Combinatorial mutations on representation-theoretic polytopes

Naoki Fujita

The University of Tokyo

> Joint work with Akihiro Higashitani (Osaka University) (arXiv:2003.10837, to appear in Int. Math. Res. Not.)

Recent Advances in Combinatorial Representation Theory October 8, 2020

(1) Combinatorial mutations

(2) Newton-Okounkov bodies of flag varieties

(3) Newton-Okounkov bodies arising from cluster structures

4 Relation with FFLV polytopes

Mirror symmetry for $\mathbb{P}^{2}(\mathbb{C})$

$$
\mathbb{P}^{2}(\mathbb{C}) \quad \stackrel{\text { mirror }}{\longleftrightarrow} f:=x+y+\frac{1}{x y}:\left(\mathbb{C}^{\times}\right)^{2} \rightarrow \mathbb{C}
$$

The period $\pi_{f}(t)$ of f is computed as follows:

$$
\begin{aligned}
& \begin{aligned}
\pi_{f}(t) & :=\left(\frac{1}{2 \pi \sqrt{-1}}\right)^{2} \int_{|x|=|y|=1} \frac{1}{1-t f} \frac{d x}{x} \frac{d y}{y} \quad(t \in \mathbb{C},|t| \ll 1) \\
& =\sum_{k \in \mathbb{Z}_{\geq 0}} \operatorname{Const}\left(f^{k}\right) \cdot t^{k} \quad \text { (the Taylor expansion) } \\
& =1+6 t^{3}+90 t^{6}+1680 t^{9}+34650 t^{12}+756756 t^{15}+\cdots \\
& =\sum_{k \in \mathbb{Z}_{\geq 0}} \frac{(3 k)!}{(k!)^{3}} t^{3 k},
\end{aligned} \\
& \text { which coincides with the regularized quantum period } \widehat{G}_{\mathbb{P}^{2}(\mathbb{C})} \text { of } \mathbb{P}^{2}(\mathbb{C}) .
\end{aligned}
$$

Mirror symmetry for $\mathbb{P}^{2}(\mathbb{C})$

$$
\mathbb{P}^{2}(\mathbb{C}) \stackrel{\text { another mirror }}{\longleftrightarrow} g:=y+\frac{1}{x y}+\frac{2}{y^{2}}+\frac{x}{y^{3}}
$$

The period $\pi_{g}(t)$ of g is also equal to $\pi_{f}(t)=\widehat{G}_{\mathbb{P}^{2}(\mathbb{C})}$.

Problem

to give relations among Laurent polynomials having the same period.
Combinatorial mutations rephrase mutations for Laurent polynomials (which preserve the period) in terms of Newton polytopes.

Combinatorial mutations for lattice polytopes

- $N \simeq \mathbb{Z}^{m}:$ a \mathbb{Z}-lattice of rank m,
- $M:=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$,
- $N_{\mathbb{R}}:=N \otimes_{\mathbb{Z}} \mathbb{R}$ and $M_{\mathbb{R}}:=M \otimes_{\mathbb{Z}} \mathbb{R}$,
- $H_{w, h}:=\left\{v \in N_{\mathbb{R}} \mid\langle w, v\rangle=h\right\}$ for $w \in M$ and $h \in \mathbb{Z}$,
- $P \subseteq N_{\mathbb{R}}$: an integral convex polytope with the vertex set $V(P) \subseteq N$,
- $w \in M$: a primitive vector,
- $F \subseteq H_{w, 0}$: an integral convex polytope.

Assumption

For every $h \in \mathbb{Z}_{\leq-1}$, there exists a possibly-empty integral convex polytope $G_{h} \subseteq N_{\mathbb{R}}$ such that

$$
G h \leftrightarrow "\left(P \cap H_{w=h}\right)-|h| F^{\prime \prime}
$$

$$
V(P) \cap H_{w, h} \subseteq G_{h}+|h| F \subseteq P \cap H_{w, h}
$$

If this assumption holds, then we say that the combinatorial mutation $\operatorname{mut}_{w}(P, F)$ of P is well-defined.

