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Precursors to the RR identities

Throughout: Assume |q| < 1.

∑
n≥0

qn

(1− q)(1− q2) · · · (1− qn)
=
∞∏

m=1

1
1− qm (Euler)

∑
n≥0

qn2

(1− q)2(1− q2)2 · · · (1− qn)2 =
∏
m≥1

1
1− qm (Jacobi)

∑
n≥0

qn2

(1− q)(1− q2) · · · (1− qn)
=

∏
m≥1

m≡±1(mod 5)

1
1− qm

(Rogers)
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Rising q-factorial notation

(a)n = (a; q)n := (1− a)(1− aq)(1− aq2) · · · (1− aqn−1),

(a)∞ = (a; q)∞ := (1− a)(1− aq)(1− aq2) · · · ,

(a1,a2, . . .ar ; q)∞ := (a1)∞(a2)∞(a3)∞ · · · (ar )∞
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S. Ramanujan (1887–1920)
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Ramanujan’s “theta” function

For |ab| < 1,

f (a,b) :=
∑
n∈Z

an(n+1)/2bn(n−1)/2.

Jacobi’s triple product identity

f (a,b) = (a,b,ab; ab)∞.
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Ramanujan’s notation

f (−q) := f (−q,−q2) =
∑
n∈Z

(−1)nqn(3n−1)/2 = (q)∞

(Euler’s pentagonal numbers thm)

ϕ(−q) := f (−q,−q) =
∑
n∈Z

(−1)nqn2
=

(q)∞
(−q)∞

(Gauss’s square numbers thm)

ψ(−q) := f (−q,−q3) =
∑
n∈Z

(−1)nqn(2n−1) =
(q2; q2)∞
(−q; q2)∞

(Gauss’s hexagonal numbers thm)
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Rogers–Ramanujan identities

∑
n≥0

qn2

(q)n
=

f (−q2,−q3)

(q)∞
.

∑
n≥0

qn(n+1)

(q)n
=

f (−q,−q4)

(q)∞
.

Ramanujan really enjoyed identities of this type.
Over 50 are recorded in the lost notebook.
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Bailey pairs, Bailey’s lemma

If (αn(a,q), βn(a,q)) satisfies

βn =
n∑

r=0

αr

(q)n−r (aq)n+r
,

then (αn, βn) is called a Bailey pair with respect to a,

and
(α′n(a,q), β′n(a,q)) is also a Bailey pair, where

α′r (a,q) =
(ρ1)r (ρ2)r

(aq/ρ1)r (aq/ρ2)r

(
aq
ρ1ρ2

)r

αr

and

β′n(a,q) =
n∑

j=0

(ρ1)j(ρ2)j(aq/ρ1ρ2)n−j

(aq/ρ1)n(aq/ρ2)n(q)n−j

(
aq
ρ1ρ2

)j

βj(a,q).
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Limiting cases of Bailey’s lemma

∑
n≥0

qn2
βn(1,q) =

1
(q)∞

∑
r≥0

qr2
αr (1,q) (PBL)

∑
n≥0

qn2
(−q; q2)nβn(1,q2) =

1
ψ(−q)

∑
r≥0

qr2
αr (1,q2) (HBL)

∑
n≥0

qn(n+1)/2(−1)nβn(1,q) =
2

ϕ(−q)

∑
r≥0

qr(r+1)/2

1 + qr αr (1,q)

(SBL)
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Bailey, Dyson, and Slater

In the 1940’s, Bailey found a number of examples of Bailey
pairs, and used them to generate RR type identities.

Freeman Dyson contributed a number of RR type
identities to Bailey’s papers.

Lucy Slater found many Bailey pairs, and used
them to generate a list of 130 RR type identities.
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General Bailey pairs

For d | n, define

α
(d ,e,k)
n (a,q) :=

(−1)n/da(k/d−1)n/eq(k/d−1+1/2d)n2/e−n/2e

(1− a1/e)(qd/e; qd/e)n/d
,

× (1− a1/eq2n/e)(a1/e; qd/e)n/d ,

α̃
(d ,e,k)
n (a,q) := qn(d−n)/2dea−n/de (−a1/e; qd/e)n/d

(−qd/e; qd/e)n/d
α
(d ,e,k)
n (a,q),

ᾱ
(d ,e,k)
n (a,q) := (−1)n/dqn2/2de (qd/2e; qd/e)n/d

(a1/eqd/2e; qd/e)n/d
α
(d ,e,k)
n (a,q).

