Intermediate Symplectic Characters and Applications

Soichi OKADA (Nagoya University)

Recent Advances in Combinatorial Representation Theory
RIMS (online), October 7, 2020

Plan:

- Intermediate symplectic characters
- Determinant formulas
- Application 1: Brent-Krattenthaler-Warnaar's identity
- Application 2 : shifted plane partition enumeration

This talk is based on

- A bialternant formula for odd symplectic characters and its application, Josai Math. Monographs 12 (2020), 99-116. arXiv:1905.12964.
- Intermediate symplectic characters and shifted plane partitions of shifted double staircase shape, arXiv:2009.14037.

Intermediate Symplectic Characters

Schur functions (irreducible characters of GL_{n})

Let n be a positive integer, and λ a partition of length $\leq n$. An n semistandard tableau of shape λ is a filling of the boxes in the Young diagram $D(\lambda)$ with entries from $1,2, \ldots, n$ such that

- the entries in each row are weakly increasing;
- the entries in each column are strictly increasing;

Then the Schur function $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ is defined by

$$
\left.s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T} \boldsymbol{x}^{T}, \quad \boldsymbol{x}^{T}=\prod_{i=1}^{n} x_{i}^{\#(i ' s} \text { in } T\right)
$$

where T runs over all n-semistandard tableaux of shape λ.

$$
T=\begin{array}{|l|l|l|l|l}
\hline 1 & 1 & 2 & 2 & 4 \\
\hline 2 & 3 & 3 & &
\end{array}, \quad \boldsymbol{x}^{T}=x_{1}^{2} x_{2}^{3} x_{3}^{2} x_{4}^{3}
$$

Symplectic characters (irreducible characters of $\mathrm{Sp}_{2 n}$)

An n-symplectic tableau of shape λ is a filling of the boxes in the Young diagram $D(\lambda)$ with entries from $1<\overline{1}<2<\overline{2}<\cdots<n<\bar{n}$ such that

- the entries in each row are weakly increasing;
- the entries in each column are strictly increasing;
- the entries in the i th row are greater than or equal to i.

Then the symplectic character $\operatorname{sp}_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ is defined by

$$
\left.\operatorname{sp}_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T} \boldsymbol{x}^{T}, \quad \boldsymbol{x}^{T}=\prod_{i=1}^{n} x_{i}^{\#(i ' s ~ i n ~} T\right)-\#(\bar{i} \text { 's in } T)
$$

where T runs over all n-symplectic tableaux of shape λ.

$$
T=\begin{array}{|l|l|l|l|l}
\hline 1 & 1 & \overline{1} & \overline{2} & 4 \\
\hline 2 & \overline{2} & 3 & & \\
\hline \overline{4} & 5 & &
\end{array}, \quad \boldsymbol{x}^{T}=x_{1} x_{2}^{-1} x_{3} x_{5}
$$

Intermediate symplectic tableaux

Let n and k be two integers such that $n>0$ and $0 \leq k \leq n$, and λ a partition of length $\leq n$. $\mathrm{A}(k, n-k)$-symplectic tableau of shape λ is a filling of the boxes in the Young diagram $D(\lambda)$ with entries from

$$
\{1<\overline{1}<2<\overline{2}<\cdots<k<\bar{k}<k+1<k+2<\cdots<n\}
$$

satisfying the following three conditions:

- the entries in each row are weakly increasing;
- the entries in each column are strictly increasing;
- the entries in the i th row are greater than or equal to i.

For example,

$$
T=\begin{array}{|l|l|l|l|l|}
\hline \overline{1} & 2 & 2 & 3 & 4 \\
\hline 2 & \overline{2} & 5 & & \\
\hline 4 & 4 & & \\
\hline & & & \\
\hline
\end{array}
$$

is a (2,3)-symplectic tableau of shape $(5,3,2)$.

Intermediate symplectic tableaux

Let n and k be two integers such that $n>0$ and $0 \leq k \leq n$. A ($k, n-k$)-symplectic tableau of shape λ is a filling of the boxes in the Young diagram $D(\lambda)$ with entries from

$$
\{1<\overline{1}<2<\overline{2}<\cdots<k<\bar{k}<k+1<k+2<\cdots<n\}
$$

satisfying the following three conditions:

- The entries in each row are weakly increasing.
- The entries in each column are strictly increasing.
- the entries in the i th row are greater than or equal to i.

