follows:

C Ga

C Gb

IdC

Ea

Gf

Jb

εf =

Gf

εf
JbEa

The following string diagrams are equivalent to the above diagrams:

G(g ◦ f)

Ea Jc

=

G(g ◦ f)

Ea Jc

idGa

Ea Ja

εida

=

Ea Ja

εa

Next proposition is analogous to the usual unit law of monads:

= =

Proposition A.3 The following equations hold.

Ja EbGf

EbJb

=

Ja EbGf

EbJb

JaGfEb

Ja Ea

=

JaGfEb

Ja Ea

Proof. We can easily check by deformation of strings. 2

Theorem A.4 Let G : Sop → CAT be a functor and (Ja : S → Ga,Ea : Ga → S, ηa, εa) be adjunctions.
There is a one to one correspondence between generalised units of the category-graded monad induced by
G and (Ja, Ea, ηa, εa) and generalised counits of the adjunctions.

Proof. We can define a map from generalised counits to generalised units as follows.

Gf

εf
JbEa

7→

Ja EbGf

εf

Indeed we can check that the right-hand side satisfies the axioms of generalised units using the axioms

18

Sanada

generalised counits and deformation of strings. The inverse of this map is as follows.

Ja EbGf

ηf
7→

Gf

ηf
Ea Ja

The following equations show that the above two maps are inverse of each other.

Gf

Ea Jb

=

Gf

Ea Jb

=

Gf

εf
JbEa

GfJa Eb

=

GfJa Eb

=

Ja EbGf

ηf
2

A.3 Generalised Units in CatEff

We can introduce generalised units to CatEff . We fix a grading category S and wide subcategory R of it.
The typing rule corresponding to generalised units is as follows.

g : a′ → a in R Γ `f : a→b M : A h : b→ b′ in R
Γ `h◦f◦g M : A

Tc-Gunit

If we think of objects in grading category as conditions of states, the rule Tc-Gunit represents weakening
of the condition along the grading morphism. For example, if objects in the grading category are types of
states, generalised units represent the subtyping relation of the types.

The denotation of a judgement derived by Tc-Gunit is defined as follows.

[[Γ `h◦f◦g M : A]]s = µf◦g,h(TermΣ(f ◦ g, ηh)(µg,f (ηg([[Γ `f M : A]]s))))

B Recursion

In this section, we add recursion to CatEff . We have to take care of grading morphisms when we construct
recursive functions.

We add value terms to construct recursive functions.

Values V ::= . . . | reck : a→b f(x : A).M

Typing rule for recursive functions is given as follows:

Γ, f : A→ B; k, x : A `k M : B

Γ ` reck f(x : A).M : A→ B; k
Tv-Rec

19

Sanada

The key point is that the grading morphisms of f and M are the same in the premise of Tv-Rec.
Reduction of application of recursive functions is defined as follows:

S-RecApp (reck f(x : A).M)W →M [W/x, reck f(x : A).M/f]

We can show the safety theorem for this extension.
To give denotational semantics, we need domain theoretical construction to interpret recursively defined

function. We believe that we can construct such domains as done in [2] and show soundness and adequacy
for CatEff with recursion.

C Correspondence of Parameterised Monads to Category-Graded Monads with Gen-
eralised Units

In this section, we describe correspondence of parameterised monads to category-graded monads with
generalised units. This correspondence was shown by [15], but it needs some modification.

Definition C.1 [[1]] A parameterised monad consists of the following data:

• a functor P : Sop × S → [C, C],
• for each a ∈ ObS, a natural transformation ηPa : IdC ⇒ P (a, a), and

• for each a, b, c ∈ ObS, a natural transformation µPa,b,c : P (a, b)P (b, c)⇒ P (a, c)

satisfying the following commutative diagrams:

P (a, b) P (a, a)P (a, b)

P (a, b)P (b, b) P (a, a)

ηPa P (a,b)

P (a,b)ηPb µPa,a,b

µPa,b,b

P (a, b)P (b, c)P (c, d) P (a, c)P (c, d)

P (a, b)P (b, d) P (a, d)

µPa,b,cP (c,d)

