Parabolic Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Ivan Ip
Hong Kong University of Science and Technology

October 8, 2020

Recent advances in combinatorial representation theory RIMS, Kyoto University

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Definition of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$

Definition

$\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)=$ Hopf-algebra $\left\langle E, F, K^{ \pm 1}\right\rangle$ over $\mathbb{C}(q)$ such that

$$
K E=q^{2} E K, \quad K F=q^{-2} F K, \quad[E, F]=\frac{K-K^{-1}}{q-q^{-1}}
$$

Coproduct:

$$
\begin{aligned}
\Delta(E) & =1 \otimes E+E \otimes K, \quad \Delta(F)=F \otimes 1+K^{-1} \otimes F \\
\Delta(K) & =K \otimes K
\end{aligned}
$$

(Also counit ϵ, antipode S)

Definition of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$

Definition

$\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)=$ Hopf-algebra $\left\langle E, F, K^{ \pm 1}\right\rangle$ over $\mathbb{C}(q)$ such that

$$
K E=q^{2} E K, \quad K F=q^{-2} F K, \quad[E, F]=\frac{K-K^{-1}}{q-q^{-1}}
$$

Coproduct:

$$
\begin{aligned}
\Delta(E) & =1 \otimes E+E \otimes K, \quad \Delta(F)=F \otimes 1+K^{-1} \otimes F \\
\Delta(K) & =K \otimes K
\end{aligned}
$$

(Also counit ϵ, antipode S)
$\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R})): \quad(|q|=1)$

$$
E^{*}=E, \quad F^{*}=F, \quad K^{*}=K_{\square}
$$

Definition of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Definition

$\mathcal{U}_{q}(\mathfrak{g})=$ Hopf-algebra $\left\langle E_{i}, F_{i}, K_{i}^{ \pm 1}\right\rangle_{i \in I}$ over $\mathbb{C}(q)$ such that

$$
K_{i} E_{j}=q^{a_{i j}} E_{j} K_{i}, \quad K_{i} F_{j}=q^{-a_{i j}} F_{j} K_{i}, \quad\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q-q^{-1}}
$$

+ Serre relations.
Coproduct:

$$
\begin{aligned}
\Delta\left(E_{i}\right) & =1 \otimes E_{i}+E_{i} \otimes K_{i}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes 1+K_{i}^{-1} \otimes F_{i} \\
\Delta\left(K_{i}\right) & =K_{i} \otimes K_{i}
\end{aligned}
$$

(Also counit ϵ, antipode S)

$$
\begin{aligned}
& \mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right): \quad(|q|=1) \\
& E_{i}^{*}=E_{i}, \quad F_{i}^{*}=F_{i}, \quad K_{i}^{*}=K_{i},
\end{aligned}
$$

Definition of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Definition

$\mathcal{D}_{q}(\mathfrak{g})=$ Drinfeld's Double: $\left\langle E_{i}, F_{i}, K_{i}^{ \pm 1}, K_{i}^{\prime \pm 1}\right\rangle_{i \in I}$

$$
K_{i} E_{j}=q^{a_{i j}} E_{j} K_{i}, \quad K_{i} F_{j}=q^{-a_{i j}} F_{j} K_{i}, \quad\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{K_{i}-K_{i}^{\prime}}{q-q^{-1}}
$$

+ Serre relations + Similar for K_{i}^{\prime}
Coproduct:

$$
\begin{array}{lr}
\Delta\left(E_{i}\right)=1 \otimes E_{i}+E_{i} \otimes K_{i}, & \Delta\left(F_{i}\right)=F_{i} \otimes 1+K_{i}^{\prime} \otimes F_{i} \\
\Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \quad \Delta\left(K_{i}^{\prime}\right) & =K_{i} \otimes K_{i}^{\prime}
\end{array}
$$

(Also counit ϵ, antipode S)

$$
\mathcal{U}_{q}(\mathfrak{g})=\mathcal{D}_{q}(\mathfrak{g}) /\left\langle K_{i} K_{i}^{\prime}=1\right\rangle_{i \in I}
$$

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Research program started in [Frenkel-I. (2012)]

- Representations by positive operators on Hilbert space.
- Generalization of Teschner's representations of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$
- Closure under taking tensor product
- Braiding structure
- Peter-Weyl Theorem
- ="Quantization of principal series representations"
- Constructed for all semisimple Lie types.

Construction:

- Lusztig's total positive space $L^{2}((G / B)>0) \simeq L^{2}\left(\mathbb{R}^{N=\ell\left(w_{0}\right)}\right)$
- Mellin transformation: $L^{2}\left(\mathbb{R}_{>0}^{N}\right) \simeq L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathcal{U}(\mathfrak{g})$ differential operator \leadsto finite difference operator
- Quantization \leadsto positive operators $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i} \in \mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Research program started in [Frenkel-I. (2012)]

- Representations by positive operators on Hilbert space.
- Generalization of Teschner's representations of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$
- Closure under taking tensor product
- Braiding structure
- Peter-Weyl Theorem
- ="Quantization of principal series representations"
- Constructed for all semicimnle Lie tymes.

Construction:

- Lusztig's total positive space $L^{2}((G / B)>0) \simeq L^{2}\left(\mathbb{R}^{N}=\ell\left(w_{0}\right)\right)$
- Mellin transformation: $L^{2}\left(\mathbb{R}_{>0}^{N}\right) \simeq L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathcal{U}(\mathfrak{a})$ differential onerator \sim finite difference operator
- Quantization \leadsto positive operators $\mathrm{e}_{i}, \mathrm{f}_{i}, K_{i}$

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Research program started in [Frenkel-I. (2012)]

- Representations by positive operators on Hilbert space.
- Generalization of Teschner's representations of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$
- Braiding structure
- Peter-Weyl Theorem
- ="Quantization of principal series representations"
- Constructed for all semisimple Lie types.

Construction:

- Lusztig's total positive space $L^{2}((G / B)>0) \simeq L^{2}\left(\mathbb{R}^{N}=\ell\left(w_{0}\right)\right)$
- Mellin transformation: $L^{2}\left(\mathbb{R}_{>0}^{N}\right) \simeq L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathcal{U}(\mathfrak{g})$ differential operator \leadsto finite difference operator
- Quantization

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Research program started in [Frenkel-I. (2012)]

- Representations by positive operators on Hilbert space.
- Generalization of Teschner's representations of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$
- Closure under taking tensor product A_{n} : [Schrader-Shapiro 2018]
- Braiding structure [I. 2012]
- Peter-Weyl Theorem A_{n} : [I.-Schrader-Shapiro 2020]
- ="Quantization of principal series representations"
- Constructed for all semisimple Lie types.

Construction:

Iusztig's total positive space $I^{2}((G / B)>0) \simeq I^{2}\left(\mathbb{R}^{N=\ell\left(w_{0}\right)}\right)$

- Mellin transformation: $L^{2}\left(\mathbb{R}_{>0}^{N}\right) \simeq L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathcal{U}(\mathfrak{g})$ differential operator \leadsto finite difference operator
- Quantization

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Research program started in [Frenkel-I. (2012)]

- Representations by positive operators on Hilbert space.
- Generalization of Teschner's representations of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$
- Closure under taking tensor product A_{n} : [Schrader-Shapiro 2018]
- Braiding structure [I. 2012]
- Peter-Weyl Theorem A_{n} : [I.-Schrader-Shapiro 2020]
- ="Quantization of principal series representations"
- Constructed for all semisimple Lie types.

Construction:

Iusztig's total positive space $I^{2}((G / B)>0) \simeq I^{2}\left(\mathbb{R}^{N=\ell\left(w_{0}\right)}\right)$

- Mellin transformation: $L^{2}\left(\mathbb{R}_{>0}^{N}\right) \simeq L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathcal{U}(\mathfrak{g})$ differential operator \sim finite difference operator
- Quantization

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Research program started in [Frenkel-I. (2012)]

- Representations by positive operators on Hilbert space.
- Generalization of Teschner's representations of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$
- Closure under taking tensor product A_{n} : [Schrader-Shapiro 2018]
- Braiding structure [I. 2012]
- Peter-Weyl Theorem A_{n} : [I.-Schrader-Shapiro 2020]
- ="Quantization of principal series representations"
- Constructed for all semisimple Lie types.

Construction:

- Iusztig'
- Mellin transformation:
- U'(g) đirerential operator \rightarrow finite difference operator

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Research program started in [Frenkel-I. (2012)]

- Representations by positive operators on Hilbert space.
- Generalization of Teschner's representations of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$
- Closure under taking tensor product A_{n} : [Schrader-Shapiro 2018]
- Braiding structure [I. 2012]
- Peter-Weyl Theorem A_{n} : [I.-Schrader-Shapiro 2020]
- ="Quantization of principal series representations"
- Constructed for all semisimple Lie types.

Construction:

- Lusztig's total positive space $L^{2}\left((G / B)_{>0}\right) \simeq L^{2}\left(\mathbb{R}_{>0}^{N=\ell\left(w_{0}\right)}\right)$
\square
- $\mathcal{U}(\mathfrak{a})$ differential operator \sim finite difference operator

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Research program started in [Frenkel-I. (2012)]

- Representations by positive operators on Hilbert space.
- Generalization of Teschner's representations of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$
- Closure under taking tensor product A_{n} : [Schrader-Shapiro 2018]
- Braiding structure [I. 2012]
- Peter-Weyl Theorem A_{n} : [I.-Schrader-Shapiro 2020]
- ="Quantization of principal series representations"
- Constructed for all semisimple Lie types.

Construction:

- Lusztig's total positive space $L^{2}\left((G / B)_{>0}\right) \simeq L^{2}\left(\mathbb{R}_{>0}^{N=\ell\left(w_{0}\right)}\right)$
- $\mathcal{U}(\mathfrak{g})$ differential operator \leadsto finite difference operator

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Research program started in [Frenkel-I. (2012)]

- Representations by positive operators on Hilbert space.
- Generalization of Teschner's representations of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$
- Closure under taking tensor product A_{n} : [Schrader-Shapiro 2018]
- Braiding structure [I. 2012]
- Peter-Weyl Theorem A_{n} : [I.-Schrader-Shapiro 2020]
- ="Quantization of principal series representations"
- Constructed for all semisimple Lie types.

Construction:

- Lusztig's total positive space $L^{2}\left((G / B)_{>0}\right) \simeq L^{2}\left(\mathbb{R}_{>0}^{N=\ell\left(w_{0}\right)}\right)$
- Mellin transformation: $L^{2}\left(\mathbb{R}_{>0}^{N}\right) \simeq L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathcal{U}(g)$ differential operator \sim finite difference operator

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Research program started in [Frenkel-I. (2012)]

- Representations by positive operators on Hilbert space.
- Generalization of Teschner's representations of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$
- Closure under taking tensor product A_{n} : [Schrader-Shapiro 2018]
- Braiding structure [I. 2012]
- Peter-Weyl Theorem A_{n} : [I.-Schrader-Shapiro 2020]
- ="Quantization of principal series representations"
- Constructed for all semisimple Lie types.