If $k=0$ or $k=n$, then
$(0, n)$-symplectic tableaux $=n$-semistandard tableaux,
($n, 0$)-symplectic tableaux $=n$-symplectic tableaux.

Intermediate symplectic characters

Given a partition λ of length $\leq n$, we define the $(k, n-k)$-symplectic character $\operatorname{sp}_{\lambda}^{(k, n-k)}\left(x_{1}, \ldots, x_{n}\right)$ by

$$
\operatorname{sp}_{\lambda}^{(k, n-k)}\left(x_{1}, \ldots, x_{k} \mid x_{k+1}, \ldots, x_{n}\right)=\sum_{T} \boldsymbol{x}^{T}
$$

where T runs over all $(k, n-k)$-symplectic tableaux of shape λ, and

$$
\left.\boldsymbol{x}^{T}=\prod_{i=1}^{k} x_{i}^{\#(i ' s \text { in } T)-\#(\bar{i} ' s \text { in } T)} \prod_{i=k+1}^{n} x_{i}^{\#(i ' s} \text { in } T\right)
$$

If $k=0$ or $k=n$, then

$$
\begin{gathered}
\operatorname{sp}_{\lambda}^{(0, n)}(\boldsymbol{x})=s_{\lambda}(\boldsymbol{x}): \text { Schur function, } \\
\operatorname{sp}_{\lambda}^{(n, 0)}(\boldsymbol{x})=\operatorname{sp}_{\lambda}(\boldsymbol{x}): \text { symplectic character. }
\end{gathered}
$$

Intermediate symplectic groups

Let $V=\mathbb{C}^{n+k}$ be the $(n+k)$-dimensional complex vector space with basis $e_{1}, e_{\overline{1}}, \ldots, e_{k}, e_{\bar{k}}, e_{k+1}, \ldots, e_{n}$. Let \langle,$\rangle be the skew-symmetric$ bilinear form (not necessarily non-degenerate) on V defined by

$$
\left\langle e_{\alpha}, e_{\beta}\right\rangle= \begin{cases}1 & \text { if } \alpha=i \text { and } \beta=\bar{i} \text { for } 1 \leq i \leq k \\ -1 & \text { if } \alpha=\bar{i} \text { and } \beta=i \text { for } 1 \leq i \leq k \\ 0 & \text { otherwise } .\end{cases}
$$

Then the intermediate symplectic group $\mathbf{S p}_{2 k, n-k}$ is defined by

$$
\mathbf{S p}_{2 k, n-k}=\{g \in \mathbf{G} \mathbf{L}(V):\langle g v, g w\rangle=\langle v, w\rangle(v, w \in V)\} .
$$

If $k=0$ or $k=n$, then

$$
\mathbf{S p}_{0, n} \cong \mathbf{G} \mathbf{L}_{n}, \quad \mathbf{S p}_{2 n, 0} \cong \mathbf{S p}_{2 n}
$$

If $k=n-1$, then the group $\mathbf{S p}_{2 k, 1}$ is called the odd symplectic group.

Representations of intermediate symplectic groups

Recall that $\mathbf{S p}_{2 k, n-k} \subset \mathbf{G L}(V)$ with $V=\mathbb{C}^{n+k}$.
Theorem (Proctor) Let λ be a partition of d with length $\leq n$. Let $V^{\lambda}=$ an irreducible $\mathbf{G L}_{n+k}$-submodule of $V^{\otimes d}$ corresp. to λ, $V_{0}^{\lambda}=$ the trace-free subspace of V^{λ}.
Then

- V_{0}^{λ} is an indecomposable $\mathbf{S p}_{2 k, n-k}$-module.
- V_{0}^{λ} has a weight basis indexed by $(k, n-k)$-symplectic tableaux of shape λ.
Hence

$$
\operatorname{sp}_{\lambda}^{(k, n-k)}\left(x_{1}, \ldots, x_{k} \mid x_{k+1}, \ldots, x_{n}\right)=\text { the character of } V_{0}^{\lambda} .
$$