Combinatorial mutations for lattice polytopes

Definition (Akhtar-Coates-Galkin-Kasprzyk 2012)

The combinatorial mutation $\operatorname{mut}_{w}(P, F)$ of P is defined as follows:

$$
\operatorname{mut}_{w}(P, F):=\operatorname{conv}\left(\bigcup_{h \leq-1} G_{h} \cup \bigcup_{h \geq 0}\left(\left(P \cap H_{w, h}\right)+h F\right)\right) \subseteq N_{\mathbb{R}}
$$

Properties

- $\operatorname{mut}_{w}(P, F)$ is an integral convex polytope.
- $\operatorname{mut}_{w}(P, F)$ is independent of the choice of $\left\{G_{h}\right\}_{h \leq-1}$.
- If $Q=\operatorname{mut}_{w}(P, F)$, then we have $P=\operatorname{mut}_{-w}(Q, F)$.

Example

For $w=(-1,-1) \in M$ and $F=\operatorname{conv}\{(0,0),(1,-1)\}$, we have

Example

For $w=(-1,-1) \in M$ and $F=\operatorname{conv}\{(0,0),(1,-1)\}$, we have
Newt (f) Newt (2)

Main result

Theorem (F.-Higashitani preprint 2020)

For the anti-canonically polarized flag variety $\left(G / B, \mathcal{L}_{2 \rho}\right)$, the dual polytopes of the following are all related by sequences of combinatorial mutations up to unimodular equivalence: G § V(2 ρ)

- Berenstein-Littelmann-Zelevinsky's string polytopes, $\quad\left(P:=\frac{1}{2} \sum_{\alpha \cdot p o s . ~ r o o t s ~} \alpha\right)$
- Nakashima-Zelevinsky polytopes,
- Feigin-Fourier-Littelmann-Vinberg polytope (for type A_{n} or C_{n}).
\{BLZ's string polytopes $\} \longleftrightarrow$ Kashiwara involution \longleftrightarrow \{NZ polytopes $\}$
U

> [F.-Oya preprint 2020]

Gelfand-Tsetlin polytope $\underset{\longleftrightarrow \text { Ardila-Bliem-Salazar's transfer map }}{\longleftrightarrow}$ FFLV polytope

(1) Combinatorial mutations

(2) Newton-Okounkov bodies of flag varieties

Flag varieties

- G : a connected, simply-connected semisimple algebraic group over \mathbb{C},
- $B \subseteq G$: a Borel subgroup,
- G / B : the full flag variety,
- P_{+}: the set of dominant integral weights.

Theorem (Borel-Weil theory)

There exists a natural bijective map
$P_{+} \xrightarrow{\sim}\{$ globally generated line bundles on $G / B\}, \quad \lambda \mapsto \mathcal{L}_{\lambda}$,
such that $H^{0}\left(G / B, \mathcal{L}_{\lambda}\right)^{*}$ is the irreducible highest weight G-module with highest weight λ.

In this talk, we mainly focus on $\mathcal{L}_{2 \rho}$ which is isomorphic to the anti-canonical bundle of G / B.

Newton-Okounkov bodies

- Fix a birational map from $\left(\mathbb{C}^{\times}\right)^{m}$ to G / B, which induces an isomorphism $\mathbb{C}(G / B) \simeq \mathbb{C}\left(t_{1}, \ldots, t_{m}\right)$.
- \leq : a total order on \mathbb{Z}^{m}, respecting the addition.
- $\tau \in H^{0}\left(G / B, \mathcal{L}_{\lambda}\right)$: a nonzero section.