Construction:

- Lusztig's total positive space $L^{2}\left((G / B)_{>0}\right) \simeq L^{2}\left(\mathbb{R}_{>0}^{N=\ell\left(w_{0}\right)}\right)$
- Mellin transformation: $L^{2}\left(\mathbb{R}_{>0}^{N}\right) \simeq L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathcal{U}(\mathfrak{g})$ differential operator \leadsto finite difference operator

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Research program started in [Frenkel-I. (2012)]

- Representations by positive operators on Hilbert space.
- Generalization of Teschner's representations of $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$
- Closure under taking tensor product A_{n} : [Schrader-Shapiro 2018]
- Braiding structure [I. 2012]
- Peter-Weyl Theorem A_{n} : [I.-Schrader-Shapiro 2020]
- ="Quantization of principal series representations"
- Constructed for all semisimple Lie types.

Construction:

- Lusztig's total positive space $L^{2}\left((G / B)_{>0}\right) \simeq L^{2}\left(\mathbb{R}_{>0}^{N=\ell\left(w_{0}\right)}\right)$
- Mellin transformation: $L^{2}\left(\mathbb{R}_{>0}^{N}\right) \simeq L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathcal{U}(\mathfrak{g})$ differential operator \leadsto finite difference operator
- Quantization \leadsto positive operators $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i} \in \mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Rescale generators by $\left(q=e^{\pi i b^{2}}, b \in(0,1)\right)$

$$
\mathbf{e}_{k}=-i\left(q-q^{-1}\right) E_{k}, \quad \mathbf{f}_{k}=-i\left(q-q^{-1}\right) F_{k}
$$

> Theorem (I. (2012)
> Th.ere exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}\left(g_{R}\right)$:
> - Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^{+} \simeq \mathbb{R}_{>0}^{n=\text { rankg }}$
> - Positivity: $\left\{\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}\right\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^{2}\left(\mathbb{R}^{N}\right)$
> - $\mathrm{e}_{i}, \mathrm{f}_{i}, K_{i}$ are expressed in terms of Laurent polynomials of $\left\{e^{\pi b x_{k}}, e^{2 \pi b p_{k}}\right\}_{k=1}^{N}$
> - Characterized by modular double structure (Langland's duality)
> - One can recover any finite dimensional irreducible representations of $\mathcal{U}_{q}(\mathfrak{g})$ by appropriate analytic continuation on λ.

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Rescale generators by $\left(q=e^{\pi i b^{2}}, b \in(0,1)\right)$

$$
\mathbf{e}_{k}=-i\left(q-q^{-1}\right) E_{k}, \quad \mathbf{f}_{k}=-i\left(q-q^{-1}\right) F_{k}
$$

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$:

- Positivity: $\left\{\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}\right\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathrm{e}_{i}, \mathrm{f}_{i}, K_{i}$ are expressed in terms of Laurent polynomials of
- Characterized by modular double structure (Langland's duality)
- One can recover any finite dimensional irreducible renresentations of $\mathcal{U}_{q}(\mathfrak{g})$ by appropriate analytic continuation on λ.

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Rescale generators by $\left(q=e^{\pi i b^{2}}, b \in(0,1)\right)$

$$
\mathbf{e}_{k}=-i\left(q-q^{-1}\right) E_{k}, \quad \mathbf{f}_{k}=-i\left(q-q^{-1}\right) F_{k}
$$

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^{+} \simeq \mathbb{R}_{\geq 0}^{n=\text { rankg }}$
- Positivity: $\left\{\mathrm{e}_{i}, \mathrm{f}_{i}, K_{i}\right\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}$ are expressed in terms of Laurent polynomials of
- Characterized by modular double structure (Langland's duality)
- One can recover any finite dimensional immeducible representations of $\mathcal{U}_{q}(\mathfrak{g})$ by appropriate analytic continuation on λ.

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Rescale generators by $\left(q=e^{\pi i b^{2}}, b \in(0,1)\right)$

$$
\mathbf{e}_{k}=-i\left(q-q^{-1}\right) E_{k}, \quad \mathbf{f}_{k}=-i\left(q-q^{-1}\right) F_{k}
$$

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^{+} \simeq \mathbb{R}_{\geq 0}^{n=\text { rankg }}$
- Positivity: $\left\{\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}\right\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^{2}\left(\mathbb{R}^{N}\right)$
- Characterized by modular double structure (Langland's duality)
- One cam mecoven any finite dimensiomat immeducible mepmesentations of $\mathcal{U}_{q}(\mathfrak{g})$ by appropriate analytic continuation on λ.

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Rescale generators by $\left(q=e^{\pi i b^{2}}, b \in(0,1)\right)$

$$
\mathbf{e}_{k}=-i\left(q-q^{-1}\right) E_{k}, \quad \mathbf{f}_{k}=-i\left(q-q^{-1}\right) F_{k}
$$

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^{+} \simeq \mathbb{R}_{\geq 0}^{n=\text { rankg }}$
- Positivity: $\left\{\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}\right\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}$ are expressed in terms of Laurent polynomials of $\left\{e^{\pi b x_{k}}, e^{2 \pi b p_{k}}\right\}_{k=1}^{N}$

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Rescale generators by $\left(q=e^{\pi i b^{2}}, b \in(0,1)\right)$

$$
\mathbf{e}_{k}=-i\left(q-q^{-1}\right) E_{k}, \quad \mathbf{f}_{k}=-i\left(q-q^{-1}\right) F_{k}
$$

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^{+} \simeq \mathbb{R}_{\geq 0}^{n=\text { rankg }}$
- Positivity: $\left\{\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}\right\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}$ are expressed in terms of Laurent polynomials of $\left\{e^{\pi b x_{k}}, e^{2 \pi b p_{k}}\right\}_{k=1}^{N}$
- Characterized by modular double structure (Langland's duality)

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Rescale generators by $\left(q=e^{\pi i b^{2}}, b \in(0,1)\right)$

$$
\mathbf{e}_{k}=-i\left(q-q^{-1}\right) E_{k}, \quad \mathbf{f}_{k}=-i\left(q-q^{-1}\right) F_{k}
$$

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^{+} \simeq \mathbb{R}_{\geq 0}^{n=\text { rankg }}$
- Positivity: $\left\{\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}\right\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^{2}\left(\mathbb{R}^{N}\right)$
- $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}$ are expressed in terms of Laurent polynomials of $\left\{e^{\pi b x_{k}}, e^{2 \pi b p_{k}}\right\}_{k=1}^{N}$
- Characterized by modular double structure (Langland's duality)
- One can recover any finite dimensional irreducible representations of $\mathcal{U}_{q}(\mathfrak{g})$ by appropriate analytic continuation on λ.

Example: $\mathcal{U}_{q}\left(\mathfrak{s l}_{3}\right)$

Coordinates on $(G / B)_{>0}$:

$$
\left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & c & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & t & 1
\end{array}\right) \quad a, b, c>0
$$

Example: $\mathcal{U}_{q}\left(\mathfrak{s l}_{3}\right)$

Coordinates on $(G / B)_{>0}$:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & c & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & t & 1
\end{array}\right) \quad a, b, c>0 \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \\
0 & \frac{t}{1+b t} & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1+b t & 0 \\
0 & 0 & (1+b t)^{-1}
\end{array}\right)\left(\begin{array}{ccc}
1 & a+a b t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \frac{b}{1+b t} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0
\end{array} \begin{array}{c}
c \\
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Example: $\mathcal{U}_{q}\left(\mathfrak{s l}_{3}\right)$

Coordinates on $(G / B)_{>0}$:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & c & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & t & 1
\end{array}\right) \quad a, b, c>0 \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & \frac{1}{1+b t} & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1+b t & 0 \\
0 & 0 & (1+b t)^{-1}
\end{array}\right)\left(\begin{array}{ccc}
1 & a+a b t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\hline 1+
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & \frac{b}{b} b t \\
0 & 0 & 1 \\
1+b t
\end{array}\right)\left(\begin{array}{ccc}
1 & c & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& e^{t F_{2}} \cdot f(a, b, c)=(1+b t)^{2 \lambda} f\left(a+a b t, \frac{b}{1+b t}, c\right), \quad \lambda \in \mathbb{R}_{\geq 0}
\end{aligned}
$$

Example: $\mathcal{U}_{q}\left(\mathfrak{s l}_{3}\right)$

Coordinates on $(G / B)_{>0}$:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & c & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & t & 1
\end{array}\right) \quad a, b, c>0 \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{t} & 0 \\
0 & \frac{t}{1+b t} & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & \begin{array}{c}
0 \\
0
\end{array} \\
0 & 1+b t & \begin{array}{c}
0 \\
0
\end{array} \\
0 & (1+b t)^{-1}
\end{array}\right)\left(\begin{array}{ccc}
1 & a+a b t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \frac{b}{1} \\
0 & 0 & 1 \\
1+b t \\
1
\end{array}\right)\left(\begin{array}{ccc}
1 & c & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& e^{t F_{2}} \cdot f(a, b, c)=(1+b t)^{2 \lambda} f\left(a+a b t, \frac{b}{1+b t}, c\right), \quad \lambda \in \mathbb{R}_{\geq 0} \\
& F_{2}:=\left.\frac{d}{d t} e^{t F_{2}}\right|_{t=0}=a b \frac{\partial}{\partial a}-b^{2} \frac{\partial}{\partial b}+b \lambda
\end{aligned}
$$

Example: $\mathcal{U}_{q}\left(\mathfrak{s l}_{3}\right)$

$$
F_{2}=a b \frac{\partial}{\partial a}-b^{2} \frac{\partial}{\partial b}+b \lambda
$$

(Formal) Mellin transform: $\mathcal{F}(u, v, w):=\int f(a, b, c) a^{u} b^{v} c^{w} d a d b d c$

$$
F_{2}: \mathcal{F}(u, v, w) \mapsto(2 \lambda+u-v+1) \mathcal{F}(u, v-1, w)
$$

Quantum Twist ($n \mapsto[n]_{q}+$ "Wick's rotation")

$$
F_{2}:=\left(\frac{i}{q-q^{-1}}\right)\left(e^{\pi b\left(2 \lambda+u-v+2 p_{v}\right)}+e^{\pi b\left(-2 \lambda-u+v+2 p_{v}\right)}\right)
$$

Example: $\mathcal{U}_{q}\left(\mathfrak{s l}_{3}\right)$

$$
F_{2}=a b \frac{\partial}{\partial a}-b^{2} \frac{\partial}{\partial b}+b \lambda
$$

(Formal) Mellin transform: $\mathcal{F}(u, v, w):=\int f(a, b, c) a^{u} b^{v} c^{w} d a d b d c$

$$
F_{2}: \mathcal{F}(u, v, w) \mapsto(2 \lambda+u-v+1) \mathcal{F}(u, v-1, w)
$$

Quantum Twist $\left(n \mapsto[n]_{q}+\right.$ "Wick's rotation")

Example: $\mathcal{U}_{q}\left(\mathfrak{s l}_{3}\right)$

$$
F_{2}=a b \frac{\partial}{\partial a}-b^{2} \frac{\partial}{\partial b}+b \lambda
$$

(Formal) Mellin transform: $\mathcal{F}(u, v, w):=\int f(a, b, c) a^{u} b^{v} c^{w} d a d b d c$

$$
F_{2}: \mathcal{F}(u, v, w) \mapsto(2 \lambda+u-v+1) \mathcal{F}(u, v-1, w)
$$

Quantum Twist ($n \mapsto[n]_{q}+$ "Wick's rotation")

$$
F_{2}:=\left(\frac{i}{q-q^{-1}}\right)\left(e^{\pi b\left(2 \lambda+u-v+2 p_{v}\right)}+e^{\pi b\left(-2 \lambda-u+v+2 p_{v}\right)}\right)
$$

The goal of this talk

Definition

Parabolic positive representations is a new family of positive representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$ based on quantizing the parabolic induction representations on $L^{2}\left((G / P)_{>0}\right)$, where $P \subset G$ is a parabolic subgroup.