Determinant Formulas

Jacobi-Trudi formulas for s_{λ} and $\mathrm{sp}_{\boldsymbol{\lambda}}$

For a partition of length $\leq n$, we have

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(h_{\lambda_{i}-i+j}\left(x_{1}, \ldots, x_{n}\right)\right)_{1 \leq i, j \leq n}
$$

and

$$
\operatorname{sp}_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{2} \operatorname{det}\binom{h_{\lambda_{i}-i+j}\left(x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right)}{+h_{\lambda_{i}-i-j+2}\left(x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right)}_{1 \leq i, j \leq n}
$$

where $h_{r}\left(x_{1}, \ldots, x_{n}\right)$ is the r th complete symmetric polynomial in x_{1}, \ldots, x_{n} and

$$
h_{r}\left(x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right)=h_{r}\left(x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right) .
$$

Jacobi-Trudi formulas for $\mathrm{sp}^{(k, n-k)}(1 / 2)$

By using a lattice path interpretation of $(k, n-k)$-symplectic tableaux and Lindström-Gessel-Viennot lemma, we have
Proposition For a partition λ of length $\leq n$, we have

$$
\mathrm{sp}_{\lambda}^{(k, n-k)}(\boldsymbol{x})=\operatorname{det} K_{\lambda}^{(k, n-k)},
$$

where $K_{\lambda}^{(k, n-k)}$ is the $n \times n$ matrix with (i, j) entry given by

$$
\begin{cases}h_{\lambda_{i}-i+j}\left(x_{j}, x_{j}^{-1}, \ldots, x_{k}, x_{k}^{-1}, x_{k+1}, \ldots, x_{n}\right) & \text { if } 1 \leq j \leq k \\ h_{\lambda_{i}-i+j}\left(x_{j}, \ldots, x_{n}\right) & \text { if } k+1 \leq j \leq n\end{cases}
$$

Jacobi-Trudi formulas for $\mathrm{sp}^{(k, n-k)}(2 / 2)$

By performing column operations on the matrix $K_{\lambda}^{(k, n-k)}$, we obtain Proposition For a partition λ of length $\leq n$, we have

$$
\operatorname{sp}_{\lambda}^{(k, n-k)}(\boldsymbol{x})=\operatorname{det} H_{\lambda}^{(k, n-k)},
$$

where $H_{\lambda}^{(k, n-k)}$ is the $n \times n$ matrix with (i, j) entry given by

$$
\begin{cases}h_{\left(\lambda_{i}-i+1\right)}\left(x_{1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}, x_{k+1}, \ldots, x_{n}\right) & \text { if } j=1 \\ h_{\left(\lambda_{i}-i+j\right)}\left(x_{1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}, x_{k+1}, \ldots, x_{n}\right) & \\ \quad+h_{\left(\lambda_{i}-i-j+2\right)}\left(x_{1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}, x_{k+1}, \ldots, x_{n}\right) & \text { if } 2 \leq j \leq k \\ h_{\lambda_{i}-i+j}\left(x_{k+1}, \ldots, x_{n}\right) & \text { if } k+1 \leq j \leq n .\end{cases}
$$

This formula reduces to the Jacobi-Trudi formulas for Schur functions ($k=0$) and symplectic Schur functions $(k=n)$.

Bialternant formulas for s_{λ} and $\mathrm{sp}_{\boldsymbol{\lambda}}$
The Schur functions and the symplectic Schur functions are expressed as ratios of two determinants:

$$
\begin{gathered}
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(x_{j}^{\lambda_{i}+n-i}\right)_{1 \leq i, j \leq n}}{\operatorname{det}\left(x_{j}^{n-i}\right)_{1 \leq i, j \leq n}} \\
\operatorname{sp}_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(x_{j}^{\lambda_{i}+n-i+1}-x_{j}^{-\left(\lambda_{i}+n-i+1\right)}\right)_{1 \leq i, j \leq n}}{\operatorname{det}\left(x_{j}^{n-i+1}-x_{j}^{-(n-i+1)}\right)_{1 \leq i, j \leq n}}
\end{gathered}
$$

and

$$
\operatorname{det}\left(x_{j}^{n-i}\right)_{1 \leq i, j \leq n}=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right),
$$

