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Plan:

e Intermediate symplectic characters
e Determinant formulas
e Application 1 : Brent—Krattenthaler—Warnaar's identity

e Application 2 : shifted plane partition enumeration

This talk is based on

e A bialternant formula for odd symplectic characters and its applica-

tion, Josai Math. Monographs 12 (2020), 99-116. arXiv:1905.12964.

e Intermediate symplectic characters and shifted plane partitions of
shifted double staircase shape, arXiv:2009.14037.



Intermediate Symplectic Characters



Schur functions (irreducible characters of GLy,;)

Let n be a positive integer, and A a partition of length < n. An n-
semistandard tableau of shape A is a filling of the boxes in the Young
diagram D(\) with entries from 1,2,...,n such that

e the entries in each row are weakly increasing;
e the entries in each column are strictly increasing;

Then the Schur function s) (21, ..., x),) is defined by

n

T

SA(xl,...,mn):Za:T, mT:sz%@sm )
T 1=1

where T" runs over all n-semistandard tableaux of shape A.
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Symplectic characters (irreducible characters of Spy,,)

An n-symplectic tableau of shape A is a filling of the boxes in the
Young diagram D()) with entries from 1 <1 <2<2<.---<n<7n
such that

e the entries in each row are weakly increasing;
e the entries in each column are strictly increasing;
e the entries in the ith row are greater than or equal to 7.

Then the symplectic character spy(x1,...,x,) is defined by
n _
v'sinT)—#(1'sinT
spa(x1, ..., Tp) :ZwT, wT:H:L“Z%( )= )
T 1=1

where T' runs over all n-symplectic tableaux of shape .
111(1]2]4
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Intermediate symplectic tableaux

Let n and £ be two integers such that n > 0and 0 < £ <n, and A a
partition of length < n. A (k, n — k)-symplectic tableau of shape ) is a
filling of the boxes in the Young diagram D()\) with entries from

1<1<2<2<---<k<k<k+l<k+2<---<n}
satisfying the following three conditions:
e the entries in each row are weakly increasing;
e the entries in each column are strictly increasing;
e the entries in the 7th row are greater than or equal to 7.

For example,

1
I'= |2
4
is a (2, 3)-symplectic tableau of shape (5, 3, 2).
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Intermediate symplectic tableaux

Let n and k be two integers such that n > 0 and 0 < k£ < n. A
(k,n — k)-symplectic tableau of shape A is a filling of the boxes in the
Young diagram D(\) with entries from

1<1<2<2<---<k<k<k+l<k+2<---<n}

satisfying the following three conditions:
e [ he entries in each row are weakly increasing.
e The entries in each column are strictly increasing.
e the entries in the ith row are greater than or equal to «.
If £ =0 or kK =n, then

(0, n)-symplectic tableaux = n-semistandard tableaux,
(n, 0)-symplectic tableaux = n-symplectic tableaux.



Intermediate symplectic characters
Given a partition A of length < n, we define the (£, n — k)-symplectic

character Sp()\k’n_k>(x1, ., xp) by
kn—k
Spg\ " )(azl, e BTy ) = ZwT,
T
where T" runs over all (k,n — k)-symplectic tableaux of shape A, and
k
2T H xz%(zs in T)—#(i'sinT) ﬁ $Z%(zs in T).
1=1 1=k+1
If £k =0 or k = n, then
Spg\o’n)(m) = s\ (@) : Schur function,
(n,0)

spy (@) = spy(x) : symplectic character.



Intermediate symplectic groups

Let V = C"*F be the (n + k)-dimensional complex vector space with
basis e1,€7,..., €, €, €y1,-- -, €n- Let (, ) be the skew-symmetric
bilinear form (not necessarily non-degenerate) on V' defined by

1 ifa=iand B=1forl <i<k,
(easeg) = § —1 ifao=7and B=1dforl1 <i<Ek,

0  otherwise.

Then the intermediate symplectic group Spyj,. ,,_; is defined by
Spokn—k =19 € GL(V) : (gv, gw) = (v,w) (v,w € V)}.
If Kk =0 or k =n, then
Sp(),n = GLy, Sp2n,0 = Spay,.

If & =mn — 1, then the group Spyy, 1 is called the odd symplectic group.