The lowest term valuation $v_{\leq}^{\text {low }}: \mathbb{C}(G / B) \backslash\{0\} \rightarrow \mathbb{Z}^{m}$ is defined by

$$
\begin{aligned}
& v_{\leq}^{\text {low }}(f / g):=v_{\leq}^{\text {low }}(f)-v_{\leq}^{\text {low }}(g), \text { and } \\
& v_{\leq}^{\text {low }}(f):=\left(a_{1}, \ldots, a_{m}\right) \Leftrightarrow f=c t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}+(\text { higher terms w.r.t. } \leq)
\end{aligned}
$$

for $f, g \in \mathbb{C}\left[t_{1}, \ldots, t_{m}\right] \backslash\{0\}$, where $c \in \mathbb{C}^{\times}$.
We define a semigroup $S=S\left(G / B, \mathcal{L}_{\lambda}, v_{\leq}^{\text {low }}, \tau\right) \subseteq \mathbb{Z}_{>0} \times \mathbb{Z}^{m}$ and a real closed convex cone $C=C\left(G / B, \mathcal{L}_{\lambda}, v_{\leq}^{\text {low }}, \tau\right) \subseteq \mathbb{R}_{\geq 0} \times \mathbb{R}^{m}$ by

$$
S:=\left\{\left(k, v_{\leq}^{\text {low }}\left(\sigma / \tau^{k}\right)\right) \mid k \in \mathbb{Z}_{>0}, \sigma \in H^{0}\left(G / B, \mathcal{L}_{\lambda}^{\otimes k}\right) \backslash\{0\}\right\}
$$

C : the smallest real closed cone containing S.

Newton-Okounkov bodies

Definition (Lazarsfeld-Mustata 2009, Kaveh-Khovanskii 2012)

The Newton-Okounkov body $\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{\leq}^{\text {low }}, \tau\right) \subseteq \mathbb{R}^{m}$ of $\left(G / B, \mathcal{L}_{\lambda}\right)$ associated with $v_{\leq}^{\text {low }}$ and τ is defined by

$$
\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{\leq}^{\text {low }}, \tau\right):=\left\{\boldsymbol{a} \in \mathbb{R}^{m} \mid(1, \boldsymbol{a}) \in C\left(G / B, \mathcal{L}_{\lambda}, v_{\leq}^{\text {low }}, \tau\right)\right\}
$$

Example

The Newton-Okounkov bodies $\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{\leq}^{\text {low }}, \tau\right)$ of $\left(G / B, \mathcal{L}_{\lambda}\right)$ realize the following representation-theoretic polytopes:

- string polytopes (Kaveh 2015, F.-Oya 2017),
- Nakashima-Zelevinsky polytopes (F.-Naito 2017, F.-Oya 2017),
- FFLV polytopes (Feigin-Fourier-Littelmann 2017, Kiritchenko 2017).

Newton-Okounkov bodies

Assumption

The semigroup $S\left(G / B, \mathcal{L}_{\lambda}, v_{\leq}^{\text {low }}, \tau\right)$ is finitely generated and saturated.

Theorem (Steinert preprint 2019)

If the assumption holds for $\lambda=2 \rho$, then $\Delta:=\Delta\left(G / B, \mathcal{L}_{2 \rho}, v_{\leq}^{\text {low }}, \tau\right)$ contains exactly one lattice point \boldsymbol{a} in its interior, and the dual polytope

$$
\Delta^{\vee}:=\left\{\boldsymbol{u} \in N_{\mathbb{R}} \mid\left\langle\boldsymbol{u}^{\prime}-\boldsymbol{a}, \boldsymbol{u}\right\rangle \geq-1 \text { for all } \boldsymbol{u}^{\prime} \in \Delta\right\}
$$

is an integral convex polytope, where $\Delta \subseteq \mathbb{R}^{m}=: M_{\mathbb{R}}$.

Aim

to relate dual polytopes $\Delta\left(G / B, \mathcal{L}_{2 \rho}, v_{\leq}^{\text {low }}, \tau\right)^{\vee}$ associated with different kinds of valuations $v_{\leq}^{\text {low }}$ using combinatorial mutations.