$$
\begin{aligned}
& \operatorname{det}\left(x_{j}^{n-i+1}-x_{j}^{-(n-i+1)}\right)_{1 \leq i, j \leq n} \\
& \qquad=\prod_{i=1}^{n}\left(x_{i}-x_{i}^{-1}\right) \prod_{1 \leq i<j \leq n}\left(x_{i}^{1 / 2} x_{j}^{1 / 2}-x_{i}^{-1 / 2} x_{j}^{-1 / 2}\right)\left(x_{i}^{1 / 2} x_{j}^{-1 / 2}-x_{i}^{-1 / 2} x_{j}^{1 / 2}\right)
\end{aligned}
$$

Bialternant formulas for $\mathrm{sp}^{(k, n-k)}(1 / 2)$

Theorem Given a partition λ of length $\leq n$, we define $A_{\lambda}^{(k, n-k)}$ to be the $n \times n$ matrix with (i, j) entry given by

$$
\begin{cases}h_{\lambda_{i}+k-i+1}\left(x_{j}, x_{k+1}, \ldots, x_{n}\right)-h_{\lambda_{i}+k-i+1}\left(x_{j}^{-1}, x_{k+1}, \ldots, x_{n}\right) & \text { if } 1 \leq j \leq k \\ x_{j}^{\lambda_{i}+n-i} & \text { if } k+1 \leq j \leq n\end{cases}
$$

Then we have

$$
\operatorname{sp}_{\lambda}^{(k, n-k)}\left(x_{1}, \ldots, x_{n}\right)=\frac{\operatorname{det} A_{\lambda}^{(k, n-k)}}{\operatorname{det} A_{\emptyset}^{(k, n-k)}}
$$

This formula reduces to the bialternant formulas for Schur functions ($k=0$) and symplectic Schur functions $(k=n)$.

Bialternant formulas for $\mathrm{sp}^{(k, n-k)}(1 / 2)$

Theorem Given a partition λ of length $\leq n$, we define $A_{\lambda}^{(k, n-k)}$ to be the $n \times n$ matrix with (i, j) entry given by

$$
\begin{cases}h_{\lambda_{i}+k-i+1}\left(x_{j}, x_{k+1}, \ldots, x_{n}\right)-h_{\lambda_{i}+k-i+1}\left(x_{j}^{-1}, x_{k+1}, \ldots, x_{n}\right) & \text { if } 1 \leq j \leq k \\ x_{j}^{\lambda_{i}+n-i} & \text { if } k+1 \leq j \leq n\end{cases}
$$

Then we have

$$
\operatorname{sp}_{\lambda}^{(k, n-k)}\left(x_{1}, \ldots, x_{n}\right)=\frac{\operatorname{det} A_{\lambda}^{(k, n-k)}}{\operatorname{det} A_{\emptyset}^{(k, n-k)}}
$$

Remark The denominator factors as

$$
\begin{aligned}
\operatorname{det} A_{\emptyset}^{(k, n-k)}= & \prod_{i=1}^{k}\left(x_{i}-x_{i}^{-1}\right) \prod_{1 \leq i<j \leq k}\left(x_{i}^{1 / 2} x_{j}^{1 / 2}-x_{i}^{-1 / 2} x_{j}^{-1 / 2}\right)\left(x_{i}^{1 / 2} x_{j}^{-1 / 2}-x_{i}^{-1 / 2} x_{j}^{1 / 2}\right) \\
& \times \prod_{k+1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)
\end{aligned}
$$

Sketch of proof

We can find an $n \times n$ matrix M such that

$$
A_{\lambda}^{(k, n-k)}=H_{\lambda}^{(k, n-k)} M
$$

for any partitions λ of length $\leq n$. Since $H_{\emptyset}^{(k, n-k)}$ is a upper-triangular matrix with diagonal entries 1 , we have

$$
\operatorname{det} A_{\emptyset}^{(k, n-k)}=\operatorname{det} H_{\emptyset}^{(k, n-k)} \cdot \operatorname{det} M=\operatorname{det} M
$$