Representations of intermediate symplectic groups

Recall that Spyy. ,,_x € GL(V) with V = C"**.
Theorem (Proctor) Let A\ be a partition of d with length < n. Let
V®d

VA = an irreducible GL,, | p-submodule of corresp. to A,

VOA = the trace-free subspace of VA

Then
o VO)‘ is an indecomposable Spyj. ,,_j-module.

o VOA has a weight basis indexed by (k,n — k)-symplectic tableaux of
shape A.

Hence

Spg\k’n_k>($1, ey T|Tpaq, - ., xp) = the character of VO)‘.



Determinant Formulas



Jacobi—Trudi formulas for sy and sp)
For a partition of length < n, we have

S)\(I‘l, e ,an) = det (hki—i#]'(xl’ o 7$n)> 1<q j<n7

and
1 By i ( ﬂ, L ah
spr(X1, ..., Tn) :§det erz A (2 b il) )
where hy(x1,...,2y) is the rth complete symmetric polynomial in x1,

., Tn and

hy(x fl,..., i1) hy(x1, 2] 1,...,xn,x7;1).



Jacobi-Trudi formulas for sp(k:n—k) (1/2)

By using a lattice path interpretation of (k, n — k)-symplectic tableaux
and Lindstrom—Gessel-Viennot lemma, we have

Proposition For a partition A of length < n, we have
spg\k’n_k)(w) = det Kg\k’n_k),

where Kg\hn_k) is the n X m matrix with (7, j) entry given by

1 1 : :
{hAiz’Jrj(xjaij yoe ey Thy T Ty qs---52p) f1 <7<k,

h)\i_i_i_j(xj,...,in) |fk+1§]§n



Jacobi-Trudi formulas for sp(k:n—k) (2/2)

: : : —k :
By performing column operations on the matrix Kg\k’n >, we obtain
Proposition For a partition A of length < n, we have
kn—k kn—k
Spg\ . )(:c) = det H& . ),

(k,n—Fk) . L o .
where H is the n X n matrix with (7, j) entry given by

(

h()\i—i—i-l)('xitl) s ax]:glﬂ? Lht-15 -« - - 73371) If.] =1,
) how—ip @ oy T, )
+h(Ai—i—j+2)(ﬂ3fﬂ, e ,fﬁfl,ﬂikﬂy coxy) 2S5 <k,
\h)\i_i+j<$]€+1,...,xn> |fk‘|‘1 S] S n.

This formula reduces to the Jacobi—Trudi formulas for Schur functions
(k = 0) and symplectic Schur functions (kK = n).



Bialternant formulas for sy and sp)
The Schur functions and the symplectic Schur functions are expressed
as ratios of two determinants:

det [zt
J 1<i, j<n
sy(x1,...,x,) = ==
det (x?_z)
1<, 7<n
5py (2 z,) J J 1<i, j<n
ANLLy e sdbn) — ' . ;
B _(n—i+1
det (x? (- z; (=it )>
1<i,7<n
and
det (3;7?—@) = H (33@ — a:j),
T J1<i j<n 11
1<i<yi<n
. —(n—i+1
det (ZL’;L +1 l'j (n 1+ ))
1<i,5<n
n

B | 1 12 1/2 —1/2 —1/2y 1/2 —1/2  —1/2 1/2
= 1| (zi — 27" H (2, )" =y P ) (2 z; x7).



Bialternant formulas for sp(k:"—k) (1/2)

Theorem  Given a partition A of length < n, we define Ag\km_k) t

be the n x n matrix with (7, j) entry given by

0]

AL ifk+1<j<n,

1 : :
{h)\7:+ki+1(5’7j7 Thil,---,Tpn) — h)\7;+k—z'+1(ﬂi‘j ST,y 1 <7<k,
J

Then we have

T det ALY
9 o o oy n — .
4 det Aé)k’n_k)

This formula reduces to the bialternant formulas for Schur functions
(k = 0) and symplectic Schur functions (k = n).



Bialternant formulas for sp(k:"—k) (1/2)

Theorem Given a partition A\ of length < n, we define Ag\kﬁ_k)

be the n x n matrix with (7, j) entry given by

to

-1 . .
{hAﬁsz(%‘» Lht-1y -+ - 7%) - h)\¢+k—i+1(37j s Lh+15 - - - ,Jin) if 1 <j <k,

:Cj-ﬁn_i ifk+1<7<n,

Then we have

Sp</€,n—/€) (21 Tn) = det Ag\kjn—k)
e, Tp) =
4 det Aé)k’n_k)