(1) Combinatorial mutations

(2) Newton-Okounkov bodies of flag varieties

(3) Newton-Okounkov bodies arising from cluster structures

4 Relation with FFLV polytopes

Cluster varieties

Let us consider an \mathcal{A}-cluster variety

$$
\mathcal{A}=\bigcup_{\mathbf{s}} \mathcal{A}_{\mathbf{s}}=\bigcup_{\mathbf{s}} \operatorname{Spec}\left(\mathbb{C}\left[A_{j ; \mathbf{s}}^{ \pm 1} \mid j \in\{1, \ldots, m\}=J_{\mathrm{uf}} \sqcup J_{\mathrm{fr}}\right]\right),
$$

where \mathbf{s} runs over the set of seeds which are mutually mutation equivalent, and the tori are glued via the following birational cluster mutations:

$$
\mu_{k}^{*}\left(A_{i ; \mathbf{s}^{\prime}}\right)= \begin{cases}A_{i ; \mathbf{s}} & (i \neq k), \\ A_{k ; \mathbf{s}}^{-1}\left(\prod_{\varepsilon_{k, j}>0} A_{j ; \mathbf{s}}^{\varepsilon_{k, j}}+\prod_{\varepsilon_{k, j}<0} A_{j ; \mathbf{s}}^{-\varepsilon_{k, j}}\right) & (i=k)\end{cases}
$$

if $\mathbf{s}^{\prime}=\mu_{k}(\mathbf{s})$, where $\varepsilon=\left(\varepsilon_{i, j}\right)_{i, j}$ is the exchange matrix of \mathbf{s}.

Definition (Berenstein-Fomin-Zelevinsky 2005)

The ring $\mathbb{C}[\mathcal{A}]$ of regular functions is called an upper cluster algebra.

Cluster structures on unipotent cells

Let U^{-}be the unipotent radical of the opposite Borel subgroup B^{-}, and

$$
G / B=\bigsqcup_{w \in W} B w B / B
$$

the Bruhat decomposition of G / B, where W is the Weyl group.

Definition

For $w \in W$, the unipotent cell U_{w}^{-}is defined by

$$
U_{w}^{-}:=B w B \cap U^{-} \subseteq G
$$

Theorem (Berenstein-Fomin-Zelevinsky 2005)

The coordinate ring $\mathbb{C}\left[U_{w}^{-}\right]$admits an upper cluster algebra structure.

Cluster structures on unipotent cells

Each reduced word $\boldsymbol{i}=\left(i_{1}, \ldots, i_{m}\right)$ for w induces a seed $\mathbf{s}_{\boldsymbol{i}}=\left(\left(A_{j ; \mathbf{s}_{i}}\right)_{j}, \varepsilon^{\boldsymbol{i}}\right)$ for U_{w}^{-}given by

- $A_{j ; \mathbf{s}_{i}} \in \mathbb{C}\left[U_{w}^{-}\right]$is the restriction of the generalized minor $\Delta_{s_{i_{1}} \cdots s_{i_{j}} \varpi_{i_{j}}, w_{i_{j}}} \in \mathbb{C}[G]$ for $1 \leq j \leq m$;
- if we write $\varepsilon^{i}=\left(\varepsilon_{s, t}\right)_{s, t}$, then

$$
\varepsilon_{s, t}= \begin{cases}1 & \text { if } s^{+}=t \\ -1 & \text { if } s=t^{+} \\ \left\langle\alpha_{i_{s}}, h_{i_{t}}\right\rangle & \text { if } s<t<s^{+}<t^{+} \\ -\left\langle\alpha_{i_{s}}, h_{i_{t}}\right\rangle & \text { if } t<s<t^{+}<s^{+} \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
k^{+}:=\min \left(\left\{k+1 \leq j \leq m \mid i_{j}=i_{k}\right\} \cup\{m+1\}\right) .
$$

Cluster structures on unipotent cells

Theorem (Kang-Kashiwara-Kim-Oh 2018, Qin preprint 2020)