P (a,b)µPb,c,d µPa,c,d

µPa,b,d

and ηPa is dinatural in a and µPa,b,c is dinatural in b and natural in a, c, that is satisfying the following
commutative diagrams:

IdC P (a, a)

P (a′, a′) P (a, a′)

ηPa

ηP
a′ P (a,f)

P (f,a′)

P (a, b)P (b′, c) P (a, b′)P (b′, c)

P (a, b)P (b, c) P (a, c)

P (a,g)P (b′,c)

P (a,b)P (g,c) µP
a,b′,c

µPa,b,c

P (a′, b)P (b, c) P (a′, c)

P (a, b)P (b, c) P (a, c)

µP
a′,b,c

P (f,b)P (b,c) P (f,c)

µPa,b,c

P (a, b)P (b, c) P (a, c)

P (a, b)P (b, c′) P (a, c′)

µPa,b,c

P (a,b)P (b,h) P (a,h)

µP
a,b,c′

for all a, a′, b, b′, c, c′ ∈ ObS and f : a→ a′, g : b→ b′ and h : c→ c′.

We introduce pair completion to unify parameterised monads and category-graded monads with gen-
eralised units.

Definition C.2 [[15]] Let S be a small category. The pair completion S∇ of S is a category whose objects
are the objects of S and homsets are S∇(a, b) = S(a, b) t {(a, b)}. Composition of morphisms are defined

20

Sanada

as follows:

in1 g ◦ in1 f = in1(g ◦ f)

in1 g ◦ in2 g = in2(a, c)

in2(b, c) ◦ in1 f = in2(a, c)

in2(b, c) ◦ in2(a, b) = in2(a, c)

where a, b, c ∈ ObS, f : a→ b and g : b→ c.

The following two propositions show the correspondence of parameterised monads to category-graded
monads with generalised units.

Proposition C.3 (Category-graded monads with generalised units from parameterised monads)
Let P : Sop × S → [C, C] be a parameterised monad. We define (TP , η

TP , µTP , ηTP) as follows:

• TP (a) := C, TP (f) := P (a, b) for f : a→ b in S∇,

• ηTPa := ηPa : IdC ⇒ TP (ida) for a ∈ ObS,

• µTPf,g := µPa,b,c : TP (f) ◦ TP (g)⇒ TP (g ◦ f) for a, b, c ∈ ObS, f : a→ b and g : b→ c in S∇ and

• ηTPin1 f
:= P (a, f) ◦ ηPa : IdC ⇒ TP (f) for a, b ∈ S and f : a→ b in S.

Then (TP , η
TP , µTP , ηTP) is a S∇-graded monad with a generalised unit.

Proposition C.4 (Parameterised monads from category-graded monads with generalised units)
Let T : (S∇)op → Endo(C) with (ηTf : IdC ⇒ Tf)

f∈S be a category-graded monad with generalised unit

satisfying Tin1 ida = Tin2(a,a).
3 We define a functor PT : Sop × S → [C, C] and natural transformations

ηPT and µPT as follows:

• PT (a, b) := Tin2(a,b),

• PT (a, a) := Tin1 ida = Tin2(a,a),

• PT (f, g) is

PT (a, b) = Tin2(a,b) Tin1 fTin2(a,b) Tin1 fTin2(a,b)Tin1 g

Tin2(a′,b)Tin1 g

Tin2(a′,b′) = PT (a′, b′)

ηTf Tin2(a,b) Tin1 f
Tin2(a,b)η

T
g

µT
in1 f,in2(a,b)

Tin1 g

µT
in2(a′,b),in1 g

for a, a′, b, b′ ∈ ObS and f : a′ → a and g : b→ b′,

• ηPTa := ηTa : IdC ⇒ P (a, a),

• µPTa,b,c := µTin2(a,b),in2(b,c) : P (a, b)P (b, c)⇒ P (a, c)

Then (PT , η
PT , µPT) is a parameterised monad.

Theorem C.5 Parameterised monads correspond to category-graded monads with generalised units. More
precisely, there is a one to one correspondence between the set of S-parameterised monads and the set of
S∇-graded monads with generalised units (T, η) satisfying Tin1 f = Tin2(a,b) for all a, b ∈ ObS and f : a→ b
in S.