Hence we obtain
$\operatorname{det} A_{\lambda}^{(k, n-k)}=\operatorname{det} H_{\lambda}^{(k, n-k)} \cdot \operatorname{det} M=\operatorname{det} H_{\lambda}^{(k, n-k)} \cdot \operatorname{det} A_{\emptyset}^{(k, n-k)}$, and

$$
\operatorname{sp}_{\lambda}^{(k, n-k)}(\boldsymbol{x})=\operatorname{det} H_{\lambda}^{(k, n-k)}=\frac{\operatorname{det} A_{\lambda}^{(k, n-k)}}{\operatorname{det} A_{\emptyset}^{(k, n-k)}}
$$

Bialternant formulas for $\mathrm{sp}^{(k, n-k)}(2 / 2)$

Corollary Given a partition λ of length $\leq n$, we define $\bar{A}_{\lambda}^{(k, n-k)}$ to be the $n \times n$ matrix with (i, j) entry given by

$$
\bar{a}_{i, j}= \begin{cases}\frac{x_{j}^{\lambda_{i}+k-i+1}}{\prod_{l=k+1}^{n}\left(1-x_{j}^{-1} x_{l}\right)}-\frac{x_{j}^{-\left(\lambda_{i}+k-i+1\right)}}{\prod_{l=k+1}^{n}\left(1-x_{j} x_{l}\right)} & \text { if } 1 \leq j \leq k, \\ x_{j}^{\lambda_{j}+n-i} & \text { if } k+1 \leq j \leq n .\end{cases}
$$

Then we have

$$
\operatorname{sp}_{\lambda}^{(k, n-k)}\left(x_{1}, \ldots, x_{n}\right)=\frac{\operatorname{det} \bar{A}_{\lambda}^{(k, n-k)}}{\operatorname{det} \bar{A}_{\emptyset}^{(k, n-k)}} .
$$

This formula also reduces to the bialternant formulas for Schur functions $(k=0)$ and symplectic Schur functions $(k=n)$.

Application 1
 Brent-Krattenthaler-Warnaar's identity

Brent-Krattenthaler-Warnaar's identity

Brent, Krattenthaler and Warnaar found the following identity in their study of discrete analogues of Macdonald-Mehta integrals.
Theorem (Brent-Krattenthaler-Warnaar) For a nonnegative integer r, we have

$$
\begin{aligned}
& \sum_{\lambda \subset\left(r^{n+1}\right)} z^{-r} \operatorname{sp}_{\lambda}^{(n, 1)}\left(x_{1}, \ldots, x_{n} \mid z\right) \operatorname{sp}_{\lambda}^{(n, 1)}\left(y_{1}, \ldots, y_{n} \mid z\right) \\
&=\operatorname{sp}_{\left(r^{2 n+1}\right)}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z\right)
\end{aligned}
$$

where λ runs over all partitions with $l(\lambda) \leq n+1$ and $\lambda_{1} \leq r$.
We can use the bialternant formula for $\mathrm{sp}_{\lambda}^{(n, 1)}$ together with the CauchyBinet formula to give an alternate proof.

Sketch of proof (1/2)

Let $T(\boldsymbol{x} \mid z)=\left(t_{i, p}\right)_{1 \leq i \leq n+1,0 \leq p \leq r+n}$ be the $(n+1) \times(r+n+1)$ matrix with (i, p) entry

$$
t_{i, p}= \begin{cases}x_{i}^{p} /\left(1-x_{i}^{-1} z\right)-x_{i}^{-p} /\left(1-x_{i} z\right) & \text { if } 1 \leq i \leq n \\ z^{p} & \text { if } i=n+1\end{cases}
$$

Then we have

$$
\operatorname{sp}^{(n, 1)}\left(x_{1}, \ldots, x_{n} \mid z\right)=\frac{\operatorname{det} T\left(\lambda_{1}+n, \lambda_{2}+n-1, \ldots, \lambda_{n}+1, \lambda_{n+1}\right)}{\operatorname{det} T(n, n-1, \ldots, 1,0)}
$$

where $T(I)$ is the submatrix of T obtained by picking up columns indexed by I. By applying the Cauchy-Binet formula

$$
\sum_{I} \operatorname{det} X(I) \operatorname{det} Y(I)=\operatorname{det}\left(X^{t} Y\right),
$$

we can express the summation of BKW formula in terms of the determinant of $T(\boldsymbol{x} \mid z)^{t} T(\boldsymbol{y} \mid z)$.