For $w \in W$, the upper global basis $\mathbf{B}_{w}^{\mathrm{up}} \subseteq \mathbb{C}\left[U_{w}^{-}\right]$is (the specialization at $q=1$ of) a common triangular basis. In particular, the following hold.
(1) For all $b \in \mathbf{B}_{w}^{\mathrm{up}}$ and \mathbf{s}, there uniquely exists $g_{\mathbf{s}}(b)=\left(g_{1}, \ldots, g_{m}\right) \in \mathbb{Z}^{m}$ (the extended g-vector of b) such that

$$
b \in A_{1 ; \mathbf{s}}^{g_{1}} \cdots A_{m ; \mathbf{s}}^{g_{m}}\left(1+\sum_{0 \neq\left(a_{j}\right)_{j \in J_{\mathrm{uf}}} \in \mathbb{Z}_{\geq 0}^{J_{\mathrm{uf}}}} \mathbb{Z} \prod_{j \in J_{\mathrm{uf}}} \widehat{X}_{j}^{a_{j}}\right),
$$

where $\widehat{X}_{j}:=A_{1 ; \mathbf{s}}^{\varepsilon_{j, 1}} \cdots A_{m ; \mathbf{s}}^{\varepsilon_{j, m}}$.
(2) If $\mathbf{s}^{\prime}=\mu_{k}(\mathbf{s})$, then $g_{\mathbf{s}^{\prime}}(b)=\mu_{k}^{T}\left(g_{\mathbf{s}}(b)\right)$ for all $b \in \mathbf{B}_{w}^{u p}$, where $\mu_{k}^{T}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m},\left(g_{1}, \ldots, g_{m}\right) \mapsto\left(g_{1}^{\prime}, \ldots, g_{m}^{\prime}\right)$, is the tropicalized cluster mutation given by

$$
g_{i}^{\prime}:= \begin{cases}g_{i}+\max \left\{\varepsilon_{k, i}, 0\right\} g_{k}-\varepsilon_{k, i} \min \left\{g_{k}, 0\right\} & (i \neq k), \\ -g_{k} & (i=k)\end{cases}
$$

g-vectors as higher rank valuations

Definition (Qin 2017)

For each seed $\mathbf{s}=\left(\left(A_{j ; \mathbf{s}}\right)_{j}, \varepsilon\right)$, define a partial order $\preceq_{\mathbf{s}}$ on \mathbb{Z}^{m} by

$$
g^{\prime} \preceq_{\mathrm{s}} g \Leftrightarrow g^{\prime}-g \in \sum_{j \in J_{\mathrm{uf}}} \mathbb{Z}_{\geq 0}\left(\varepsilon_{j, 1}, \ldots, \varepsilon_{j, m}\right) .
$$

This $\preceq_{\mathbf{s}}$ is called the dominance order associated with s.
Fix a total order \leq_{s} on \mathbb{Z}^{m} refining the opposite dominance order $\preceq_{\mathrm{s}}^{\mathrm{op}}$.

Definition (F.-Oya preprint 2020)

For each seed \mathbf{s}, define a valuation v_{s} on
$\mathbb{C}\left(U_{w}^{-}\right)=\mathbb{C}(\mathcal{A})=\mathbb{C}\left(A_{1 ; \mathbf{s}}, \ldots, A_{m ; \mathbf{s}}\right)$ to be the lowest term valuation $v_{\leq \mathrm{s}}^{\text {low }}$.

Corollary

For all $b \in \mathbf{B}_{w}^{\mathrm{up}}$ and \mathbf{s}, the equality $v_{\mathbf{s}}(b)=g_{\mathbf{s}}(b)$ holds.

g-vector polytopes

Let $\tau_{\lambda} \in H^{0}\left(G / B, \mathcal{L}_{\lambda}\right)$ be a lowest weight vector. For the longest element $w_{0} \in W$, the unipotent cell $U_{w_{0}}^{-}$is an open subvariety of G / B.

Theorem (F.-Oya preprint 2020)