Remark The denominator factors as
k

Jot Aé)k,n—k) _ H (xz _ 5’3;1) H (:UZ-I/Q:U}/Z B x;1/2x]-_1/2) (93;/23;]._1/2 B 332'_1/2517}/2)

i=1 1<i<j<k

X H (zi — ).

k+1<i<j<n



Sketch of proof

We can find an n X n matrix M such that

AVBIR) _ prlkn) g

for any partitions A of length < n. Since Hékm_k) Is a upper-triangular
matrix with diagonal entries 1, we have

det Aé)k’n_k> = det Hék’n_k) - det M = det M.
Hence we obtain
det Ag\k’n_k) = det H&k’n_m - det M = det H&k’n_m - det A@k’n_k>,
" R gy det AlFn=F)

p{E" ) () = et HFPH) —

0



Bialternant formulas for sp(k:"—k) (2/2)

Corollary  Given a partition A\ of length < n, we define ﬁg\k’n_m

be the n x n matrix with (7, j) entry given by

to

( Ni+k—i+1 —(N\j+k—i+1)
Y _ if1<j<k
aij = [Lopa (1 - xj_lxl) [T (1 — zjm) S
Ei ifk+1<j<n.
Then we have
—(kn—Fk)
(kan_k> det A)\
SP) (21,...,xp) = —
det A(<b n—k)

This formula also reduces to the bialternant formulas for Schur func-
tions (k = 0) and symplectic Schur functions (k = n).



Application 1
Brent—Krattenthaler—Warnaar’s identity



Brent—Krattenthaler—Warnaar’s identity

Brent, Krattenthaler and Warnaar found the following identity in their
study of discrete analogues of Macdonald—Mehta integrals.

Theorem (Brent—Krattenthaler—Warnaar) For a nonnegative integer r,
we have

_ 1 1
2@zl s w, yl2)
AC(rnt)
:Sp<r2n+1)($17°"7£En7y17°°'7yn72)7

where A runs over all partitions with [(A\) < n+1and A\| <.

We can use the bialternant formula for spg\n’1> together with the Cauchy—

Binet formula to give an alternate proof.



Sketch of proof (1/2)

Let T'(x|z) = (ti,p)1§i§n+1,0§p§r+n
matrix with (¢, p) entry

1 — . .
_ 1=z 2) =z P/(1—w2) if1<i<n,
2P if i =n+1.

be the (n + 1) X (r +n+1)

tip
Then we have
det (A1 +n,o+n—1,.... 0+ 1, A\11)
detT'(n,n —1,...,1,0) ’
where T'(I) is the submatrix of T" obtained by picking up columns indexed
by I. By applying the Cauchy—Binet formula

> det X(I)det Y(I) = det (XY),
1

sp<”’1>(a:1, o xplz) =

we can express the summation of BKW formula in terms of the determi-
nant of T'(x|2)T(y|z).



Sketch of proof (2/2)
We can evaluate det (T'(z|2)'T'(y|z)) by using the following Lemma.

Lemma Let C = (Oiaj)lgi,jgnJrl and V' = (Viaj)lgi,j§2n+1 be the
matrices given by
(1 —z2)(1 —y;2)  ailz —2)(1 = y;2)
i e
Ll —zia)(y; —2)  eibjlwi —2)y;—2) o <iji<n
o= Ti — Y 1 — 2y,
" 1 —a; ifi=n+1land1<j <n,
1 — b, ifl<i<nandj=n+1,
1 —
\1_; ifi=j=n+l,
Vig=al = a7 Vi =yl = by Vo =20 = e

Then we have

(—1)"
det C' = det V.
(1= 22 T T (2 — yy) (1 — 2y5)




Application 2
Shifted Plane Partition Enumeration



Shifted plane partitions

Given a strict partition 1, a shifted plane partition of shape u is a filling
of the shifted Young diagram S(u) with nonnegative integers where the
entries are weakly decreasing along rows and down columns.

Example

are the shifted diagram of (6,4,2,1) and a shifted plane partition of
shape (6,4, 2, 1) respectively.
We put

A" (S(u)) = {shifted plane partitions of shape x with entries < m}.



Shifted plane partitions of shifted double staircase shape

We put 6, = (r,7 —1,...,2,1). Hopkins and Lai prove the following
theorem by counting lozenge tilings of a certain region in the triangular
lattice.
Theorem (Hopkins-Lai) If 0 < k < n, then the number of shifted
plane partitions of shape

on+or=Mm+kn+k—=2,...n—k+2n—kn—k—1,...,21)
with entries bounded by m is equal to
m-+t1+7—1 m+1+
#A(S(@On+ o) = ]] 11 .

o T
1<i<j<n T 1<icj<k LY

3(54 -+ 52) =




Bijection

For a shifted plane partition o, we define the profile of o to be the
partition ((7171, 0292, - )
Lemma For a partition A, there exists a bijection between

e shifted plane partitions of shape d,, + 0;. with profile A\, and
e (k,n — k)-symplectic tableaux of shape A.