Sketch of proof (2/2)

We can evaluate $\operatorname{det}\left(T(\boldsymbol{x} \mid z)^{t} T(\boldsymbol{y} \mid z)\right)$ by using the following Lemma. Lemma Let $C=\left(C_{i, j}\right)_{1 \leq i, j \leq n+1}$ and $V=\left(V_{i, j}\right)_{1 \leq i, j \leq 2 n+1}$ be the matrices given by

$$
\begin{aligned}
& C_{i, j}= \begin{cases}\frac{\left(1-x_{i} z\right)\left(1-y_{j} z\right)}{1-x_{i} y_{j}}-\frac{a_{i}\left(x_{i}-z\right)\left(1-y_{j} z\right)}{x_{i}-y_{j}} \\
+\frac{b_{j}\left(1-x_{i} z\right)\left(y_{j}-z\right)}{x_{i}-y_{j}}-\frac{a_{i} b_{j}\left(x_{i}-z\right)\left(y_{j}-z\right)}{1-x_{i} y_{j}} & \text { if } 1 \leq i, j \leq n \\
1-a_{i} & \text { if } i=n+1 \text { and } 1 \leq j \leq n, \\
1-b_{j} & \text { if } 1 \leq i \leq n \text { and } j=n+1, \\
\frac{1-c}{1-z^{2}} & \text { if } i=j=n+1, \\
V_{i, j}=x_{i}^{j-1}-a_{i} x_{i}^{2 n+1-j}, \quad V_{n+i, j}=y_{i}^{j-1}-b_{i} y_{i}^{2 n+1-j}, & V_{2 n+1, j}=z^{j-1}-c z^{2 n+1-j}\end{cases}
\end{aligned}
$$

Then we have

$$
\operatorname{det} C=\frac{(-1)^{n}}{\left(1-z^{2}\right) \prod_{i=1}^{n} \prod_{j=1}^{n}\left(x_{i}-y_{j}\right)\left(1-x_{i} y_{j}\right)} \operatorname{det} V
$$

Application 2
 Shifted Plane Partition Enumeration

Shifted plane partitions

Given a strict partition μ, a shifted plane partition of shape μ is a filling of the shifted Young diagram $S(\mu)$ with nonnegative integers where the entries are weakly decreasing along rows and down columns.

Example

are the shifted diagram of $(6,4,2,1)$ and a shifted plane partition of shape $(6,4,2,1)$ respectively.
We put
$\mathcal{A}^{m}(S(\mu))=\{$ shifted plane partitions of shape μ with entries $\leq m\}$.

Shifted plane partitions of shifted double staircase shape

We put $\delta_{r}=(r, r-1, \ldots, 2,1)$. Hopkins and Lai prove the following theorem by counting lozenge tilings of a certain region in the triangular lattice.
Theorem (Hopkins-Lai) If $0 \leq k \leq n$, then the number of shifted plane partitions of shape
$\delta_{n}+\delta_{k}=(n+k, n+k-2, \ldots, n-k+2, n-k, n-k-1, \ldots, 2,1)$
with entries bounded by m is equal to

$$
\begin{gathered}
\# \mathcal{A}^{m}\left(S\left(\delta_{n}+\delta_{k}\right)\right)=\prod_{1 \leq i \leq j \leq n} \frac{m+i+j-1}{i+j-1} \prod_{1 \leq i \leq j \leq k} \frac{m+i+j}{i+j} \\
S\left(\delta_{4}+\delta_{2}\right)=\begin{array}{|l|l|l|l|l|}
\hline & & & & \\
\hline & & & & \\
\hline
\end{array} \\
\hline
\end{gathered}
$$

Bijection

For a shifted plane partition σ, we define the profile of σ to be the partition $\left(\sigma_{1,1}, \sigma_{2,2}, \ldots\right)$.
Lemma For a partition λ, there exists a bijection between

- shifted plane partitions of shape $\delta_{n}+\delta_{k}$ with profile λ, and
- $(k, n-k)$-symplectic tableaux of shape λ.

Example If $n=4$ and $k=2$, then

4	4	2	2	1	1
	3	2	2	1	
		1	1		
			0		

(1) conjugate each row;
(2) replace $1,2,3,4,5,6$ with $4,3, \overline{2}, 2, \overline{1}, 1$ respectively.