3 The condition Tin1 ida
= Tin2(a,a) is necessary for the construction of PT (f, g) to be well-defined, but it was not

imposed in [15].

21

Sanada

C.1 Correspondence of Eilenberg-Moore Constructions

Let P : Sop × S → [C, C] be a parameterised monad. We obtain the functor T̂P : (S∇)
op → CAT by

Eilenberg-Moore construction on TP : (S∇)
op lax−−→ Endo(C). In this section, we describe the relation

between P -algebras and TP -algebras. For a ∈ ObS, Recall that the category of TP -algebra at a, T̂P (a),
consists of the following data.

• Objects are (A, h) where for f : a → b, g : b → c in S∇ A :
∑

b (S∇)(b, a) → C and ξf,g : TfAg → Ag◦f
are compatible with ηTP and µTP .

• A morphism from (A, ξ) to (A′, ξ′) is a natural transformation α : A⇒ A′ which compatible with ξ and
ξ′.

On the other hand, the category of P -algebra CP consists of the following data [1].

• Objects are (B, ζ) where B : Sop → C and ζa,b : P (a, b)Bb → Ba are compatible with ηP and µP .

• A morphism from (B, ζ) to (B′, ζ ′) is a natural transformation β : B ⇒ B′ which compatible with ζ and
ζ ′.

Construction of TP -algebras from P -algebras. Given a P -algebra (B, ζ), we can construct a
TP -algebra (A, ξ) at a for any a ∈ ObS as follows.

Ag := Bb, ξf,g := ζc,b : TP fAg = P (c, b)Bb → Bc = Ag◦f

where f : c → b and g : b → a are morphisms in S∇. This TP -algebra (A, ξ) satisfies Ain1 f = Ain2(b,a) for
all b ∈ ObS and f : b→ a in S

Next, we consider a construction of morphisms of TP -algebras from morphisms of P -algebras. Given a
morphism β : (B, ζ)→ (B′, ζ ′) between P -algebras. Recall that β is a natural transformation β : B ⇒ B′

satisfying the following commutative diagram.

P (b, c)Bc P (b, c)B′c

Bb B′b

P (b,c)βc

ζb,c ζ′b,c

βb

Let (A, ξ) and (A′, ξ′) be the TP -algebras constructed from (B, ζ) and (B′, ζ ′), respectively. We define
a natural transformation α : A ⇒ A′ to be αf : b→a := βb : Af = Bb → B′b = A′f . This α becomes a

TP -homomorphism at a. Indeed, for all f : b→ c and g : c→ a in S∇ the following commutative diagram
hold.

TP fAg TP fA
′
g

P (b, c)Bc P (b, c)B′c

Bb B′b

Agf A′gf

TP fαf

hf,g h′f,gkb,c

P (b,c)βc

k′b,c

βb

αgf

Summarizing the above discussion, we obtain a functor Fa : CP → T̂P (a) where a ∈ ObS. In particular,

we get Fa : CP → CTPa where CTPa be the full subcategory of T̂P (a) whose objects are (A, ξ) satisfying
Ain1 f = Ain2(b,a) for all b ∈ ObS and f : b→ a in S

22

Sanada

Construction P -algebras from TP -algebras. Conversely, given a TP -algebra (A, ξ) at a satisfying
Ain1 f = Ain2(b,a) for all b ∈ ObS and f : b→ a in S, we can construct a P -algebra (B, ζ) as follows.

Bb := Ain2(b,a)

Bf :=

(
Bc = Ain2(c,a) TP fAin2(c,a) Ain2(c,a)◦f = Bb

η
TP
f ξf,in2(c,a)

)
ζb,c := ξin2(b,c),in2(c,a) : P (b, c)Bc = TP in2(b,c)Ain2(c,a) → Ain2(b,a) = Bb

We prove that B is a functor. Firstly, we have

Bidb = ξidb,in2(b,a) ◦ ηTPidb
Ain2(b,a) = ξidb,in2(b,a) ◦ ηTPb Ain2(b,a) = idAin2(b,a)

,

Aba TidbAba Aba
η
TP
b Aba

Bidb

ξidb,ba .