- It answers some combinatorial mysteries of quantum group embedding (cluster realization)
- Gives a new realization of the evaluation module of $\mathcal{U}_{q}\left(s_{n}\right)$.

The goal of this talk

Definition

Parabolic positive representations is a new family of positive representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$ based on quantizing the parabolic induction representations on $L^{2}\left((G / P)_{>0}\right)$, where $P \subset G$ is a parabolic subgroup.

- It answers some combinatorial mysteries of quantum group embedding (cluster realization)
- Gives a new realization of the evaluation module of $\mathcal{U}_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)$.

Quantum Cluster Variety

Quantum Torus Algebra

"Quantization of cluster \mathcal{X} variety" [Fock-Goncharov]

Definition

- $Q=$ nodes (finite set)
- $Q_{0} \subset Q=$ frozen nodes
- $B=\left(b_{i j}\right)$ exchange matrix $\left(|Q| \times|Q|\right.$, skew-symmetric, $\frac{1}{2} \mathbb{Z}$-valued)

Quantum torus algebra $\mathcal{X}_{q}^{\mathrm{Q}}=$ algebra generated by $\left\{X_{i}\right\}_{i \in Q}$ over $\mathbb{C}[q]$ such that

$$
X_{i} X_{j}=q^{-2 b_{i j}} X_{j} X_{i}
$$

$X_{i}=$ quantum cluster variables
Dxchange Matrix $B \sim$ Quiver.

Quantum Torus Algebra

"Quantization of cluster \mathcal{X} variety" [Fock-Goncharov]

Definition

Seed $\mathbf{Q}=\left(Q, Q_{0}, B\right)$:

- $Q=$ nodes (finite set)
- $Q_{0} \subset Q=$ frozen nodes
- $B=\left(b_{i j}\right)$ exchange matrix $\left(|Q| \times|Q|\right.$, skew-symmetric, $\frac{1}{2} \mathbb{Z}$-valued $)$ Quantum torus algebra $\mathcal{X}_{q}^{\mathrm{Q}}=$ algebra generated by $\left\{X_{i}\right\}_{i \in Q}$ over $\mathbb{C}[q]$ such that
$X_{i}=q u a n t u m$ cluster variables
Exchange Matrix $B \leadsto$ Quiver.

Quantum Torus Algebra

"Quantization of cluster \mathcal{X} variety" [Fock-Goncharov]

Definition

Seed $\mathbf{Q}=\left(Q, Q_{0}, B\right)$:

- $Q=$ nodes (finite set)
- $Q_{0} \subset Q=$ frozen nodes
- $B=\left(b_{i j}\right)$ exchange matrix $\left(|Q| \times|Q|\right.$, skew-symmetric, $\frac{1}{2} \mathbb{Z}$-valued $)$ Quantum torus algebra $\mathcal{X}_{q}^{\mathbf{Q}}=$ algebra generated by $\left\{X_{i}\right\}_{i \in Q}$ over $\mathbb{C}[q]$ such that

$$
X_{i} X_{j}=q^{-2 b_{i j}} X_{j} X_{i}
$$

$X_{i}=q u a n t u m$ cluster variables

Quantum Torus Algebra

"Quantization of cluster \mathcal{X} variety" [Fock-Goncharov]

Definition

Seed $\mathbf{Q}=\left(Q, Q_{0}, B\right)$:

- $Q=$ nodes (finite set)
- $Q_{0} \subset Q=$ frozen nodes
- $B=\left(b_{i j}\right)$ exchange matrix $\left(|Q| \times|Q|\right.$, skew-symmetric, $\frac{1}{2} \mathbb{Z}$-valued) Quantum torus algebra $\mathcal{X}_{q}^{\mathbf{Q}}=$ algebra generated by $\left\{X_{i}\right\}_{i \in Q}$ over $\mathbb{C}[q]$ such that

$$
X_{i} X_{j}=q^{-2 b_{i j}} X_{j} X_{i}
$$

$X_{i}=$ quantum cluster variables
Exchange Matrix $B \sim$ Quiver.

Quantum Torus Algebra

"Quantization of cluster \mathcal{X} variety" [Fock-Goncharov]

Definition

Seed $\mathbf{Q}=\left(Q, Q_{0}, B\right)$:

- $\Lambda_{\mathbf{Q}}=\mathbb{Z}$-Lattice with basis $\left\{e_{i}\right\}_{i \in Q}$
- $(-,-)$ skew-symmetric form, $\left(e_{i}, e_{j}\right):=b_{i j}$.

Quantum torus algebra $\mathcal{X}_{q}^{\mathbf{Q}}=$ algebra generated by $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda_{\mathbf{Q}}}$ over $\mathbb{C}\left[q^{\frac{1}{2}}\right]$ such that

$$
X_{\lambda+\mu}=q^{(\lambda, \mu)} X_{\lambda} X_{\mu}
$$

$X_{i}:=X_{e_{i}}, \quad X_{i_{1}, i_{2}, \ldots, i_{k}}:=X_{e_{i_{1}}+e_{i_{2}}+\cdots+e_{i_{k}}}$
Exchange Matrix $B \sim$ Quiver.

Quantum Cluster Mutations

$\mathbf{T}_{q}^{\mathbf{Q}}:=$ (non-commutative) field of fractions of $\mathcal{X}_{q}^{\mathbf{Q}}$.
Cluster mutation μ_{k} induces $\mu_{k}^{q}: \mathbf{T}_{q}^{\mathbf{Q}^{\prime}} \longrightarrow \mathbf{T}_{q}^{\mathbf{Q}}$:

$$
\mu_{k}^{q}\left(\widehat{X}_{i}\right):= \begin{cases}X_{k}^{-1} & i=k \\ X_{i} \prod_{r}^{\left|b_{k i}\right|}\left(1+q_{i}^{2 r-1} X_{k}\right) & i \neq k, b_{k i}<0 \\ X_{i} \prod_{r=1}^{b_{i}}\left(1+q_{i}^{2 r-1} X_{k}^{-1}\right)^{-1} & i \neq k, b_{k i}>0\end{cases}
$$

Can be rewritten as $\mu_{k}^{q}=\mu_{k}^{\#} \circ \mu_{k}^{\prime}$

Quantum Cluster Mutations

$\mathbf{T}_{q}^{\mathbf{Q}}:=$ (non-commutative) field of fractions of $\mathcal{X}_{q}^{\mathbf{Q}}$.
Cluster mutation μ_{k} induces $\mu_{k}^{q}: \mathbf{T}_{q}^{\mathbf{Q}^{\prime}} \longrightarrow \mathbf{T}_{q}^{\mathbf{Q}}$:

$$
\mu_{k}^{q}\left(\widehat{X}_{i}\right):= \begin{cases}X_{k}^{-1} & i=k \\ X_{i} \prod_{r=1}^{\left|b_{k i}\right|}\left(1+q_{i}^{2 r-1} X_{k}\right) & i \neq k, b_{k i}<0 \\ X_{i} \prod_{r=1}^{b_{k i}}\left(1+q_{i}^{2 r-1} X_{k}^{-1}\right)^{-1} & i \neq k, b_{k i}>0\end{cases}
$$

Can be rewritten as

$$
\begin{gathered}
\mu_{k}^{q}=\mu_{k}^{\#} \circ \mu_{k}^{\prime} \\
\mu_{k}^{\prime}\left(\widehat{X}_{i}\right):= \begin{cases}X_{k}^{-1} & i=k \\
X_{i} & i \neq k, b_{k i}<0 \\
q_{i}^{b_{i k} b_{k i}} X_{i} X_{k}^{b_{i k}} & i \neq k, b_{k i}>0\end{cases} \\
\mu_{k}^{\#}:=A d_{\Psi_{q}\left(X_{k}\right)}
\end{gathered}
$$

$\Psi_{q}=$ quantum dilogarithm

Polarization of $\mathcal{X}_{q}^{\mathrm{Q}}$

Recall $q=e^{\pi i b^{2}}$ such that $|q|=1$.

Definition

A polarization of $\mathcal{X}_{q}^{\mathbf{Q}}$ is a choice of representation of the cluster variables $X_{k} \in \mathcal{X}_{q}^{\mathbf{Q}}$ of the form $X_{k}=e^{2 \pi b x_{k}}$ such that

- x_{j} is self-adjoint
- x_{k} satisfies the Heisenberg algebra relations

$$
\left[x_{j}, x_{k}\right]=\frac{1}{2 \pi i} b_{j k}
$$

acting on some H Hilbert space $\mathcal{H}_{Q} \simeq L^{2}\left(\mathbb{R}^{N}\right)$

Remark

Polarization of $\mathcal{X}_{q}^{\mathrm{Q}}$

Recall $q=e^{\pi i b^{2}}$ such that $|q|=1$.

Definition

A polarization of $\mathcal{X}_{q}^{\mathbf{Q}}$ is a choice of representation of the cluster variables $X_{k} \in \mathcal{X}_{q}^{\mathbf{Q}}$ of the form $X_{k}=e^{2 \pi b x_{k}}$ such that

- x_{j} is self-adjoint
- x_{k} satisfies the Heisenberg algebra relations

$$
\left[x_{j}, x_{k}\right]=\frac{1}{2 \pi i} b_{j k},
$$

acting on some Hilbert space $\mathcal{H}_{\mathbf{Q}} \simeq L^{2}\left(\mathbb{R}^{N}\right)$.

Remark

Modular double \widehat{X}_{k} acts by $X_{k}^{2 \pi b^{-1} x_{k}}$ on $\mathcal{H}_{\mathbf{Q}}$.

Polarization of $\mathcal{X}_{q}^{\mathrm{Q}}$

Example

For $X_{1} X_{2}=q^{2} X_{2} X_{1}$, we have

$$
\begin{aligned}
& X_{1}=e^{2 \pi b x} \\
& X_{2}=e^{2 \pi b p}
\end{aligned}
$$

acting on $L^{2}(\mathbb{R})$, where $p=\frac{1}{2 \pi i} \frac{d}{d x}$.

Proposition
 - Different polarizations (with the same central characters) are
 unitary equivalent (via $S p(2 N)$-action)
 - Cluster mutations \longleftrightarrow unitary transformation on \mathcal{H}_{Q}

Polarization of $\mathcal{X}_{q}^{\mathrm{Q}}$

Example

For $X_{1} X_{2}=q^{2} X_{2} X_{1}$, we have

$$
\begin{aligned}
& X_{1}=e^{2 \pi b x} \\
& X_{2}=e^{2 \pi b p}
\end{aligned}
$$

acting on $L^{2}(\mathbb{R})$, where $p=\frac{1}{2 \pi i} \frac{d}{d x}$.

