
An Inequality for the Complexity of Bisimilarity Computations and a Fibrational Algorithm
Takahiro Sanada

joint work with Ryota Kojima, Yuichi Komorida, Koko Muroya, and Ichiro Hasuo

RIMS, Kyoto University

Introduction

A state-based system is a system with the set of states and the
state transition rules. It is beneficial to reduce the number of
states while keeping its properties. The bisimilarity on the state
set identifies states that have essentially the same behaviour.
Thus, to minimise state size of a system, we would like to com-
pute the bisimilarity relation efficiently.
Our contibutions are devided two parts.

� We formalise and generalise Hopcroft’s technique to bound
the time complexity of partition refinement algorithms.

� We introduce a fibrational partition refinement algorithm
that computes bisimilarity for various coalgebras.

The intriguing point is that a categorical notion and the inequal-
ity allow us to evaluate complexity of abstract algorithms.

Coalgebras as a State-Based System

Let F : Set→ Set be a functor. An F -coalgebra

transition

c :

the set of states

C →

F specifies branching

F C in Set

can be seen as a state-besed system.
If F = P (the powerset functor), then a coalgebra

c : {a, b, c, d} → P({a, b, c, d})
a 7→ {a, b, c}
b 7→ {a, b, c}
c 7→ ∅
d 7→ {c}

a

b

c

d

(1)
is a transition system.
If F = D (the probabilisitic distribution functor), then a coal-
gebra

c : {a, b, c} → D({a, b, c})

a 7→
(
a 7→ 1

2
, b 7→ 0, c 7→ 1

2

)
b 7→

(
a 7→ 1

3
, b 7→ 0, c 7→ 2

3

)
c 7→

(
a 7→ 1

4
, b 7→ 1

4
, c 7→ 1

2

)
a

b

c

1
2

1
2

1
3

2
3

1
2

1
2

1
2

(2)

is a Markov chain.

The Bisimilarity Relations as a Coinductive Predicate

Recall the coalgbra (1). The behaviour of the two states a and
b is the same. The state b can simulate the transition of the
state a, and vice versa. We identify a with b, and obtain the

smaller coalgebra: a′ c ′ d ′ .

Formally, for a transition system c : C → PC , a relation R ⊆
C × C is a bisimulation if, for every (x , y) ∈ R , the following
hold,

� If x → x ′, there exists y ′ such that y → y ′ and (x ′, y ′) ∈ R .

� If y → y ′, there exists x ′ such that x → x ′ and (x ′, y ′) ∈ R .

x x ′

y ∃y ′
R R

x ∃x ′

y y ′
R R

The bisimilarity relation B is the largeset bisimulation, B =⋃
B : bisimulation of c R . We can minimise a transition system

c : C → PC by taking the quotient C/B by B .
The bisimilarity relation can be seen as a coinductive predicate
on C . Let EqRel be the category whose objects are (S ,R)
where S is a set and R is an equivalence relation and a morphism
(S ,R)→ (S ′,R ′) is a map f : S → S ′ such that (x , y) ∈ R −→
(fx , fy) ∈ R ′. Consider the fibration p : EqRel → Set. Each
fibre category EqRelS is a complete lattice. We can construct a
lifting P : EqRelC → EqRelPC of P such that the greatest fixed
point ν(c∗ ◦ P) is B .

EqRel

Set
p

EqRelC EqRelPC

P

c∗

C PCc

The bisimilarity relation for markov chain c : C → DC or other
systems c : C → FC is also defined using appropriate lifting D
or F .

Hopcroft’s Inequality

We prove an inequality about a rooted finite tree with a weight
function. For a rooted finite tree T , a weight function of T is
a function

w :

the set of vertecies of T

V (T) → N s.t. ∀v .

the sum of weights of children of v

∑
u∈ch(v)

w(u) ≤ w(v).

A weight function w is tight if the above inequality is equality.

Lemma (horizontal/vertical sum of weights)

For a subset S of the set E (T) of edges of T , we have

the horizontal sum of weights

∑
v∈V (T)

the sum of weights of chldren of v

that is not connected by a edge in S

∑
u∈ch(v)
(v ,u)6∈S

w(u)

“=” iff w is tight

≥

the vertical sum of weights

∑
l∈L(T)

the number of edges from the

root to the leaf l that is not

in S

∣∣path(r , l) \ S
∣∣ · w(l) .

(3)

A heavy child choice for a weight w is a function

h(−) : V (T) \ L(T)→ V (T) such that

hv is child of v

hv ∈ ch(v) and

hv is the heaviest among the children of v

w(hv) = max
u∈ch(v)

w(u) .

For a heavy child choice h, we define

Sh := {(v , hv) | v ∈ V (T) \ L(T)} ⊆ E (T).

The following lemma is well known as Hopcroft’s trick.