Let \mathbf{s} be a seed for $U_{w_{0}}^{-}, \lambda \in P_{+}$, and \boldsymbol{i} a reduced word for w_{0}.
(1) $\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{\mathbf{s}}, \tau_{\lambda}\right)$ does not depend on the choice of a refinement \leq_{s} of the opposite dominance order $\preceq_{\mathrm{s}}^{\mathrm{op}}$.
(2) $\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{\mathbf{s}}, \tau_{\lambda}\right)$ is a rational convex polytope.
(3) $S\left(G / B, \mathcal{L}_{\lambda}, v_{\mathbf{s}}, \tau_{\lambda}\right)$ is finitely generated and saturated.
(4) If $\mathbf{s}^{\prime}=\mu_{k}(\mathbf{s})$, then $\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{\mathbf{s}^{\prime}}, \tau_{\lambda}\right)=\mu_{k}^{T}\left(\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{\mathbf{s}}, \tau_{\lambda}\right)\right)$.
(5) $\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{\mathrm{s}_{i}}, \tau_{\lambda}\right)$ is unimodularly equivalent to the string polytope $\Delta_{i}(\lambda)$ by an explicit unimodular transformation.
(6) There is a seed $\mathrm{s}_{\boldsymbol{i}}^{\text {mut }}$ such that $\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{\mathrm{s}_{i}^{m u t}}, \tau_{\lambda}\right)$ is unimodularly equivalent to the Nakashima-Zelevinsky polytope $\widetilde{\Delta}_{i}(\lambda)$.

g-vector polytopes

Corollary (F.-Higashitani preprint 2020)

The unique interior lattice point $\boldsymbol{a}_{\mathbf{s}}=\left(a_{j}\right)_{1 \leq j \leq m}$ of $\Delta\left(G / B, \mathcal{L}_{2 \rho}, v_{\mathbf{s}}, \tau_{2 \rho}\right)$ is given by

$$
a_{j}= \begin{cases}0 & \left(\text { if } j \in J_{\mathrm{uf}}\right), \\ 1 & \left(\text { if } j \in J_{\mathrm{fr}}\right) .\end{cases}
$$

Corollary

Let $\boldsymbol{i}=\left(i_{1}, \ldots, i_{m}\right)$ be a reduced word for w_{0}. Then the unique interior lattice point $\boldsymbol{a}_{\boldsymbol{i}}=\left(a_{j}\right)_{j}$ of the string polytope $\Delta_{\boldsymbol{i}}(2 \rho)$ is given by

$$
a_{j}=\sum_{k \in J_{\mathrm{fr}} ; j \leq k}\left\langle s_{i_{j+1}} \cdots s_{i_{k}} \varpi_{i_{k}}, h_{i_{j}}\right\rangle .
$$

Relation with combinatorial mutations

Theorem (F.-Higashitani preprint 2020)

(1) The dual polytopes $\Delta\left(G / B, \mathcal{L}_{2 \rho}, v_{\mathbf{s}}, \tau_{2 \rho}\right)^{\vee}$ for seeds \mathbf{s} are all related by sequences of combinatorial mutations up to unimodular equivalence.
(2) In particular, the dual polytopes $\Delta_{\boldsymbol{i}}(2 \rho)^{\vee}$ and $\widetilde{\Delta}_{\boldsymbol{i}}(2 \rho)^{\vee}$ of string polytopes and Nakashima-Zelevinsky polytopes for reduced words \boldsymbol{i} are all related by sequences of combinatorial mutations up to unimodular equivalence.

Remark

More strongly, we can realize the tropicalized cluster mutation μ_{k}^{T} as a dual operation of a combinatorial mutation up to unimodular equivalence. This dual operation was introduced by Akhtar-Coates-Galkin-Kasprzyk (2012).

(1) Combinatorial mutations

(2) Newton-Okounkov bodies of flag varieties

(3) Newton-Okounkov bodies arising from cluster structures
(4) Relation with FFLV polytopes

Marked poset polytopes

- $\widetilde{\Pi}$: a poset equipped with a partial order \preceq,
- $A \subseteq \widetilde{\Pi}$: a subset of $\widetilde{\Pi}$ containing all minimal elements and maximal elements in $\widetilde{\Pi}$,
- $\lambda=\left(\lambda_{a}\right)_{a \in A} \in \mathbb{R}^{A}$ such that $\lambda_{a} \leq \lambda_{b}$ whenever $a \preceq b$ in $\widetilde{\Pi}$, which is called a marking.
The triple $(\widetilde{\Pi}, A, \lambda)$ is called a marked poset.