Proposition

- Different polarizations (with the same central characters) are unitary equivalent (via $S p(2 N)$-action)
- Cluster mutations \longleftrightarrow unitary transformation on \mathcal{H}_{Q}

Polarization of $\mathcal{X}_{q}^{\mathrm{Q}}$

Example

For $X_{1} X_{2}=q^{2} X_{2} X_{1}$, we have

$$
\begin{aligned}
& X_{1}=e^{2 \pi b x} \\
& X_{2}=e^{2 \pi b p}
\end{aligned}
$$

acting on $L^{2}(\mathbb{R})$, where $p=\frac{1}{2 \pi i} \frac{d}{d x}$.

Proposition

- Different polarizations (with the same central characters) are unitary equivalent (via $S p(2 N)$-action)
- Cluster mutations \longleftrightarrow unitary transformation on $\mathcal{H}_{\mathbf{Q}}$

Quantum cluster variety

$S=$ Riemann surface with marked points on ∂S and punctures. $\mathcal{X}_{G, S \text {-space }}=$ "(framed) local G-system"

- $\mathcal{X}_{G, S}$ has Poisson cluster \mathcal{X} variety structure \leadsto quantization $\mathcal{X}_{G, S}^{q}$
- To each triangle of ideal triangulation of S. assign a basic quiver.
- $G=P G L_{n+1}$: "n-triangulation"

Quantum cluster variety

$S=$ Riemann surface with marked points on ∂S and punctures. Fock-Goncharov's $\mathcal{X}_{G, S}$-space $=$ "(framed) local G-system"

- $\mathcal{X}_{G, S}$ has Poisson cluster \mathcal{X} variety structure \leadsto quantization $\mathcal{X}_{G, S}^{q}$
- $G=P G L_{n+1}$: " n-triangulation"

Quantum cluster variety

$S=$ Riemann surface with marked points on ∂S and punctures. Fock-Goncharov's $\mathcal{X}_{G, S}$-space $=$ "(framed) local G-system"

- $\mathcal{X}_{G, S}$ has Poisson cluster \mathcal{X} variety structure \leadsto quantization $\mathcal{X}_{G, S}^{q}$
- To each triangle of ideal triangulation of S, assign a basic quiver.
- $G=P G L_{n+1}$: " n-triangulation’

Quantum cluster variety

$S=$ Riemann surface with marked points on ∂S and punctures. Fock-Goncharov's $\mathcal{X}_{G, S}$-space $=$ "(framed) local G-system"

- $\mathcal{X}_{G, S}$ has Poisson cluster \mathcal{X} variety structure \leadsto quantization $\mathcal{X}_{G, S}^{q}$
- To each triangle of ideal triangulation of S, assign a basic quiver.
- $G=P G L_{n+1}$: " n-triangulation"

Quantum cluster variety

$S=$ Riemann surface with marked points on ∂S and punctures. Fock-Goncharov's $\mathcal{X}_{G, S}$-space $=$ "(framed) local G-system"

- $\mathcal{X}_{G, S}$ has Poisson cluster \mathcal{X} variety structure \leadsto quantization $\mathcal{X}_{G, S}^{q}$
- To each triangle of ideal triangulation of S, assign a basic quiver.
- $G=P G L_{n+1}$: " n-triangulation"

(Full generality: [I. (2016)], [Le (2016)], [Goncharov-Shen (2019)] $)_{\overline{\underline{\underline{a}}}}$

Basic Quiver

[I. (2016), Goncharov-Shen (2019)]

Definition

Elementary quiver

- $\overline{\mathbf{J}}_{k}(i), i, k \in I$
- $Q=Q_{0}=(I \backslash\{i\}) \cup\left\{i_{l}\right\} \cup\left\{i_{r}\right\} \cup\left\{k_{e}\right\}$

$$
c_{i_{l}, j}=c_{j, i_{r}}=\frac{a_{i j}}{2}, \quad c_{i, i_{r}}=c_{i_{r}, k_{e}}=c_{k_{e}, i_{l}}=1
$$

- $\overline{\mathbf{J}}(i)$: without $\left\{k_{e}\right\}$.

Basic Quiver

[I. (2016), Goncharov-Shen (2019)]

Definition

Elementary quiver

- $\mathbf{H}(\mathbf{i}), \quad \mathbf{i}=\left(i_{1}, \ldots, i_{m}\right)$ reduced words
- $Q=I$

$$
c_{i j}:= \begin{cases}\operatorname{sgn}(r-s) \frac{a_{i j}}{2} & \beta_{s}=\alpha_{i} \text { and } \beta_{r}=\alpha_{j} \\ 0 & \text { otherwise }\end{cases}
$$

- $\beta_{j}:=s_{i_{m}} s_{i_{m-1}} \cdots s_{i_{j+1}}\left(\alpha_{i_{j}}\right), \quad \alpha_{i} \in \Delta_{+}$
- (If $\mathbf{i}=\mathbf{i}_{0}$, orientation of Dynkin diagram)

Basic Quiver

[I. (2016), Goncharov-Shen (2019)]

Definition

Basic Quiver

- $\mathbf{Q}(\mathbf{i}), \quad \mathbf{i}=\left(i_{1}, \ldots, i_{m}\right)$ reduced words
- $\mathbf{Q}=\mathbf{J}_{\mathbf{i}}^{\#}\left(i_{1}\right) * \mathbf{J}_{\mathbf{i}}^{\#}\left(i_{2}\right) * \cdots * \mathbf{J}_{\mathbf{i}}^{\#}\left(i_{m}\right) * \mathbf{H}(\mathbf{i})$
- $\mathbf{J}_{\mathbf{i}}^{\#}\left(i_{j}\right)= \begin{cases}\overline{\mathbf{J}}_{k}\left(i_{j}\right) & \text { if } \beta_{j}=\alpha_{k} \\ \mathbf{J}\left(i_{j}\right) & \text { otherwise }\end{cases}$

Basic Quiver

Example
 $\mathfrak{g}=\mathfrak{s l}_{4}, \mathbf{i}=(3,2,1)$.
 J(3)

 J(2)
 $\overline{\mathbf{J}}_{1}(1)$

 Q(i)

Basic Quiver

Example

$$
\mathfrak{g}=\mathfrak{s l}_{4}, \quad \mathbf{i}_{0}=(3,2,1,3,2,3)
$$

Example: Type A_{n} Case

Amalgamation of 2 quivers

Example: Type A_{n} Case

$\mathcal{D}_{\mathfrak{s l}_{n+1}}$-quiver $\leadsto \mathcal{X}_{\odot}:=\mathcal{X}_{\mathfrak{s l}_{n+1}}$ [Schrader-Shapiro]

$$
\begin{aligned}
\iota: \mathcal{D}_{q}\left(\mathfrak{s l}_{n+1}\right) & \hookrightarrow \mathcal{X}_{\odot} \\
\mathcal{U}_{q}\left(\mathfrak{s l}_{n+1}\right) & \hookrightarrow \mathcal{X}_{\odot} /\left\langle\iota\left(K_{i}\right) \iota\left(K_{i}^{\prime}\right)=1\right\rangle
\end{aligned}
$$

Example: Type A_{n} Case

Embedding of $F_{i} \in \mathfrak{D}_{\mathfrak{s l}_{4}} \hookrightarrow \mathcal{X}_{\odot}$

$$
\begin{aligned}
\mathbf{f}_{1} & =X_{1}+X_{1,2}+X_{1,2,3}+X_{1,2,3,4}+X_{1,2,3,4,5}+X_{1,2,3,4,5,6} \\
\mathbf{f}_{2} & =X_{8}+X_{8,9}+X_{8,9,10}+X_{8,9,10,11} \\
\mathbf{f}_{3} & =X_{13}+X_{13,14} \\
K_{1}^{\prime} & =X_{1,2,3,4,5,6,7} \quad K_{2}^{\prime}=X_{8,9,10,11,12} \quad K_{3}^{\prime}=X_{13,14,15}
\end{aligned}
$$

Example: Type A_{n} Case

Embedding of $E_{i} \in \mathfrak{D}_{\mathfrak{s l}_{4}} \hookrightarrow \mathcal{X}_{\odot}$

$$
\begin{aligned}
\mathbf{e}_{1} & =X_{7}+X_{7,16} \\
\mathbf{e}_{2} & =X_{12}+X_{12,6}+X_{12,6,17}+X_{12,6,17,2} \\
\mathbf{e}_{3} & =X_{15}+X_{15,11}+X_{15,11,5}+X_{15,11,5,18}+X_{15,11,5,18,3}+X_{15,11,5,18,3,9} \\
K_{1} & =X_{7,16,1} \quad K_{2}=X_{12,6,17,2,8} \quad K_{3}=X_{15,11,5,18,3,9,13}
\end{aligned}
$$

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Theorem (Schrader-Shapiro, I. (2016))

- There exists an embedding

$$
\mathcal{D}_{q}(\mathfrak{g}) \hookrightarrow \mathcal{X}_{\odot}
$$

corresponding to the quiver $\mathcal{D}_{\mathfrak{g}}$ associated to

- We recover the positive representations $\mathcal{P}_{\lambda} \simeq \mathcal{H}_{\odot}$ through a polarization of \mathcal{X}_{\odot}

theorem (I. (2016)

- The generators $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}$ are represented by positive polynomials (i.e. over $\mathbb{N}\left[q, q^{-1}\right]$) in the cluster variables $X_{i} \in \mathcal{X}_{\odot}$.
- The generators $\mathrm{e}_{i}, \mathfrak{f}_{i}, K_{i}$ are labeled by paths on the $\mathcal{D}_{\mathfrak{g}}$ quiver.
- f_{i} paths are simple - coincide with Feigin's homomorphism.

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Theorem (Schrader-Shapiro, I. (2016))

- There exists an embedding

$$
\mathcal{D}_{q}(\mathfrak{g}) \hookrightarrow \mathcal{X}_{\odot}
$$

corresponding to the quiver $\mathcal{D}_{\mathfrak{g}}$ associated to

- We recover the positive representations $\mathcal{P}_{\lambda} \simeq \mathcal{H}_{\odot}$ through a polarization of \mathcal{X}_{\odot}.
- The generators $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}$ are represented by positive polynomials - The generators $\mathrm{e}_{i}, \mathrm{f}_{i}, K_{i}$ are labeled by paths on the $\mathcal{D}_{\mathfrak{g}}$ quiver. - f_{i} paths are simple - coincide with Feigin's homomorphism.

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Theorem (Schrader-Shapiro, I. (2016))

- There exists an embedding

$$
\mathcal{D}_{q}(\mathfrak{g}) \hookrightarrow \mathcal{X}_{\odot}
$$

corresponding to the quiver $\mathcal{D}_{\mathfrak{g}}$ associated to (1)

- We recover the positive representations $\mathcal{P}_{\lambda} \simeq \mathcal{H}_{\odot}$ through a polarization of \mathcal{X}_{\odot}.

Theorem (I. (2016))

- The generators $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}$ are represented by positive polynomials (i.e. over $\mathbb{N}\left[q, q^{-1}\right]$) in the cluster variables $X_{i} \in \mathcal{X}_{\odot}$.

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Theorem (Schrader-Shapiro, I. (2016))

- There exists an embedding

$$
\mathcal{D}_{q}(\mathfrak{g}) \hookrightarrow \mathcal{X}_{\odot}
$$

corresponding to the quiver $\mathcal{D}_{\mathfrak{g}}$ associated to (1)

- We recover the positive representations $\mathcal{P}_{\lambda} \simeq \mathcal{H}_{\odot}$ through a polarization of \mathcal{X}_{\odot}.