Secondly, we have

Bf ◦Bg =

Ain2(d,a) TP gAin2(d,a) Ain2(d,a)◦g

TP fAin2(d,a)◦g

Ain2(d,a)◦g◦f

η
TP
g Ain2(d,a) hg,in2(d,a)

η
TP
f Ain2(d,a)◦g

ξf,in2(d,a)◦g

and

Bg◦f =

(
Ain2(d,a) TP g◦fAin2(d,a) Ain2(d,a)◦g◦f

η
TP
gf Ain2(d,a) ξg◦f,in2(d,a)

)
for f : b→ c and g : c→ d in S. These two morphisms are equal because the following diagram commutes.

Ain2(d,a)

TP gAin2(d,a) TP fTP gAin2(d,a) TP g◦fAin2(d,a)

Ain2(d,a)◦g TP fAin2(d,a)◦g Ain2(d,a)◦g◦f

η
TP
g Ain2(d,a)

η
TP
g◦fAin2(d,a)

η
TP
f TgAin2(d,a)

ξg,in2(d,a)

µ
TP
f,gAin2(d,a)

Tf ξg,in2(d,a) ξg◦f,in2(d,a)

η
TP
f Ain2(d,a)◦g

ξf,in2(d,a)◦g

In the above diagram, the top triangle is commutative by the definition of generalised unit, the left bottom
square is commutative by the naturality of ηTP and the right bottom square is commutative the definition
of TP -algebra (A, ξ).

Summarizing the above discussion, we obtain a functor Ga : CTPa → CP .
We can easily check the following theorem by the definition of Fa and Ga.

23

Sanada

Theorem C.6 The category CP of P -algebras is isomorphic to the category CTPa of TP -algebras at a.

Fa : CP ∼= CTPa : Ga

D Proofs of propositions

D.1 Progress Lemma

Proof. By induction on the derivation of `f M : A.
Case Tc-Val. In this case, f = ida, M = vala V for some V . Thus, the claim holds.
Case Tc-Op. We have M = op(V) for some V . Thus, the claim holds.
Case Tc-Let. We have M = letx←M ′ inN for some x, M ′ and N , and f = g;h for some morphisms

g : b→ b′ and h : b′ → a. The root of the derivation is as follows:

`g M ′ : B x : B `h N : A

`g;h letx←M ′ inN : A
Tc-Let

By applying the induction hypothesis to `g M ′ : B, we obtain three cases:

(i) g = idb and M ′ = valb V . We have f = h and M = letx← valb V inN → N [V/x] by S-Let.

(ii) M ′ = E ′[op(V)]. We have M = E [op(V)] where E [−] = letx← E ′[−] inN .

(iii) There exists M ′′ such that M ′ → M ′′. Using S-Lift, we have M = E [M ′] → E [M ′′] where E [−] =
letx← [−] inN .

Case Tc-App. We can show that the root of the derivation is as follows:

x : B `f M ′ : A
` λfx : B.M ′ : B → A; f

Tv-Abs
`W : B

`f (λfx : B.M ′)W : A
Tc-App

Thus we have M = (λfx : B.M ′)W →M ′[W/x] by S-App.
Case Tc-Proj and Tc-Match. Straightforward.
Case Tc-Handle. We have f = G(f ′) for some f ′ : b′ → a′, and M = handleM ′withH for some

handler H. The root of the derivation is as follows:

`Σ′
f ′ : b′→a′ M

′ : B `Ga′ H : B ⇒ A

`Σ
G(f ′) handleM ′withH : A

Tc-Handle

By applying the induction hypothesis to `Σ′
f ′ M

′ : B, we obtain three cases:

(i) f ′ = ida′ and M ′ = vala′ V . We have M = handle (vala′ V) withH. By Th-Handler, H contains
vala′ x 7→ N . So we get

M = handle (vala′ V) withH → N [V/x]

by S-HandleRet.

(ii) M ′ = E [op(V)] for some E , op ∈ Σ′ and V . Let k : c′ → b′ be the grading morphism that corresponds
to E . By Th-Handler, H contains (op(p), r 7→k M

k
op). So we get M = handle E [op(V)] withH and

M →Mk
op[V/p, λGky.handle E [valc′ y] withH/r]

by S-HandleOp.