Example

Marked poset polytopes

Definition (Ardila-Bliem-Salazar 2011)

$$
\begin{aligned}
\mathcal{O}(\widetilde{\Pi}, A, \lambda):= & \left\{\left(x_{p}\right)_{p \in \widetilde{\Pi} \backslash A} \in \mathbb{R}^{\widetilde{\Pi} \backslash A} \mid\right. \\
& \left.x_{p} \leq x_{q} \text { if } p \prec q, \lambda_{a} \leq x_{p} \text { if } a \prec p, x_{p} \leq \lambda_{a} \text { if } p \prec a\right\}, \\
\mathcal{C}(\widetilde{\Pi}, A, \lambda):= & \left\{\left(x_{p}\right)_{p \in \widetilde{\Pi} \backslash A} \in \mathbb{R}_{\geq 0}^{\widetilde{\Pi} \backslash A} \mid\right. \\
& \left.\sum_{i=1}^{k} x_{p_{i}} \leq \lambda_{b}-\lambda_{a} \text { if } a \prec p_{1} \prec \cdots \prec p_{k} \prec b\right\} .
\end{aligned}
$$

The polytope $\mathcal{O}(\widetilde{\Pi}, A, \lambda)$ is called the marked order polytope, and $\mathcal{C}(\widetilde{\Pi}, A, \lambda)$ is called the marked chain polytope.

If $\lambda \in \mathbb{Z}^{A}$, then these polytopes are integral convex polytopes.

Marked poset polytopes

Example

$$
\begin{aligned}
\mathcal{O}(\widetilde{\Pi}, A, \lambda)= & \left\{(x, y, z) \in \mathbb{R}^{3} \mid\right. \\
& \left.\lambda_{2} \leq x \leq \lambda_{4}, \lambda_{1} \leq z \leq \min \{x, y\}, \lambda_{3} \leq y \leq \lambda_{4}\right\}, \\
\mathcal{C}(\widetilde{\Pi}, A, \lambda)= & \left\{(x, y, z) \in \mathbb{R}_{\geq 0}^{3} \mid x \leq \lambda_{4}-\lambda_{2},\right. \\
& \left.x+z \leq \lambda_{4}-\lambda_{1}, y+z \leq \lambda_{4}-\lambda_{1}, y \leq \lambda_{4}-\lambda_{3}\right\} .
\end{aligned}
$$

Transfer maps and combinatorial mutations

Define a piecewise-affine map $\phi: \mathbb{R}^{\widetilde{\Pi} \backslash A} \rightarrow \mathbb{R}^{\widetilde{\Pi} \backslash A},\left(x_{p}\right)_{p} \mapsto\left(x_{p}^{\prime}\right)_{p}$, by

$$
x_{p}^{\prime}:=\min \left(\left\{x_{p}-x_{p^{\prime}} \mid p^{\prime} \lessdot p, p^{\prime} \in \widetilde{\Pi} \backslash A\right\} \cup\left\{x_{p}-\lambda_{p^{\prime}} \mid p^{\prime} \lessdot p, p^{\prime} \in A\right\}\right)
$$

for $p \in \widetilde{\Pi} \backslash A$, where $q \lessdot p$ means that $q \prec p$ and that there is no $q^{\prime} \in \widetilde{\Pi} \backslash\{p, q\}$ with $q \prec q^{\prime} \prec p$.

Theorem (Ardila-Bliem-Salazar 2011)

The map ϕ gives a piecewise-affine bijection from $\mathcal{O}(\widetilde{\Pi}, A, \lambda)$ to $\mathcal{C}(\widetilde{\Pi}, A, \lambda)$, which is called a transfer map.

Remark

For a usual poset Π, the order polytope $\mathcal{O}(\Pi)$, the chain polytope $\mathcal{C}(\Pi)$, and the transfer map ϕ between them were originally introduced by Stanley (1986).

Transfer maps and combinatorial mutations

Assumption

The poset $\widetilde{\Pi}$ is pure, that is, all maximal chains in $\widetilde{\Pi}$ have the same length. In particular, the rank function $r: \widetilde{\Pi} \rightarrow \mathbb{Z}_{\geq 0}$ is well-defined, where $r(p)$ is the length of a chain starting from a minimal element in $\widetilde{\Pi}$ and ending at p.