Generating functions and intermediate symplectic characters

 For $\sigma \in \mathcal{A}^{m}\left(S\left(\delta_{n}+\delta_{k}\right)\right)$, we define$$
\begin{aligned}
& w(\sigma)=k t_{0}(\sigma)+\sum_{l=0}^{n-k-1} t_{l}(\sigma)-n t_{n-k}(\sigma)+\sum_{l=n-k}^{n+k-1}(-1)^{l-n+k+1}(l-n+k+1) t_{l}(\sigma), \\
& v(\sigma)=\left(k-\frac{1}{2}\right) t_{0}(\sigma)+\sum_{l=0}^{n-k-1} t_{l}(\sigma)-n t_{n-k}(\sigma)+\sum_{l=n-k}^{n+k-1}(-1)^{l-n+k+1}(l-n+k) t_{l}(\sigma),
\end{aligned}
$$

where $t_{l}(\sigma)=\sum_{i} \sigma_{i, i+l}$ is the l th trace of σ. If $k=0$, then we have

$$
w(\sigma)=\sum_{1 \leq i \leq j \leq n} \sigma_{i, j}, \quad v(\sigma)=\frac{1}{2} \sum_{i=1}^{n} \sigma_{i, i}+\sum_{1 \leq i<j \leq n} \sigma_{i, j},
$$

and, if $k=n$, then we have

$$
w(\sigma)=\sum_{l=0}^{2 n-1}(-1)^{l+1}(l+1) t_{l}(\sigma), \quad v(\sigma)=-\frac{1}{2} t_{0}(\sigma)+\sum_{l=1}^{2 n-1}(-1)^{l+1} l t_{l}(\sigma) .
$$

Generating functions and intermediate symplectic characters

 For $\sigma \in \mathcal{A}^{m}\left(S\left(\delta_{n}+\delta_{k}\right)\right)$, we define$$
\begin{aligned}
& w(\sigma)=k t_{0}(\sigma)+\sum_{l=0}^{n-k-1} t_{l}(\sigma)-n t_{n-k}(\sigma)+\sum_{l=n-k}^{n+k-1}(-1)^{l-n+k+1}(l-n+k+1) t_{l}(\sigma) \\
& v(\sigma)=\left(k-\frac{1}{2}\right) t_{0}(\sigma)+\sum_{l=0}^{n-k-1} t_{l}(\sigma)-n t_{n-k}(\sigma)+\sum_{l=n-k}^{n+k-1}(-1)^{l-n+k+1}(l-n+k) t_{l}(\sigma)
\end{aligned}
$$

where $t_{l}(\sigma)=\sum_{i} \sigma_{i, i+l}$ is the lth trace of σ.
Proposition For a fixed partition λ, the generating functions of shifted plane partitions of shape $\delta_{n}+\delta_{k}$ with profile λ are given by

$$
\begin{gathered}
\sum_{\sigma} q^{w(\sigma)}=\operatorname{sp}_{\lambda}^{(k, n-k)}\left(q, q^{2}, \ldots, q^{n}\right), \\
\sum_{\sigma} q^{v(\sigma)}=\operatorname{sp}_{\lambda}^{(k, n-k)}\left(q^{1 / 2}, q^{3 / 2}, \ldots, q^{n-1 / 2}\right) .
\end{gathered}
$$

Character identity

By using the bialternant formula and the Ishikawa-Wakayama minor summation formula, we can prove
Theorem Let $0 \leq k \leq n$. For a nonnegative integer m, we have

$$
\begin{aligned}
\sum_{\lambda \subset\left(m^{n}\right)} \operatorname{sp}_{\lambda}^{(k, n-k)}\left(x_{1}\right. & \left., \ldots, x_{k} \mid x_{k+1}, \ldots, x_{n}\right) \\
& =\mathrm{o}_{\left((m / 2)^{n}\right)}^{B}\left(x_{1}, \ldots, x_{n}\right) \cdot \operatorname{sp}_{\left((m / 2)^{k}\right)}\left(x_{1}, \ldots, x_{k}\right) \cdot\left(x_{k+1} \cdots x_{n}\right)^{m / 2}
\end{aligned}
$$

where o_{ν}^{B} and Sp_{ν} are the odd orthogonal and symplectic character corresponding to a partition ν respectively.
If $k=0$, then we have

$$
\sum_{\lambda \subset\left(m^{n}\right)} s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\mathrm{o}_{\left((m / 2)^{n}\right)}^{B}\left(x_{1}, \ldots, x_{n}\right) \cdot\left(x_{1} \cdots x_{n}\right)^{m / 2}
$$

which Macdonald used to prove the MacMahon and Bender-Knuth conjectures on symmetric plane partitions.