Theorem (I. (2016))

- The generators $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}$ are represented by positive polynomials (i.e. over $\mathbb{N}\left[q, q^{-1}\right]$) in the cluster variables $X_{i} \in \mathcal{X}_{\odot}$.
- The generators $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}$ are labeled by paths on the $\mathcal{D}_{\mathfrak{g}}$ quiver.

Positive Representations of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$

Theorem (Schrader-Shapiro, I. (2016))

- There exists an embedding

$$
\mathcal{D}_{q}(\mathfrak{g}) \hookrightarrow \mathcal{X}_{\odot}
$$

corresponding to the quiver $\mathcal{D}_{\mathfrak{g}}$ associated to (1)

- We recover the positive representations $\mathcal{P}_{\lambda} \simeq \mathcal{H}_{\odot}$ through a polarization of \mathcal{X}_{\odot}.

Theorem (I. (2016))

- The generators $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}$ are represented by positive polynomials (i.e. over $\mathbb{N}\left[q, q^{-1}\right]$) in the cluster variables $X_{i} \in \mathcal{X}_{\odot}$.
- The generators $\mathbf{e}_{i}, \mathbf{f}_{i}, K_{i}$ are labeled by paths on the $\mathcal{D}_{\mathfrak{g}}$ quiver.
- \mathbf{f}_{i} paths are simple - coincide with Feigin's homomorphism.

E_{6} embedding

$\mathbf{i}_{0}=(343034230432123403215432103243054321)$

E_{6} embedding

$\mathbf{i}_{0}=(343034230432123403215432103243054321)$

Minimal Positive Representation for $\mathcal{U}_{q}(\mathfrak{s l}(n+1, \mathbb{R}))$

Minimal Positive Representation

- Parabolic subgroups $\longleftrightarrow J \subset I$
- $P_{J}:=B_{-} L_{J}$, Levi subgroup $L_{J}=\left\langle T, U_{j}^{+}, U_{j}^{-}\right\rangle_{j \in J}$
- $P_{\emptyset}:=B_{-}$.

Example

For $G=S L_{4}, J=\{1,2\} \subset I=\{1,2,3\}$

Minimal Positive Representation

- Parabolic subgroups $\longleftrightarrow J \subset I$
- $P_{J}:=B_{-} L_{J}$, Levi subgroup $L_{J}=\left\langle T, U_{j}^{+}, U_{j}^{-}\right\rangle_{j \in J}$
- $P_{\emptyset}:=B_{-}$.

Example

For $G=S L_{4}, J=\{1,2\} \subset I=\{1,2,3\}$

Minimal Positive Representation

- Parabolic subgroups $\longleftrightarrow J \subset I$
- $P_{J}:=B_{-} L_{J}$, Levi subgroup $L_{J}=\left\langle T, U_{j}^{+}, U_{j}^{-}\right\rangle_{j \in J}$
- $P_{\emptyset}:=B_{-}$.

Example

For $G=S L_{4}, J=\{1,2\} \subset I=\{1,2,3\}$

Minimal Positive Representation

- Parabolic subgroups $\longleftrightarrow J \subset I$
- $P_{J}:=B_{-} L_{J}$, Levi subgroup $L_{J}=\left\langle T, U_{j}^{+}, U_{j}^{-}\right\rangle_{j \in J}$
- $P_{\emptyset}:=B_{-}$.

> Example
> For $G=S L_{4}, J=\{1,2\} \subset I=\{1,2,3\}$

Minimal Positive Representation

- Parabolic subgroups $\longleftrightarrow J \subset I$
- $P_{J}:=B_{-} L_{J}$, Levi subgroup $L_{J}=\left\langle T, U_{j}^{+}, U_{j}^{-}\right\rangle_{j \in J}$
- $P_{\emptyset}:=B_{-}$.

Example

For $G=S L_{4}, J=\{1,2\} \subset I=\{1,2,3\}$

$$
P_{J}=\left(\begin{array}{llll}
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & *
\end{array}\right)
$$

Minimal Positive Representation

- Parabolic subgroups $\longleftrightarrow J \subset I$
- $P_{J}:=B_{-} L_{J}$, Levi subgroup $L_{J}=\left\langle T, U_{j}^{+}, U_{j}^{-}\right\rangle_{j \in J}$
- $P_{\emptyset}:=B_{-}$.

Example

For $G=S L_{4}, J=\{1,2\} \subset I=\{1,2,3\}$

$$
\begin{aligned}
P_{J} & =\left(\begin{array}{llll}
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & *
\end{array}\right) \\
\left(G / P_{J}\right)>0 & =\left(\begin{array}{llll}
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & *
\end{array}\right)\left(\begin{array}{llll}
1 & a & 0 & 0 \\
0 & 1 & b & 0 \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right), \quad a, b, c>0
\end{aligned}
$$

Minimal Positive Representation

- Parabolic subgroups $\longleftrightarrow J \subset I$
- $P_{J}:=B_{-} L_{J}$, Levi subgroup $L_{J}=\left\langle T, U_{j}^{+}, U_{j}^{-}\right\rangle_{j \in J}$
- $P_{\emptyset}:=B_{-}$.

Example

For $G=S L_{4}, J=\{1,2\} \subset I=\{1,2,3\}$

$$
\begin{aligned}
P_{J} & =\left(\begin{array}{llll}
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & *
\end{array}\right) \\
\left(G / P_{J}\right)>0 & =\left(\begin{array}{llll}
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & *
\end{array}\right)\left(\begin{array}{llll}
1 & a & 0 & 0 \\
0 & 1 & b & 0 \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right), \quad a, b, c>0
\end{aligned}
$$

$$
x_{3}(c) x_{2}(b) x_{1}(a) e^{t X}=n \cdot h \cdot x_{1}\left(f^{\prime}\right) x_{2}\left(e^{\prime}\right) x_{1}\left(d^{\prime}\right) x_{3}\left(c^{\prime}\right) x_{2}\left(b^{\prime}\right) x_{1}\left(a^{\prime}\right), \quad n \in U_{-}, h \in T
$$

Minimal Positive Representation

Previous recipe produces a representation $\mathcal{P}_{\lambda}^{J}$ for $\mathcal{U}_{q}(\mathfrak{s l}(4, \mathbb{R})),(\lambda \in \mathbb{R})$

$$
\begin{aligned}
\pi_{\lambda}^{J}\left(\mathbf{e}_{1}\right) & =e^{\pi b\left(u-2 p_{u}\right)}+e^{\pi b\left(-u-2 p_{u}\right)} \\
\pi_{\lambda}^{J}\left(\mathbf{e}_{2}\right) & =e^{\pi b\left(-u+v-2 p_{v}\right)}+e^{\pi b\left(u-v-2 p_{v}\right)} \\
\pi_{\lambda}^{J}\left(\mathbf{e}_{3}\right) & =e^{\pi b\left(-v+w-2 p_{w}\right)}+e^{\pi b\left(v-w-2 p_{w}\right)} \\
\pi_{\lambda}^{J}\left(\mathbf{f}_{1}\right) & =e^{\pi b\left(-u+v+2 p_{u}\right)}+e^{\pi b\left(u-v+2 p_{u}\right)} \\
\pi_{\lambda}^{J}\left(\mathbf{f}_{2}\right) & =e^{\pi b\left(-v+w+2 p_{v}\right)}+e^{\pi b\left(v-w+2 p_{v}\right)} \\
\pi_{\lambda}^{J}\left(\mathbf{f}_{3}\right) & =e^{\pi b\left(2 \lambda-w+2 p_{w}\right)}+e^{\pi b\left(-2 \lambda+w+2 p_{w}\right)} \\
\pi_{\lambda}^{J}\left(\mathbf{K}_{1}\right) & =e^{\pi b(-2 u+v)} \\
\pi_{\lambda}^{J}\left(\mathbf{K}_{2}\right) & =e^{\pi b(u-2 v+w)} \\
\pi_{\lambda}^{J}\left(\mathbf{K}_{3}\right) & =e^{\pi b(v-2 w+2 \lambda)}
\end{aligned}
$$

acting on $L^{2}\left(\mathbb{R}^{3}\right)$ as positive self-adjoint operators.

Minimal Positive Representation

$e_{1}=X_{3}+X_{3,0}$
$e_{2}=X_{6}+X_{6,2}$
$e_{3}=X_{9}+X_{9,5}$
$f_{1}=X_{1}+X_{1,2}$
$f_{2}=X_{4}+X_{4,5}$
$f_{3}=X_{7}+X_{7,8}$

$$
\begin{aligned}
& K_{1}=X_{3,0,1} \\
& K_{2}=X_{6,2,4} \\
& K_{3}=X_{9,5,7} \\
& K_{1}^{\prime}=X_{1,2,3} \\
& K_{2}^{\prime}=X_{4,5,6} \\
& K_{3}^{\prime}=X_{7,8,9}
\end{aligned}
$$

Central character: $\pi\left(X_{0,2,5,8}\right)=e^{-4 \pi b \lambda}$

Minimal Positive Representation

Theorem (I. (2020))

The polarization of the quiver $\mathbf{D}(\mathbf{i})$ for $\mathbf{i}=(n, \ldots, 3,2,1)$ gives a representation $\mathcal{P}_{\lambda}^{J}$ of $\mathcal{U}_{q}(\mathfrak{s l}(n+1, \mathbb{R}))$ acting on $L^{2}\left(\mathbb{R}^{n}\right)$ as positive self-adjoint operators.

Minimal Positive Representation

Theorem (I. (2020))

- The non-simple generators

$$
\begin{aligned}
\mathbf{e}_{\alpha} & :=T_{i_{1}} \cdots T_{i_{k-1}}\left(\mathbf{e}_{k}\right) \\
\mathbf{f}_{\alpha} & :=T_{i_{1}} \cdots T_{i_{k-1}}\left(\mathbf{f}_{k}\right)
\end{aligned}
$$

is non-zero, where $T_{i}=$ Lusztig's braid group action.

- The universal \mathcal{R} operator is well-defined

$$
\mathcal{R}=\mathcal{K} \prod_{\alpha \in \Phi_{+}} g_{b}\left(\mathbf{e}_{\alpha} \otimes \mathbf{f}_{\alpha}\right)
$$

- The Casimirs \mathbf{C}_{k} acts by real-valued scalar, and lie outside the positive spectrum of the usual positive representations.

Minimal Positive Representation

Theorem (I. (2020))

- The non-simple generators

$$
\begin{aligned}
\mathbf{e}_{\alpha} & :=T_{i_{1}} \cdots T_{i_{k-1}}\left(\mathbf{e}_{k}\right) \\
\mathbf{f}_{\alpha} & :=T_{i_{1}} \cdots T_{i_{k-1}}\left(\mathbf{f}_{k}\right)
\end{aligned}
$$

is non-zero, where $T_{i}=$ Lusztig's braid group action.

- The universal \mathcal{R} operator is well-defined

$$
\mathcal{R}=\mathcal{K} \prod_{\alpha \in \Phi_{+}} g_{b}\left(\mathbf{e}_{\alpha} \otimes \mathbf{f}_{\alpha}\right)
$$

- The Casimirs \mathbf{C}_{k} acts by real-valued scalar, and lie outside the positive snectrum of the usual positive renresentations.