(iii) There exists M ′′ such that M ′ →M ′′. By S-Lift, M = handleM ′withH → handleM ′′withH.
2

24

Sanada

D.2 Preservation Lemma

Proof. By induction on the derivation of `f M : A.
Case Tc-Val. We have M = vala V for some a and V , but there is no term N such that M → N . So

this cannot happen.
Case Tc-Op. We have M = op(V) for some op and V , but there is no term N such that M → N . So

this cannot happen.
Case Tc-Let. We have M = letx ← M ′ inL for some x, M ′, N . The root of the derivation is as

follows:
`g : b→c M

′ : B x : B `h : c→a L : A

`g;h letx←M ′ inL : A
Tc-Let

By the assumption that there is a term N such that M = letx←M ′ inL→ N , we obtain two cases:

(i) M → N is derived by S-Let. In this case, M ′ = valb V for some V , and N = L[V/x]. The root of
the derivation is as follows:

` V : B
`idb valb V : B

Tc-Val
x : B `f L : A

`f letx← valb V inL : A
Tc-Let

We have ` V : B and x : B `f L : A, so we have `f L[V/x] : A by substitution lemma.

(ii) M → N is derived by S-Lift. In this case, M ′ → N ′ and M = F [M ′] → F [N ′] = N for some N ′

where F = letx← [−] inL. Applying the induction hypothesis to `g M ′ : B and M ′ → N ′, we have
`g N ′ : B. We obtain the following derivation:

`g N ′ : B x : B `h L : A

`g;h letx← N ′ inL : A
Tc-Let

Thus we conclude `g;h N : A.

Case Tc-App. We have M = VW for some V and W . By the assumption that VW → N and
`f VW : A, we have V = λfx : B.M ′ for some B and M ′ and N = M ′[W/x]. The root of the derivation
is as follows:

x : B `f M ′ : A
` λfx : B.M ′ : B → A; f

Tv-Abs
`W : B

`f (λfx : B.M ′)W : A
Tc-App

Thus we have `f M ′[W/x] : A by substitution lemma, as required.
Case Tc-Proj. We have M = projV as 〈x, y〉.M ′ for some V , x, y and M ′. The root of the derivation

is as follows:
` V : B1 ×B2 x : B1, y : B2 `f M : A

`f projV as 〈x, y〉.M ′ : A Tc-Proj

By the assumption that there is N such that M = projV as 〈x, y〉.M ′ : A → N , we have V = 〈V1, V2〉,
` V1 : B1, ` V2 : B2 and N = M ′[V1/x, V2/y]. Thus, we have `f M ′[V1/x, V2/y] : A by substitution
lemma.

Case Tc-Match. Straightforward.
Case Tc-Handle. We have M = handleM ′withH for some M ′ and H. The root of the derivation

is as follows:
`Σ′
f ′ : b′→a′ M

′ : B `Ga′ H : B ⇒ A

`Σ
G(f ′) handleM ′withH : A

Tc-Handle

By the assumption that there is a term N such that M = handleM ′withH → N , we have three cases:

25

Sanada

(i) M → N is derived by S-HandleRet. In this case, we have M ′ = vala′ V for some V and N = L[V/x]
where (vala′ x 7→ L) ∈ H. The root of the derivation is as follows:

` V : B

`Σ′
ida′

vala′ V : B

x : B `Σ′
ida

L : A{
p : P,

r : Q→ A;Gk
`G(k;g) L

k
op : A

}
`Ga′ H : B ⇒ A

Th-Handler

`Σ
ida

handle (vala′ V) withH : A
Tc-Handle

Thus, we have `ida L[V/x] : A by substitution lemma as required.

(ii) M → N is derived by S-HandleOp. In this case, we have M ′ = E [op(V)] for some E and V .
Let k : c′ → a′ be the grading morphism that corresponds to E . By the assumption that M =
handle E [op(V)] withH → N , we have (op(p), r 7→k L

k
op) ∈ H and

N = Lkop[V/p, λGky.handle E [valc′ y] withH/r].