Example lf n =4 and k = 2, then

al42]2]11 6laf4]2 1121273
312]2]1 1) [4]3]1 2 [2]2]4
11 2 I3

0

(1) conjugate each row;
(2) replace 1,2,3,4,5,6 with 4,3,2,2,1,1 respectively.



Generating functions and intermediate symplectic characters
For 0 € A™(S(dy, + 61.)), we define

n—k—1 n+k—1
o) = kto(o) + Z t(o) = ntoi(o) + Y (=11 —n+ k+ Dt(o),
l=n—Fk
| n—k—1 n+k—1
v(o) = (k: — 5) to(o) + Z ti(o) — nt,_x(o) + Z 1) — o k) o),
1=0 I=n—Fk

where ¢;(0) = >, 0; ;4 is the [th trace of 0. If k =0, then we have

E 05, § Ozz+ § 045,

1<i<i<n 1<i<y<n

and, if £ = n, then we have
2n—1 2n—1

w(o) =Y (=11 + Do), v(o) :——to +Z 1)ty (o

[=0



Generating functions and intermediate symplectic characters
For 0 € A™(S(dy, + 61.)), we define

n—k—1 n+k—1
o) = kto(o) + Z t(o) = ntoi(o) + Y (=11 —n+ k+ Dt(o),
l=n—Fk
| n—k—1 n+k—1
v(o) = (k — 5) to(o) + Z ti(o) — nt,_x(o) + Z 1) — o k) o),
1=0 I=n—Fk

where ¢;(0) = >, 0; ;1 is the [th trace of 0.

Proposition For a fixed partition A, the generating functions of shifted
plane partitions of shape On + 5k with profile A are given by

Zq = SpA ", @,
qu(a) _ Sp&k,n—k)(ql/% 32 qn—1/2>.



Character identity

By using the bialternant formula and the Ishikawa—\Wakayama minor
summation formula, we can prove
Theorem Let 0 < k <n. For a nonnegative integer m, we have

(kvn_k)
§ SP\ <$1,...,$k‘$k+1,...,$n)
AC(m™)

— of(m/2)n)<$1, e, Ty Sp(<m/2>k)<f’317 o @) (T ZEn)m/Z

)

where 05 and sp,, are the odd orthogonal and symplectic character cor-

responding to a partition v respectively.
If £k =0, then we have
Z sx(x1,...,x,) = Ogm/2)n)<x1, ) - ()™,
AC(m™)
which Macdonald used to prove the MacMahon and Bender—Knuth con-
jectures on symmetric plane partitions.



Application to shifted plane partition enumeration

By specializing x; = ¢ or z; = qi_1/2, we obtain
Corollary
Z qw(a)_ 1 H [m‘|—/&‘|—]—1] [m‘I_Z‘i_]]
 mk(k+1)/2 - - . : .
o €A™ (S(0n+0y)) gy 1<i<j<n i+7—1 1<i<j<k i+l

o 1 4 m/24+i—1/2 m+i+j—1]
2. q()ZQW%Qr[ i —1/2] 11 i+ 5 — 1]

o€ A" (S(0p+91)) i=1 1<i<j<n
k )
m /2 + ] m +i+ ]
U el § G o
i=1 1<i<j<k

By putting ¢ = 1, we have
Corollary (Hopkins—Lai)
m—+i—+j—1 m+i+
#A(S0n+ )= |] 1] —

s Z
1<i<j<n T 1<icj<k T




Variations

Theorem Let 0 < k£ < n. For a nonnegative even integer m, we have

kon—k
S ol a0

AC(m™):even

2
= SD((m/2)m) (L1 -+ Tn) - Py (E15 -5 L) - (T - )™,
Theorem Let 0 < k < n. For a nonnegative integer a and m, we
have

(k,n—k)
Z 5Py (Ila"°7xk’xk+1a'°-axn)
(a™)CAC((a+m)")

— Oim/%n) (xla s 75672) | Sp((m/2+a>/€) (xla s 733]{) ) (xk—l—l Co xn)m/2+a-
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