Minimal Positive Representation

Theorem (I. (2020))

- The non-simple generators

$$
\begin{aligned}
\mathbf{e}_{\alpha} & :=T_{i_{1}} \cdots T_{i_{k-1}}\left(\mathbf{e}_{k}\right) \\
\mathbf{f}_{\alpha} & :=T_{i_{1}} \cdots T_{i_{k-1}}\left(\mathbf{f}_{k}\right)
\end{aligned}
$$

is non-zero, where $T_{i}=$ Lusztig's braid group action.

- The universal \mathcal{R} operator is well-defined

$$
\mathcal{R}=\mathcal{K} \prod_{\alpha \in \Phi_{+}} g_{b}\left(\mathbf{e}_{\alpha} \otimes \mathbf{f}_{\alpha}\right)
$$

- The Casimirs \mathbf{C}_{k} acts by real-valued scalar, and lie outside the positive spectrum of the usual positive representations.

Casimirs

Example

$\mathcal{U}_{q}(\mathfrak{s l}(3, \mathbb{R}))$, the possible action of $\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$ (by scalars) on \mathcal{P}_{λ} and $\mathcal{P}_{\lambda}^{J}$:

Evaluation Module of $\mathcal{U}_{q}\left(\widehat{\mathfrak{s}}_{n+1}\right)$

Evaluation Module of $\mathcal{U}_{q}\left(\widehat{\mathfrak{s}}_{n+1}\right)$

Evaluation Module of $\mathcal{U}_{q}\left(\widehat{\mathfrak{s}}_{n+1}\right)$

Evaluation Module of $\mathcal{U}_{q}\left(\widehat{\mathfrak{s}} \mathbf{l}_{n+1}\right)$

Theorem (I. (2020))

The positive representation of $\mathcal{U}_{q}\left(\widehat{\mathfrak{s l}}_{n+1}\right)$ defined by the polarization of the previous quiver is unitarily equivalent to Jimbo's evaluation module $\mathcal{P}_{\lambda}^{\mu}, \mu \in \mathbb{R}$

$$
\mathcal{U}_{q}\left(\widehat{\mathfrak{s l}}_{n+1}\right) \longrightarrow \mathcal{U}_{q}\left(\mathfrak{s l}_{n+1}\right)
$$

of the minimal positive representations $\mathcal{P}_{\lambda}^{J}$ of $\mathcal{U}_{q}\left(\mathfrak{s l}_{n+1}\right)$, where

$$
e^{\pi b \mu}:=\pi\left(D_{0}^{\frac{1}{n+1}} D_{1}\right)
$$

($D_{0}=$ product of all middle vertices, $D_{1}=$ product of all right vertices.)

Positive representation of $\mathcal{U}_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$

Example

$$
\begin{array}{ll}
\mathbf{f}_{0}=X_{1}+X_{1,2} & \mathbf{e}_{0}=X_{3}+X_{3,5} \\
\mathbf{f}_{1}=X_{4}+X_{4,5} & \mathbf{e}_{1}=X_{6}+X_{6,2}
\end{array}
$$

Serre relation ($\left.a_{01}=a_{10}=-2\right)$:

$$
X_{i}^{3} X_{j}-[3]_{q} X_{i}^{2} X_{j} X_{i}+[3]_{q} X_{i} X_{j} X_{i}^{2}-X_{j} X_{i}^{3}=0, \quad i \neq j
$$

General Construction

Main Theorem

Parabolic induction \longleftrightarrow truncating $\mathbf{i}_{J} \subset \mathbf{i}_{0}$ where $\mathbf{i}_{J}, \mathbf{i}_{0}$ are the longest word of the Weyl groups $W_{J} \subset W$.

$$
\begin{gathered}
w_{0}=w_{J} \bar{w} \\
\bar{w} \longleftrightarrow \overline{\mathbf{i}}
\end{gathered}
$$

Example

 $W_{\mathfrak{s l}_{4}} \subset W_{\mathfrak{s l}_{5}}$ $i_{0}=(1,2,1,3,2,1,1,3,2,1)$Observe that

$$
\mathbf{Q}(\mathbf{i})=\mathbf{Q}\left(\mathbf{i}_{J}\right) * \mathbf{Q}(\overline{\mathbf{i}})
$$

In general, we have realization of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$ on the quantum torus algebra associated to the symplectic double $\mathbf{D}(\overline{\mathbf{i}})$.

Main Theorem

Parabolic induction \longleftrightarrow truncating $\mathbf{i}_{J} \subset \mathbf{i}_{0}$ where $\mathbf{i}_{J}, \mathbf{i}_{0}$ are the longest word of the Weyl groups $W_{J} \subset W$.

$$
\begin{gathered}
w_{0}=w_{J} \bar{w} \\
\bar{w} \longleftrightarrow \overline{\mathbf{i}}
\end{gathered}
$$

Example

$$
\begin{gathered}
W_{\mathfrak{s l}_{4}} \subset W_{\mathfrak{s i}_{5}} \\
\mathbf{i}_{0}=(1,2,1,3,2,1,4,3,2,1)
\end{gathered}
$$

Observe that

In general, we have realization of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$ on the quantum torus algebra associated to the symplectic double $\mathbf{D}(\mathbf{i})$

Main Theorem

Parabolic induction \longleftrightarrow truncating $\mathbf{i}_{J} \subset \mathbf{i}_{0}$ where $\mathbf{i}_{J}, \mathbf{i}_{0}$ are the longest word of the Weyl groups $W_{J} \subset W$.

$$
\begin{gathered}
w_{0}=w_{J} \bar{w} \\
\bar{w} \longleftrightarrow \overline{\mathbf{i}}
\end{gathered}
$$

Example

$$
\begin{gathered}
W_{\mathfrak{s l}_{4}} \subset W_{\mathfrak{s l}_{5}} \\
\mathbf{i}_{0}=(1,2,1,3,2,1,4,3,2,1)
\end{gathered}
$$

Observe that

$$
\mathbf{Q}(\mathbf{i})=\mathbf{Q}\left(\mathbf{i}_{J}\right) * \mathbf{Q}(\overline{\mathbf{i}})
$$

In general, we have realization of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$ on the quantum torus algebra associated to the symplectic double $\mathbf{D}(\overline{\mathbf{i}})$.

Main Theorem

Theorem (I. (2020))

- There is a homomorphism

$$
\mathcal{D}_{q}(\mathfrak{g}) \longrightarrow \mathcal{X}_{q}^{\mathbf{D}(\overline{\mathbf{i}})}
$$

such that the image of universally Laurent polynomials.

- A polarization of $\mathcal{X}_{q}^{(\mathrm{D})}$ induces a family of irreducible representations $\mathcal{P}_{\lambda}^{J}$ of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$ parametrized by $\lambda \in \mathbb{R}^{|I \backslash J|}$ as positive self-adjoint operators on $L^{2}\left(\mathbb{R}^{l(\bar{w})}\right)$.

The parabolic positive representations $\mathcal{P}_{\lambda}^{J}$ is obtained as a quantum twist of the parabolic induction, by ignoring the variables u_{i} corresponding to the Levi subgroups L_{J} of P_{J} in the quotient G / P_{J} \Longleftrightarrow setting formally $e^{\pi b u_{i}}=1$ and $e^{ \pm \pi b p_{i}}=0$.

Main Theorem

Theorem (I. (2020))

- There is a homomorphism

$$
\mathcal{D}_{q}(\mathfrak{g}) \longrightarrow \mathcal{X}_{q}^{\mathbf{D}(\overline{\mathbf{i}})}
$$

such that the image of universally Laurent polynomials.

- A polarization of $\mathcal{X}_{q}{ }^{\mathbf{D}(\overline{\mathbf{i}})}$ induces a family of irreducible representations $\mathcal{P}_{\lambda}^{J}$ of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$ parametrized by $\lambda \in \mathbb{R}^{|I \backslash J|}$ as positive self-adjoint operators on $L^{2}\left(\mathbb{R}^{l(\bar{w})}\right)$.
\square twist of the narabolic induction, by ianoring the variables u. corresponding to the Levi subgroups L_{J} of P_{J} in the quotient G_{J} / P_{J}

Main Theorem

Theorem (I. (2020))

- There is a homomorphism

$$
\mathcal{D}_{q}(\mathfrak{g}) \longrightarrow \mathcal{X}_{q}^{\mathbf{D}(\overline{\mathbf{i}})}
$$

such that the image of universally Laurent polynomials.

- A polarization of $\mathcal{X}_{q}^{\mathbf{D}(\overline{\mathbf{i}})}$ induces a family of irreducible representations $\mathcal{P}_{\lambda}^{J}$ of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$ parametrized by $\lambda \in \mathbb{R}^{|I \backslash J|}$ as positive self-adjoint operators on $L^{2}\left(\mathbb{R}^{l(\bar{w})}\right)$.

Corollary

The parabolic positive representations $\mathcal{P}_{\lambda}^{J}$ is obtained as a quantum twist of the parabolic induction, by ignoring the variables u_{i} corresponding to the Levi subgroups L_{J} of P_{J} in the quotient G / P_{J}.

Main Theorem

Theorem (I. (2020))

- There is a homomorphism

$$
\mathcal{D}_{q}(\mathfrak{g}) \longrightarrow \mathcal{X}_{q}^{\mathbf{D}(\overline{\mathbf{i}})}
$$

such that the image of universally Laurent polynomials.

- A polarization of $\mathcal{X}_{q}^{\mathbf{D}(\overline{\mathbf{i}})}$ induces a family of irreducible representations $\mathcal{P}_{\lambda}^{J}$ of $\mathcal{U}_{q}\left(\mathfrak{g}_{\mathbb{R}}\right)$ parametrized by $\lambda \in \mathbb{R}^{|I \backslash J|}$ as positive self-adjoint operators on $L^{2}\left(\mathbb{R}^{l(\bar{w})}\right)$.

Corollary

The parabolic positive representations $\mathcal{P}_{\lambda}^{J}$ is obtained as a quantum twist of the parabolic induction, by ignoring the variables u_{i} corresponding to the Levi subgroups L_{J} of P_{J} in the quotient G / P_{J}.

$$
\Longleftrightarrow \text { setting formally } e^{\pi b u_{i}}=1 \text { and } e^{ \pm \pi b p_{i}}=0
$$

Idea of Proof

Definition

The Heisenberg double $\mathcal{H}_{q}^{ \pm}(\mathfrak{g}):=\left\langle\mathbf{e}_{i}^{ \pm}, \mathbf{f}_{i}^{ \pm}, \mathbf{K}_{i}^{ \pm}, \mathbf{K}_{i}^{ \pm}\right\rangle$satisfying

$$
\frac{\left[\mathbf{e}_{i}^{+}, \mathbf{f}_{j}^{+}\right]}{q-q^{-1}}=\delta_{i j} \mathbf{K}_{i}^{\prime+}, \quad \frac{\left[\mathbf{e}_{i}^{-}, \mathbf{f}_{j}^{-}\right]}{q-q^{-1}}=\delta_{i j} \mathbf{K}_{i}^{-}
$$

and other standard quantum group relations.