Applying Lemma 5.4 to `f ′ E [op(V)] : B, we have `g′ op(V) : Q and ` E : Q B; k satisfying
f ′ = g′; k. The derivation of Γ ` H : B ⇒ A is as follows:

x : B `Σ′
ida

L : A{
p : P, r : Q→ A;Gk `G(g′;k) L

k
op : A

}
`Ga′ H : B ⇒ A

Th-Handler

By applying Lemma 5.3 to ` E : Q B; c′
k−→ a′ and y : Q ` valc′ y : Q, we obtain y : Q `k E [valc′ y] :

B. We have the following derivation:

y : Q `k E [valc′ y] : B ` H : B ⇒ A

y : Q `Gk handle E [valc′ y] withH : A
Tc-Handle

` λGky.handle E [valc′ y] withH : Q→ A;Gk
Tv-Abs

Then we obtain
`G(f ′) L

k
op[V/p, λGky.handle E [valc′ y] withH] : A

by substitution lemma as required.

(iii) M → N is derived by S-Lift. In this case, we have M ′ → N ′ and M = F [M ′] → F [N ′] = N
for some N ′ where F = handle [−] withH. Applying the induction hypothesis to `f ′ M ′ : B and
M ′ → N ′, we have `f ′ N ′ : B. Thus, we obtain the following derivation:

`Σ′
f ′ N

′ : B `Ga′ H : B ⇒ A

`Σ
G(f ′) handleN ′withH ′ : A

Tc-Handle

Therefore we have `G(f ′) N : A as required.
2

D.3 Soundness

Proof. We prove by case analysis of the rule used to derive M →M ′.
Case S-App.

[[(λfx.M)V]] = [[λfx.M]]([[V]]) = [[M]]([[V]]) = [[M [V/x]]].

26

Sanada

Case S-Let.

[[letx← vala V inM]] = [[M]]†([[vala V]])

= [[M]]†(e(a, [[V]]))

= [[M]]([[V]])

= [[M [V/x]]].

Case S-Proj.

[[proj 〈V1, V2〉as 〈x, y〉.M]] = [[M]](π1[[〈V1, V2〉]], π2[[〈V1, V2〉]])
= [[M]](π1〈[[V1]], [[V2]]〉, π2〈[[V1]], [[V2]]〉)
= [[M]]([[V1]], [[V2]])

= [[M [V1/x, V2/y]]].

Case S-MatchLeft.

[[match (inlV){x.M1; y.M2}]] = [[[M1]], [[M2]]](in1[[V]])

= [[M1]]([[V]])

= [[M1[V/x]]].

Case S-MatchRight. Similar to S-MatchLeft.
Case S-HandleRet. Let H = {vala x 7→M} ∪ {op(p), r 7→Mk

op}
k

op
.

[[handle vala V withH]] = [[H]]([[vala V]])

= [[H]](e(a, [[V]]))

= [[M]]([[V]])

= [[M [V/x]]].

Case S-HandleOp. Let H be {vala x 7→ M} ∪ {op(p), r 7→Mk
op}

k

op
, E be letxn ←

(. . . (letx1 ← [] inN1) . . .) inNn, and k be the grading morphism that corresponds to E .

[[handle E [op(V)] withH]]

= [[H]]([[E [op(V)]]])

= [[H]]([[Nn]]†(. . . ([[N1]]†(do(op, [[V]], {e(a, x)}x∈[[A]]))) . . .))

= [[H]](do(op, [[V]], {[[Nn]]†(. . . ([[N1]]† e(a, x)) . . .)}x∈[[A]]))

= [[Mk
op]]([[V]], {[[H]]([[Nn]]†(. . . ([[N1]]† e(a, x)) . . .))}x∈[[A]])

= [[Mk
op]]([[V]], [[λGkx.handle E [vala x] withH]])

= [[Mk
op[V/p, λGkx.handle E [vala x] withH/r]]].

Case S-Lift. Obvious. 2

D.4 Lemma 7.4

Proof. Let s be a tuple (w1, . . . , wn) and σ be a substitution W1/x1, . . . ,Wn/xn. We prove by induction
on the derivation of the judgements.

Case Tv-Unit, Tv-Id, Tv-Pair, Tv-InjL and Tv-InjR. Straightforward.

27

Sanada

Case Tv-Abs. By the induction hypothesis, for all w ∈ [[A]] and value terms ` W : A with w �A W ,
we have

([[Γ ` λfx : A.M : B]](s))(w) = [[Γ, x : A `f M : B]](s, w)

�
f
B M [σ,W/x].