Let λ^{r} denote the marking of ($\widetilde{\Pi}, A$) given by

$$
\left(\lambda^{r}\right)_{a}:=r(a) \quad \text { for } \quad a \in A
$$

Then $\mathcal{O}\left(\widetilde{\Pi}, A, \lambda^{r}\right)\left(\right.$ resp., $\left.\mathcal{C}\left(\widetilde{\Pi}, A, \lambda^{r}\right)\right)$ has a unique interior lattice point.

Theorem (F.-Higashitani preprint 2020)

The dual polytopes $\mathcal{O}\left(\widetilde{\Pi}, A, \lambda^{r}\right)^{\vee}$ and $\mathcal{C}\left(\widetilde{\Pi}, A, \lambda^{r}\right)^{\vee}$ are related by a sequence of combinatorial mutations.

Construction of the combinatorial mutation sequence

Theorem (F.-Higashitani preprint 2020)

The dual polytopes $\mathcal{O}\left(\widetilde{\Pi}, A, \lambda^{r}\right)^{\vee}$ and $\mathcal{C}\left(\widetilde{\Pi}, A, \lambda^{r}\right)^{\vee}$ are related by a sequence of combinatorial mutations.

For each $p \in \widetilde{\Pi} \backslash A$, set

- $w_{p}:=-\boldsymbol{e}_{p}$,
- $F_{p}:=\operatorname{conv}\left(\left\{-\boldsymbol{e}_{p^{\prime}} \mid p^{\prime} \lessdot p, p^{\prime} \in \widetilde{\Pi} \backslash A\right\} \cup\left\{\mathbf{0} \mid p^{\prime} \lessdot p, p^{\prime} \in A\right\}\right)$.

We write $\widetilde{\Pi} \backslash A=\left\{p_{1}, \ldots, p_{N}\right\}$, where $p_{i} \prec p_{j}$ only if $i>j$. Then $\mathcal{C}\left(\widetilde{\Pi}, A, \lambda^{r}\right)^{\vee}=\operatorname{mut}_{w_{p_{N}}}\left(-, F_{p_{N}}\right) \circ \cdots \circ \operatorname{mut}_{w_{p_{1}}}\left(-, F_{p_{1}}\right)\left(\mathcal{O}\left(\widetilde{\Pi}, A, \lambda^{r}\right)^{\vee}\right)$.

Remark

More strongly, the transfer map ϕ coincides with the dual operation of $\operatorname{mut}_{w_{p_{N}}}\left(-, F_{p_{N}}\right) \circ \cdots \circ \operatorname{mut}_{w_{p_{1}}}\left(-, F_{p_{1}}\right)$ up to translations.

Gelfand-Tsetlin polytopes and FFLV polytopes

Figure: The marked poset in type A_{n}, where
$\lambda_{\geq k}:=\sum_{l \geq k}\left\langle\lambda, h_{l}\right\rangle$ for
$\lambda \in P_{+}$and $1 \leq k \leq n$.

Figure: The marked poset in type C_{n}, where $\lambda_{\leq k}:=\sum_{l \leq k}\left\langle\lambda, h_{l}\right\rangle$ for $\lambda \in P_{+}$and $1 \leq k \leq n$.

Gelfand-Tsetlin polytopes and FFLV polytopes

Let $(\widetilde{\Pi}, A, \lambda)$ be one of the marked posets given in the previous slide.

- The marked order polytope $\mathcal{O}(\widetilde{\Pi}, A, \lambda)$ coincides with the Gelfand-Tsetlin polytope $G T(\lambda)$.
- The marked chain polytope $\mathcal{C}(\widetilde{\Pi}, A, \lambda)$ coincides with the FFLV polytope $F F L V(\lambda)$.
- The weight $\lambda=2 \rho$ corresponds to the marking λ^{r} given by the rank function r.

Corollary

Let G be of type A_{n} or C_{n}. Then the dual polytopes $G T(2 \rho)^{\vee}$ and $F F L V(2 \rho)^{\vee}$ are related by a sequence of combinatorial mutations.

Thank you for your attention!