Proposition

Idea of Proof

Definition

The Heisenberg double $\mathcal{H}_{q}^{ \pm}(\mathfrak{g}):=\left\langle\mathbf{e}_{i}^{ \pm}, \mathbf{f}_{i}^{ \pm}, \mathbf{K}_{i}^{ \pm}, \mathbf{K}_{i}^{\prime \pm}\right\rangle$ satisfying

$$
\frac{\left[\mathbf{e}_{i}^{+}, \mathbf{f}_{j}^{+}\right]}{q-q^{-1}}=\delta_{i j} \mathbf{K}_{i}^{\prime+}, \quad \frac{\left[\mathbf{e}_{i}^{-}, \mathbf{f}_{j}^{-}\right]}{q-q^{-1}}=\delta_{i j} \mathbf{K}_{i}^{-}
$$

and other standard quantum group relations.

Proposition

The embedding $\mathcal{D}_{q}(\mathfrak{g}) \hookrightarrow \mathcal{X}_{q}^{\mathbf{D}\left(\mathbf{i}_{0}\right)} \subset \mathcal{X}_{q}^{\mathbf{Q (\mathbf { i } _ { 0 } ^ { o p })}} \otimes \mathcal{X}_{q}^{\mathbf{Q (i} \mathbf{i})}$ decomposes as

$$
\begin{aligned}
\mathbf{e}_{i} & =\mathbf{e}_{i}^{+}+\mathbf{K}_{i}^{+} \mathbf{e}_{i}^{-}, & \mathbf{f}_{i} & =\mathbf{f}_{i}^{-}+\mathbf{K}_{i}^{\prime-} \mathbf{f}_{i}^{+} \\
\mathbf{K}_{i} & =\mathbf{K}_{i}^{+} \mathbf{K}_{i}^{-} & \mathbf{K}_{i}^{\prime} & =\mathbf{K}_{i}^{\prime+} \mathbf{K}_{i}^{\prime-}
\end{aligned}
$$

where $\mathcal{H}_{q}^{+}(\mathfrak{g}) \hookrightarrow 1 \otimes \mathcal{X}_{q}^{\mathbf{Q (\mathbf { i } _ { 0 })}}, \mathcal{H}_{q}^{-}(\mathfrak{g}) \hookrightarrow \mathcal{X}_{q}^{\mathbf{Q}\left(\mathbf{i}_{0}^{o p}\right)} \otimes 1$

Idea of Proof

Definition

The generalized Heisenberg double $\mathcal{H}_{q, \omega}^{ \pm}(\mathfrak{g}):=\left\langle\mathbf{e}_{i}^{ \pm}, \mathbf{f}_{i}^{ \pm}, \mathbf{K}_{i}^{ \pm}, \mathbf{K}_{i}^{\prime \pm}\right\rangle$

$$
\frac{\left[\mathbf{e}_{i}^{+}, \mathbf{f}_{j}^{+}\right]}{q-q^{-1}}=\delta_{i j} \mathbf{K}_{i}^{\prime+}+\omega_{i j} \mathbf{K}_{i}^{+}, \quad \frac{\left[\mathbf{e}_{i}^{-}, \mathbf{f}_{j}^{-}\right]}{q-q^{-1}}=\delta_{i j} \mathbf{K}_{i}^{-}-\omega_{i j} \mathbf{K}_{i}^{\prime-}
$$

and other standard quantum group relations, where $\omega_{i j} \in \mathbb{C}$.

Proposition

If $\mathcal{H}_{q, \omega}^{ \pm}(\mathfrak{g})$ are commuting copies, then

$$
\begin{aligned}
\mathbf{e}_{i} & =\mathbf{e}_{i}^{+}+\mathbf{K}_{i}^{+} \mathbf{e}_{i}^{-}, & \mathbf{f}_{i} & =\mathbf{f}_{i}^{-}+\mathbf{K}_{i}^{\prime-} \mathbf{f}_{i}^{+} \\
\mathbf{K}_{i} & =\mathbf{K}_{i}^{+} \mathbf{K}_{i}^{-} & \mathbf{K}_{i}^{\prime} & =\mathbf{K}_{i}^{\prime+} \mathbf{K}_{i}^{\prime-}
\end{aligned}
$$

gives a homomorphic image of $\mathcal{U}_{q}(\mathfrak{g})$.

Idea of Proof

Definition

Let $J \subset I$. The double Dynkin involution of $i \in I$ is the unique index $i^{* *} \in I$ such that

$$
\begin{aligned}
w_{0} s_{i}= & s_{i^{*}} w_{0}=s_{i^{*}} w_{J} \bar{w}=w_{J} s_{i^{* *}} \bar{w} . \\
& \Longleftrightarrow i^{* *}:=\left(i^{*}\right)^{*} W_{J}
\end{aligned}
$$

where $i^{* W_{J}}=i$ if $i \notin J$.

Decomposition Lemma

Lemma (Decomposition Lemma)

The embedding $\mathcal{H}_{q}^{+}(\mathfrak{g}) \hookrightarrow \mathcal{X}_{q}^{\left.\mathbf{Q (} \mathbf{i}_{0}\right)} \subset \mathcal{X}_{q}^{\mathbf{Q (\mathbf { i } _ { J })}} \otimes \mathcal{X}_{q}^{\mathbf{Q (\overline { \mathbf { i } })}}$ can be decomposed into the form

$$
\begin{aligned}
e_{i}^{+} & =\overline{e_{i}}+\overline{K_{i}} e_{i^{* *}}^{J}, & f_{i}^{+} & =f_{i}^{J}+K_{i}^{\prime J} \overline{f_{i}}, \\
K_{i}^{+} & =K_{i^{* *}}^{J} \overline{K_{i}}, & K_{i}^{\prime+} & =K_{i}^{\prime J} \overline{K_{i}^{\prime}}
\end{aligned}
$$

where $e_{i}^{J}=f_{i}^{J}=0$ and $K_{i}^{J}={K_{i}^{\prime}}^{J}=1$ if $i \notin J$, such that

Decomposition Lemma

Lemma (Decomposition Lemma)

The embedding $\mathcal{H}_{q}^{+}(\mathfrak{g}) \hookrightarrow \mathcal{X}_{q}^{\left.\mathbf{Q (} \mathbf{i}_{0}\right)} \subset \mathcal{X}_{q}^{\mathbf{Q (\mathbf { i } _ { J })}} \otimes \mathcal{X}_{q}^{\mathbf{Q (\overline { \mathbf { i } })}}$ can be decomposed into the form

$$
\begin{aligned}
e_{i}^{+} & =\overline{e_{i}}+\overline{K_{i}} e_{i^{* *}}^{J}, & f_{i}^{+} & =f_{i}^{J}+K_{i}^{\prime J} \overline{f_{i}}, \\
K_{i}^{+} & =K_{i^{* *}}^{J} \overline{K_{i}}, & K_{i}^{\prime+} & =K_{i}^{\prime J} \overline{K_{i}^{\prime}}
\end{aligned}
$$

where $e_{i}^{J}=f_{i}^{J}=0$ and $K_{i}^{J}=K_{i}^{\prime J}=1$ if $i \notin J$, such that

- $X_{i}^{J} \in \mathcal{X}_{q}^{\mathbf{Q}\left(\mathbf{i}_{J}\right)} \otimes 1$ and $\overline{X_{i}} \in 1 \otimes \mathcal{X}_{q}^{\mathbf{Q (\overline { \mathbf { i } })}}$ for $X=e, f, K, K^{\prime}$

Decomposition Lemma

Lemma (Decomposition Lemma)

The embedding $\mathcal{H}_{q}^{+}(\mathfrak{g}) \hookrightarrow \mathcal{X}_{q}^{\left.\mathbf{Q (} \mathbf{i}_{0}\right)} \subset \mathcal{X}_{q}^{\mathbf{Q (\mathbf { i } _ { J })}} \otimes \mathcal{X}_{q}^{\mathbf{Q (\overline { \mathbf { i } })}}$ can be decomposed into the form

$$
\begin{aligned}
e_{i}^{+} & =\overline{e_{i}}+\overline{K_{i}} e_{i^{* *}}^{J}, & f_{i}^{+} & =f_{i}^{J}+K_{i}^{\prime J} \overline{f_{i}}, \\
K_{i}^{+} & =K_{i^{* *}}^{J} \overline{K_{i}}, & K_{i}^{\prime+} & =K_{i}^{\prime J} \overline{K_{i}^{\prime}}
\end{aligned}
$$

where $e_{i}^{J}=f_{i}^{J}=0$ and $K_{i}^{J}=K_{i}^{\prime J}=1$ if $i \notin J$, such that

- $X_{i}^{J} \in \mathcal{X}_{q}^{\mathbf{Q}\left(\mathbf{i}_{J}\right)} \otimes 1$ and $\overline{X_{i}} \in 1 \otimes \mathcal{X}_{q}^{\mathbf{Q (\overline { i })}}$ for $X=e, f, K, K^{\prime}$
- $\left\{e_{i}^{J}, f_{i}^{J}, K_{i}^{J}, K_{i}^{\prime J}\right\} \simeq \mathcal{H}_{q}^{+}\left(\mathfrak{g}_{J}\right)$ in $\mathcal{X}_{q}^{\mathbf{Q (\mathbf { i } _ { J })}}$ where $\mathfrak{g}_{J} \subset \mathfrak{g}$.

Decomposition Lemma

Lemma (Decomposition Lemma)

The embedding $\mathcal{H}_{q}^{+}(\mathfrak{g}) \hookrightarrow \mathcal{X}_{q}^{\left.\mathbf{Q (} \mathbf{i}_{0}\right)} \subset \mathcal{X}_{q}^{\mathbf{Q (\mathbf { i } _ { J })}} \otimes \mathcal{X}_{q}^{\mathbf{Q (\overline { \mathbf { i } })}}$ can be decomposed into the form

$$
\begin{aligned}
e_{i}^{+} & =\overline{e_{i}}+\overline{K_{i}} e_{i^{* *}}^{J}, & f_{i}^{+} & =f_{i}^{J}+K_{i}^{\prime J} \overline{f_{i}}, \\
K_{i}^{+} & =K_{i^{* *}}^{J} \overline{K_{i}}, & K_{i}^{\prime+} & =K_{i}^{\prime J} \overline{K_{i}^{\prime}}
\end{aligned}
$$

where $e_{i}^{J}=f_{i}^{J}=0$ and $K_{i}^{J}=K_{i}^{\prime J}=1$ if $i \notin J$, such that

- $X_{i}^{J} \in \mathcal{X}_{q}^{\mathbf{Q}\left(\mathbf{i}_{J}\right)} \otimes 1$ and $\overline{X_{i}} \in 1 \otimes \mathcal{X}_{q}^{\mathbf{Q (\overline { i })}}$ for $X=e, f, K, K^{\prime}$
- $\left\{e_{i}^{J}, f_{i}^{J}, K_{i}^{J}, K_{i}^{J}\right\} \simeq \mathcal{H}_{q}^{+}\left(\mathfrak{g}_{J}\right)$ in $\mathcal{X}_{q}^{\left.\mathbf{Q (} \mathbf{i}_{J}\right)}$ where $\mathfrak{g}_{J} \subset \mathfrak{g}$.
- We have on $\mathcal{X}^{\mathbf{Q (i})}$ for some $\omega_{i j} \in\{0,1\}$,

$$
\left\langle\overline{e_{i}}, \overline{f_{i}}, \overline{K_{i}}, \overline{K_{i}^{\prime}}\right\rangle \simeq \mathcal{H}_{q, \omega}^{+}(\mathfrak{g})
$$

Proof of Lemma

- Decomposition of $\mathbf{f}_{i}, K_{i}^{\prime}$ follows from explicit calculation using Feigin's embedding.
- Decomposition of e_{i}, K_{i} requires combinatorics of Coxeter moves:
\square
Lemma (I. (2020))
If $l\left(s_{i} w s_{j}\right)=l(w)$, then there is a sequence of Coxeter moves that
brings the reduced word of $w \in W$:
$\mathbf{i}=(i, \ldots,) \mapsto \mathbf{i}^{\prime}=(\ldots, j)$
where the sequence of Coxeter moves splits into 2 stages, the second of
which increase in indices consecutively from first to last letter.