Application to shifted plane partition enumeration

By specializing $x_{i}=q^{i}$ or $x_{i}=q^{i-1 / 2}$, we obtain

Corollary

$$
\begin{array}{r}
\sum_{\sigma \in \mathcal{A}^{m}\left(S\left(\delta_{n}+\delta_{k}\right)\right)} q^{w(\sigma)}=\frac{1}{q^{m k(k+1) / 2}} \prod_{1 \leq i \leq j \leq n} \frac{[m+i+j-1]}{[i+j-1]} \prod_{1 \leq i \leq j \leq k} \frac{[m+i+j]}{[i+j]} . \\
\sum_{\sigma \in \mathcal{A}^{m}\left(S\left(\delta_{n}+\delta_{k}\right)\right)} q^{v(\sigma)}=\frac{1}{q^{m k^{2} / 2}} \prod_{i=1}^{n} \frac{[m / 2+i-1 / 2]}{[i-1 / 2]} \prod_{1 \leq i<j \leq n} \frac{[m+i+j-1]}{[i+j-1]} \\
\times \prod_{i=1}^{k} \frac{[m / 2+i]}{[i]} \prod_{1 \leq i<j \leq k} \frac{[m+i+j]}{[i+j]} .
\end{array}
$$

By putting $q=1$, we have
Corollary (Hopkins-Lai)

$$
\# \mathcal{A}^{m}\left(S\left(\delta_{n}+\delta_{k}\right)\right)=\prod_{1 \leq i \leq j \leq n} \frac{m+i+j-1}{i+j-1} \prod_{1 \leq i \leq j \leq k} \frac{m+i+j}{i+j}
$$

Variations

Theorem Let $0 \leq k \leq n$. For a nonnegative even integer m, we have

$$
\begin{aligned}
& \sum_{\lambda \subset\left(m^{n}\right) \text { even }} \operatorname{sp}_{\lambda}^{(k, n-k)}\left(x_{1}, \ldots, x_{k} \mid x_{k+1}, \ldots, x_{n}\right) \\
= & \operatorname{sp}_{\left((m / 2)^{n}\right)}\left(x_{1}, \ldots, x_{n}\right) \cdot \operatorname{sp}_{\left((m / 2)^{k}\right)}\left(x_{1}, \ldots, x_{k}\right) \cdot\left(x_{k+1} \cdots x_{n}\right)^{m / 2} .
\end{aligned}
$$

Theorem Let $0 \leq k \leq n$. For a nonnegative integer a and m, we have

$$
\begin{aligned}
& \sum_{\left(a^{n}\right) \subset \lambda \subset\left((a+m)^{n}\right)} \operatorname{sp}_{\lambda}^{(k, n-k)}\left(x_{1}, \ldots, x_{k} \mid x_{k+1}, \ldots, x_{n}\right) \\
& =\mathrm{o}_{\left((m / 2)^{n}\right)}^{B}\left(x_{1}, \ldots, x_{n}\right) \cdot \mathrm{sp}_{\left((m / 2+a)^{k}\right)}\left(x_{1}, \ldots, x_{k}\right) \cdot\left(x_{k+1} \cdots x_{n}\right)^{m / 2+a} .
\end{aligned}
$$

References:

- R. A. Proctor, Odd symplectic groups, Invent. Math. 92 (1988), 307-332.
-S. Okada,
A bialternant formula for odd symplectic characters and its application, Josai Math. Monographs 12 (2020), 99-116. arXiv:1905.12964.
-S. Okada,
Intermediate symplectic characters and shifted plane partitions of shifted double staircase shape, arXiv:2009.14037.