Here, we have

((λfx : A.M)[σ])W = (λfx : A.M [σ])W

→M [σ,W/x]

Then we can apply Lemma 7.3 and obtain

[[λfx : A.M]](s) �A→B;f (λfx : A.M : B)[s,W/x].

Case Tc-Val. We have

[[Γ `ida vala V : A]](s) = e(a, [[V]](s)).

By the induction hypothesis, we have [[V]](w1, . . . , wn)�A V [σ]. Thus, we have [[Γ `ida vala V : A]](s)�ida
A

(vala V)[σ] by definition of �ida
A .

Case Tc-Op. We have

[[Γ `f op(V) : Q]](s) = do(op, [[V]](s), {e(a, x)}x∈[[Q]]).

By the induction hypothesis, [[V]](s)�QV [σ]. Furthermore, for any w ∈ [[Q]] and closed value term `W : Q,

we have e(a,w) �ida
Q valaW . Thus, we have

[[Γ `f op(V)]](s) �f
Q op(V)[σ].

Case Tc-Let. We have

[[Γ `f ;g letx←M inN : B]](s) = ([[N]](s,−))†([[M]](s)).

By the induction hypothesis, we have [[M]](s) �f
A M [σ] and [[N]](s, v) �g

B N [σ, V/x] for any v ∈ [[A]] and

` V : A with v �A V . By the definition of �f
A, there are two cases:

(i) [[M]](s) = e(a, v), f = ida, M [σ]→∗ vala V and v �P V . We have

([[N]](s,−))†([[M]](s)) = ([[N]](s,−))†(e(a, v))

= [[N]](s, v)

and

(letx←M inN)[σ] = letx← (M [σ]) in (N [σ])

→∗ letx← vala V in (N [σ])

→ N [σ, V/x].

Therefore, by Lemma 7.3 we obtain

[[letx←M inN]](s) �f ;g
B (letx←M inN)[σ].

28

Sanada

(ii) [[M]](s) = do(op, v, {tx}x∈[[Q]]), M [σ] →∗ E [op(V)], v �P V , and if w �Q W then tw �k
A E [valbW].

Then, we have

([[N]](s,−))†([[M]](s)) = ([[N]](s,−))†(do(op, v, {tx}x)

= do(op, v, {([[N]](s,−))†(tx)}x)

and

(letx←M inN)[σ] = letx← (M [σ]) in (N [σ])

→∗ letx← E [op(V)] in (N [σ]).

Given w ∈ [[Q]] and `W : Q with w �QW , we show

[[N]](s,−)†(tw) �k;g
B letx← E [valbW] in (N [σ])

by induction on the height of the tree tw.
• If tw = e(c, u) then we have e(c, u) = tw �k

A E [valbW] and then c = b, E = [] and u �Q W by

definition of �k
A. We have

[[N]](s,−)†(tw) = [[N]](s,−)†(e(b, u))

= [[N]](s, u)

�
k;g
B N [σ,W/x]

and
letx← E [valbW] in (N [σ])→∗ N [σ,W/x].

Therefore, by Lemma 7.3, we have

[[N]](s,−)†(tw) �k;g
B letx← E [valbW] in (N [σ]).

• If tw = do(op′, u, {t′y}y∈[[Q′]]
) then we have do(op′, u, {t′y}y) = tw �k

A E [valbW] and then

E [valbW]→∗ E ′[op′(U)], u�P ′ U and if w′ �Q′ W
′ then t′w′ �

k′
A′ E ′[valb′W

′]. We have

letx← E [valbW] in (N [σ])→∗ letx← E ′[valb′W
′] in (N [σ])

and by induction hypothesis,

[[N]](s,−)†(t′w′) �
k′;g
B letx← E ′[valb′W

′] in (N [σ]).

Thus, by Lemma 7.3, we have

[[N]](s,−)†(t′w′) �
k′;g
B letx← E [valbW] in (N [σ]).

Therefore, we have

[[N]](s,−)†(tw) �k;g
B letx← E [valbW] in (N [σ])

by definition of �k;g
B .