Proof of Lemma

- Decomposition of $\mathbf{f}_{i}, K_{i}^{\prime}$ follows from explicit calculation using Feigin's embedding.
- Decomposition of \mathbf{e}_{i}, K_{i} requires combinatorics of Coxeter moves:

```
Lemma (I. (2020))
brings the reduced word of w\inW
    i}=(i,\ldots,)\mapsto\mp@subsup{\mathbf{i}}{}{\prime}=(\ldots,j
where the sequence of Coxeter moves splits into 2 stages, the second of
which increase in indices consecutively from first to last letter.
```


Proof of Lemma

- Decomposition of $\mathbf{f}_{i}, K_{i}^{\prime}$ follows from explicit calculation using Feigin's embedding.
- Decomposition of \mathbf{e}_{i}, K_{i} requires combinatorics of Coxeter moves:

Lemma (I. (2020))

If $l\left(s_{i} w s_{j}\right)=l(w)$, then there is a sequence of Coxeter moves that brings the reduced word of $w \in W$:

$$
\mathbf{i}=(i, \ldots,) \mapsto \mathbf{i}^{\prime}=(\ldots, j)
$$

where the sequence of Coxeter moves splits into 2 stages, the second of which increase in indices consecutively from first to last letter.

Proof of Lemma

Example

$\mathfrak{g}=\mathfrak{s l}_{5}: \mathbf{i}=(1,2,1,3,4,3,2,3,1,2) \leadsto(\ldots \ldots \ldots .4)$?
Stage 1:

$$
(1,2,1,3,4,3,2,3,1,2) \leadsto(1,2,1,3,2,1,4,3,2,1)
$$

	$(1,2,1,3,2,1,4,3,2,1)$
\sim	$(2,1,2,3,2,1,4,3,2,1)$
\sim	$(2,1,3,2,3,1,4,3,2,1)$
\sim	$(2,1,3,2,1,3,4,3,2,1)$
\sim	$(2,1,3,2,1,4,3,4,2,1)$
\sim	$(2,1,3,2,1,4,3,2,4,1)$

Proof of Lemma

Example

$\mathfrak{g}=\mathfrak{s l}_{5}: \mathbf{i}=(1,2,1,3,4,3,2,3,1,2) \leadsto(\ldots \ldots \ldots ., 4)$?
Stage 1:

$$
(1,2,1,3,4,3,2,3,1,2) \leadsto(1,2,1,3,2,1,4,3,2,1)
$$

Stage 2:

$$
\begin{aligned}
& (1,2,1,3,2,1,4,3,2,1) \\
\sim & (2,1,2,3,2,1,4,3,2,1) \\
\sim & (2,1,3,2,3,1,4,3,2,1) \\
\sim & (2,1,3,2,1,3,4,3,2,1) \\
\sim & (2,1,3,2,1,4,3,4,2,1) \\
\sim & (2,1,3,2,1,4,3,2,4,1) \\
\sim & (2,1,3,2,1,4,3,2,1,4)
\end{aligned}
$$

Example: E_{6}

$$
A_{1} \subset A_{2} \subset A_{3} \subset D_{4} \subset D_{5} \subset E_{6}
$$

Example: E_{6}

$D_{5} \subset E_{6}$

Example: B_{4}

$$
J=\{1,2,3\} \subset I=\{1,2,3,4\}, \quad 1=\text { short }
$$

Further Discussions

- Lusztig's braid group action T_{i} as cluster mutations on $\mathbf{Q}(\overline{\mathbf{i}})$?

$$
\mathbf{e}_{i} \longleftrightarrow \mathbf{f}_{i^{*}}, \quad \mathbf{f}_{i} \longleftrightarrow \mathbf{e}_{i^{*}}
$$

- Geometric meaning of the cluster structure of $\mathbf{D}(\overline{\mathbf{i}})$
- partial configuration space $\operatorname{Conf}_{\bar{w}}^{e}(\mathcal{A})$.
- Combinatorial description of $\mathcal{U}_{q}(\mathfrak{g}) \hookrightarrow \mathbf{X}_{q}^{\mathrm{Q}}$?
- $\pi\left(\mathbf{e}_{i}\right), \pi\left(\mathbf{f}_{i}\right)$ are polynomials in X_{i}, not Laurent.
- Type A_{n} : counting of cycles in dual plabic graphs.
- Tensor product decompositions of $\mathcal{P}_{\lambda}^{J} \otimes \mathcal{P}_{\lambda^{\prime}}^{J^{\prime}}$?
- \mathcal{R} matrix well-defined \Longrightarrow new braided tensor category?
- Study the spectrum of Casimir operators \mathbf{C}_{k}
- Proved for $J=\emptyset$ and $\mathfrak{g}=\mathfrak{l}_{n+1}$
- Generalization to other modules of affine quantum groups $\mathcal{U}_{q}\left(\widehat{g}_{\mathbb{R}}\right)$?

Further Discussions

- Lusztig's braid group action T_{i} as cluster mutations on $\mathbf{Q}(\overline{\mathbf{i}})$?

$$
\mathbf{e}_{i} \longleftrightarrow \mathbf{f}_{i^{*}}, \quad \mathbf{f}_{i} \longleftrightarrow \mathbf{e}_{i^{*}}
$$

- Geometric meaning of the cluster structure of $\mathbf{D}(\overline{\mathbf{i}})$
- partial configuration space $\operatorname{Conf} \frac{e}{\bar{w}}(\mathcal{A})$. [Goncharov-Shen]
- Combinatorial description of $\mathcal{U}_{q}(\mathfrak{g}) \hookrightarrow \mathbf{X}_{q}^{\mathrm{Q}}$.
- $\pi\left(\mathbf{e}_{i}\right), \pi\left(\mathbf{f}_{i}\right)$ are polynomials in X_{i}, not Laurent.
- Type A_{n} : counting of cycles in dual plabic graphs.
- Tensor product decompositions of $\mathcal{P}_{\lambda}^{J} \otimes \mathcal{P}_{\lambda^{\prime}}^{J^{\prime}}$?
- \mathcal{R} matrix well-defined \Longrightarrow new braided tensor category?
- Study the spectrum of Casimir operators \mathbf{C}_{k}
- Proved for $J=\emptyset$ and $\mathfrak{g}=\mathfrak{s l}_{n+1}$
- Generalization to other modules of affine quantum groups $\mathcal{U}_{q}\left(\widehat{\mathfrak{g}}_{\mathbb{R}}\right)$?

Further Discussions

- Lusztig's braid group action T_{i} as cluster mutations on $\mathbf{Q}(\overline{\mathbf{i}})$?

$$
\mathbf{e}_{i} \longleftrightarrow \mathbf{f}_{i^{*}}, \quad \mathbf{f}_{i} \longleftrightarrow \mathbf{e}_{i^{*}}
$$

- Geometric meaning of the cluster structure of $\mathbf{D}(\overline{\mathbf{i}})$
- partial configuration space $\operatorname{Conf}_{\bar{w}}^{e}(\mathcal{A})$. [Goncharov-Shen]
- Combinatorial description of $\mathcal{U}_{q}(\mathfrak{g}) \hookrightarrow \mathbf{X}_{q}^{\mathbf{Q}}$?
- $\pi\left(\mathbf{e}_{i}\right), \pi\left(\mathbf{f}_{i}\right)$ are polynomials in X_{i}, not Laurent.
- Type A_{n} : counting of cycles in dual plabic graphs.

- Study the spectrum of Casimir operators \mathbf{C}_{k}
- Proved for $J=\emptyset$ and $\mathfrak{a}=\mathfrak{s l}_{n+1}$
- Generalization to other modules of affine quantum groups $\mathcal{U}_{q}\left(\widehat{g}_{\mathbb{R}}\right)$?

Further Discussions

- Lusztig's braid group action T_{i} as cluster mutations on $\mathbf{Q}(\overline{\mathbf{i}})$?

$$
\mathbf{e}_{i} \longleftrightarrow \mathbf{f}_{i^{*}}, \quad \mathbf{f}_{i} \longleftrightarrow \mathbf{e}_{i^{*}}
$$

- Geometric meaning of the cluster structure of $\mathbf{D}(\overline{\mathbf{i}})$
- partial configuration space $\operatorname{Conf}_{\bar{w}}^{e}(\mathcal{A})$. [Goncharov-Shen]
- Combinatorial description of $\mathcal{U}_{q}(\mathfrak{g}) \hookrightarrow \mathbf{X}_{q}^{\mathbf{Q}}$?
- $\pi\left(\mathbf{e}_{i}\right), \pi\left(\mathbf{f}_{i}\right)$ are polynomials in X_{i}, not Laurent.
- Type A_{n} : counting of cycles in dual plabic graphs.
- Tensor product decompositions of $\mathcal{P}_{\lambda}^{J} \otimes \mathcal{P}_{\lambda^{\prime}}^{J^{\prime}}$?
- \mathcal{R} matrix well-defined \Longrightarrow new braided tensor category?
- Study the spectrum of Casimir operators \mathbf{C}_{k}.
- Proved for $J=\emptyset$ and $\mathfrak{g}=\mathfrak{s l}_{n+1}$. [Schrader-Shapiro]

Further Discussions

- Lusztig's braid group action T_{i} as cluster mutations on $\mathbf{Q}(\overline{\mathbf{i}})$?

$$
\mathbf{e}_{i} \longleftrightarrow \mathbf{f}_{i^{*}}, \quad \mathbf{f}_{i} \longleftrightarrow \mathbf{e}_{i^{*}}
$$

- Geometric meaning of the cluster structure of $\mathbf{D}(\overline{\mathbf{i}})$
- partial configuration space $\operatorname{Conf} \frac{e}{w}(\mathcal{A})$. [Goncharov-Shen]
- Combinatorial description of $\mathcal{U}_{q}(\mathfrak{g}) \hookrightarrow \mathbf{X}_{q}^{\mathbf{Q}}$?
- $\pi\left(\mathbf{e}_{i}\right), \pi\left(\mathbf{f}_{i}\right)$ are polynomials in X_{i}, not Laurent.
- Type A_{n} : counting of cycles in dual plabic graphs.
- Tensor product decompositions of $\mathcal{P}_{\lambda}^{J} \otimes \mathcal{P}_{\lambda^{\prime}}^{J^{\prime}}$?
- \mathcal{R} matrix well-defined \Longrightarrow new braided tensor category?
- Study the spectrum of Casimir operators \mathbf{C}_{k}.
- Proved for $J=\emptyset$ and $\mathfrak{g}=\mathfrak{s l}_{n+1}$. [Schrader-Shapiro]
- Generalization to other modules of affine quantum groups $\mathcal{U}_{q}\left(\widehat{\mathfrak{g}}_{\mathbb{R}}\right)$?

Thank you for your attention!