Lemma (Hopcroft’s trick)

For a heavy child choice h for a weight w, we have

the number of edges from the root to v

that is not in Sh

|path(r , v) \ Sh| ≤ log2 w(r)− log2 w(v). (4)

Combining above two lemmas, we obtain the following result.

Theorem (Hopcroft’s inequality)

For a heavy child choice h for a weight w, we have

the horizontal sum of weights

∑
v∈V (T)

∑
u∈ch(v)
(v ,u) 6∈Sh

w(u) ≤

determined by the root

w(r) log2 w(r) −

determined by the leaves

∑
l∈L(T)
w(l)6=0

w(l) log2 w(l) .

(5)

Note that, to prove the above theorem, we cannot directly ap-
ply the horizontal/vertical sum lemma because the direction of
inequality is opposite. To resolve this problem, we observe that
we can get a tight weight function from a non-tight one.

36

14 14 7

5 7 5 2 3 7

2 4

36

15 14 7

5 10 9 2 3 7

2 5

We call the conversion of weight function tightening.

Corollary

Let t : V (T) → N be a map and K be a number. If
t(v) ≤ K

∑
u∈ch(v)
(v ,u) 6∈Sh

w(u) for every v ∈ V (V), then we

have
∑

v∈V (V) t(v) ≤ Kw(r) log2 w(r).

The above corollary says that if a step-by-step tree generation
algorithm takes O(K

∑
u∈ch(v)
(v ,u)6∈Sh

w(u)) time to generate children

of a current leaf, the total time to generate a whole tree is
bounded by O(Kw(r) logw(r)).

The fibrational coalgebraic partition refinement
algorithm

Let p : E → C be a fibration, a functor F : C →
C, a lifting F : E → E of F , and a weight function
w : {a subobject of C} → C . If they satisfy appropriate condi-
tions, then the following algorithm computes the greatest fixed
point ν(c∗ ◦ F)-partitioning, where R-partitioning for R ∈ E
is a generalised notion of a family of equivalence classes of an
equivalence relation R .

Input: A coalgebra c : C → FC in C.
Output: A mono-sink {κi : Ci � C}i∈I for some I .

1: T := {ε} ⊂ N∗
2: Cε := C
3: C cl

ε := 0
4: while there is ρ ∈ L(T) such that C cl

ρ 6= Cρ do
5: Q :=

⊔
σ∈L(T)(κσ)∗(>Cσ)

6: Choose a leaf ρ ∈ L(T) such that C cl
ρ 6= Cρ

7: Rρ := (c ◦ κρ)∗(F (Q))
8: if Rρ = >Cρ then
9: C cl

ρ := Cρ
10: continue
11: Take an Rρ-partitioning {κρ,k : Cρk � Cρ}k∈{0,...,nρ}
12: Choose k0 ∈ {0, . . . , nρ} s.t. w(Cρk0) = max

k∈{0,...,nρ}
w(Cρk)

13: MarkDirty
14: T := T ∪ {ρ0, . . . , ρnρ}
15: return {κσ : Cσ � C}σ∈L(T)

16:

17: procedure MarkDirty
18: for k ∈ {0, . . . , nρ} do
19: C cl

ρk := Cρk

20: Let B be the pullback of the following diagram:

B C

F
(
Cρk0 ∪

(⋃
σ∈L(T)\{ρ} Cσ

))
FC

c

21: for τ ∈ L(T ∪ {ρ0, . . . , ρnρ}) do
22: C cl

τ := C cl
τ ∩ B

Complexity Analysis

From the corollary in the left column, we obtain the following
proposition.

Proposition

If each call of the procedure MarkDirty in the al-
gorihtm takes O(K

∑
k∈{0,...,nρ}w(Cρk)) time for some

K, then the total time taken by the repeated calls of
MarkDirty is O(Kw(C) logw(C)).

We can instantiate the fibration p : E→ C with EqRel→ Set,
and optimise the algorithm. There are two options for weight
functions. One is the size function |−|, and the other is the
function pred that gives the number of predecessors in a set. If
we choose former as a weight function, the obtained algorithm
is essentially the same as Jacobs and Wißmann’s algorihtm. By
some argument, we can implement the algorithm so that it sat-
isfies the premise of the above proposition.

Proposition

If p : E → C is EqRel → Set, then we can implement
the algorithm so that it takes O(Kw(C) logw(C)) time
to compute MarkDirty throughout the algorithm.

For example, when F = P and the weight function is pred, the
time complexity of the algorithm is O(dm log |C |), where d is
the maximum out degree of the coalgbra c : C → PC and m is
the number of edges.

References:

1. John E. Hopcroft. An n log n algorithm for minimizing states
in a finite automaton. In Theory of Machines and
Computations, pages 189-196. Academic Press, 1971.

2. Jules Jacobs and Thorsten Wißmann. Fast coalgebraic
bisimilarity minimization. In Principles of Programming
Languages, POPL ’23. ACM, 01 2023. to appear.