Case Tc-App. By the induction hypothesis, we have

[[V]](s) �A→B;f V [σ], [[W]](s) �AW [σ].

29

Sanada

Thus, by definition of �A→B;f , we have

[[Γ `f VW : B]](s) = ([[V]](s))([[W]](s))

�
f
B (V [σ])(W [σ])

= (VW)[σ]

as required.
Case Tc-Proj, Tc-Match. Straightforward.

Case Tc-Handle. Let H be a handler {vala x 7→ N} ∪ {op(p), r 7→Mk
op}

k

op
. We have

[[handleM withH]](s) = ([[H]](s))([[M]](s)) and Γ `Σ′
Gf handleM withH : B. The root of derivation

is as follows:
∆ `Σ

f M : A Γ `Ga H : A⇒ B ∆ ⊆ Γ

Γ `Σ′
Gf handleM withH : B

Tc-Handle

where ∆ = x1 : P1, . . . , xn : Pn. We write the restriction of s and σ to ∆ by s�∆ and σ�∆, respectively.
By the induction hypothesis, we have

[[M]](s�∆) �f
AM [σ�∆],

[[N]](s, v) �idGa
B N [σ, V/x],

[[Mk
op]](s, v, w) �Gk

B Mk
op[σ, V/p,W/r]

where v ∈ [[A]] and ` V : A satisfying v�AV in the second relation, and v ∈ [[P]], ` V : P , w ∈ [[Q→ B;Gk]]
and `W : Q→ B;Gk satisfying v �P V and w �Q→B;Gk W in the third relation. We want to show

[[handleM withH]](s) �Gf
B (handleM withH)[σ].

By the definition of �f
A, there are two cases:

(i) [[M]](s�∆) = e(a, v), f = ida, M [σ�∆]→∗ vala V and v �P V . We have

([[H]](s))([[M]](s�∆) = [[H]](s)(e(a, v))

= [[N]](s, v)

�
idGa
B N [σ, V/x]

and

(handleM withH)[σ] = handleM [σ�∆] withH[σ]

→∗ handle vala V withH[σ]

→ N [σ, V/x].

Therefore, by Lemma 7.3 we obtain

[[handleM withH]](s) �Gf
B (handleM withH)[σ].

(ii) [[M]](s�∆) = do(op, v, {tx}x∈[[Q]]), M [σ�∆]→∗ E [op(V)], v�P V and if w�QW then tw�k
A E [valbW].

We can show λx.[[H]](s)(tx) �Gk
B λGky : Q.handle E [valb y] withH by induction on the height of the

tree tx similarly to the case Tc-Let. We have

([[H]](s))([[M]](s�∆)) = ([[H]](s))(do(op, v, {tx}x∈[[Q]])

= [[Mk
op]](s, v, {[[H]](s)(tx)}x∈[[Q]])

�Gk
B Mk

op[σ, V/p, λGky : Q.handle E [valb y] withH/r]

30

Sanada

and

(handleM withH)[σ] = handleM [σ�∆] withH[σ]

→∗ handle E [op(V)] withH[σ]

→Mk
op[σ, V/p, λGky : Q.handle E [valb y] withH/r].

Therefore, we obtain

[[handleM withH]](s) �Gf
B (handleM withH)[σ]

by Lemma 7.3 as required.
2

31

	Introduction
	Background
	Overview

	Category-Graded Monads
	Lax Functors and Category-Graded Monads
	Eilenberg-Moore Construction on Lax Functors
	A Lax Functor Induced by Adjunctions and a Functor

	Category-Graded Algebraic Theories
	Category-Graded Terms
	Equations
	Free Models and Adjunctions

	A Category-Graded Effect System
	Language
	Handlers

	Operational Semantics
	Denotational Semantics
	Soundness and Adequacy
	Future Work
	References
	Generalised Units and Generalised Counits
	Generalised Units of Category-Graded Monads
	Generalised Counits of Adjunctions
	Generalised Units in CatEff

	Recursion
	Correspondence of Parameterised Monads to Category-Graded Monads with Generalised Units
	Correspondence of Eilenberg-Moore Constructions

	Proofs of propositions
	Progress Lemma
	Preservation Lemma
	Soundness
	Lemma 7.4