Let the corresponding β(d ,e,k)n (a,q), β̃(d ,e,k)n (a,q), and
β̄
(d ,e,k)
n (a,q) be determined by the Bailey pair relation.
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For any positive integer triples (d ,e, k), upon inserting any
of these α’s into any of the limiting cases of Bailey’s lemma
with a = 1, the resulting series is summable via Jacobi’s
triple product identity.

For certain (d ,e, k), the resulting expression for β is a very
well-poised 6φ5, summable by a theorem of F. H. Jackson.
Using only this, and an associated families of q-difference
equations, one can recover the majority of Slater’s list, as
well as other identities.
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The Bailey pair that arises from(
α
(1,1,2)
n (a,q), β

(1,1,2)
n (a,q)

)
=

(
(−1)nanqn(3n−1)/2(1− aq2n)(a)n

(1− a)(q)n
,

1
(q)n

)

yields

∑
n≥0

qn2

(q)n
= f (−q2,−q3)

(q)∞ upon insertion into (PBL),∑
n≥0

qn(n+1)(−1)n
(q)n

= ϕ(−q2)
ϕ(−q) upon insertion into (SBL), and∑

n≥0
qn2

(−q;q2)n
(q2;q2)n

= f (−q3,−q5)
ψ(−q) upon insertion into (HBL).
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New identities arising from this framework (S.)

∑
n,r≥0

qn2+2nr+2r2
(−q; q2)r

(q)2r (q)n
=

f (−q10,−q10)

(q)∞

by insertion of (α̃
(2,1,5)
n (1,q), β̃

(2,1,5)
n (1,q)) into (PBL).

∑
n,r≥0

q4n2+8nr+8r2
(−q; q2)2r

(q4; q4)2r (q4; q4)n
=

f (q9,q11)

(q4; q4)∞

by insertion of (ᾱ
(1,2,4)
n (1,q), β̄

(1,2,4)
n (1,q)) into (PBL).
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A family of mod 24 identities

∑
n≥0

qn(n+2)(−q; q2)n(−1; q6)n

(q2; q2)2n(−1; q2)n
=

f (−q,−q11)f (−q10,−q14)

ψ(−q)(q24; q24)∞

(McLaughlin.-S.)
∞∑

n=0

qn2
(−q3; q6)n

(q2; q2)2n
=

f (−q2,−q10)f (−q8,−q16)

ψ(−q)(q24; q24)∞
(Ramanujan)

∑
n≥0

qn2
(−q; q2)n(−1; q6)n

(q2; q2)2n(−1; q2)n
=

f (−q3,−q9)f (−q6,−q18)

ψ(−q)(q24; q24)∞
(M.-S.)

∑
n≥0

qn(n+2)(−q3; q6)n

(q2; q2)2n(1− q2n+1)
=

f (−q4,−q8)f (−q4,−q20)

ψ(−q)(q24; q24)∞
(M.-S.)

∑
n≥0

qn(n+2)(−q; q2)n+1(−q6; q6)n

(q4; q4)n(q2n+4; q2)n+1
=

f (−q5,−q7)f (−q2,−q22)

ψ(−q)(q24; q24)∞

(M.-S.)
Andrew Sills Rogers–Ramanujan type identities



Combinatorial considerations

Rogers, Ramanujan, Bailey, and Slater did not consider the
combinatorial aspect of their work.

A partition λ of n is a tuple (λ1, λ2, . . . , λl) of weakly decreasing
positive integers (called the parts of λ) that sum to n. The
seven partitions of 5 are

(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1).
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The
seven partitions of 5 are

(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1).

Andrew Sills Rogers–Ramanujan type identities



Combinatorial considerations

Rogers, Ramanujan, Bailey, and Slater did not consider the
combinatorial aspect of their work.

A partition λ of n is a tuple (λ1, λ2, . . . , λl) of weakly decreasing
positive integers (called the parts of λ) that sum to n. The
seven partitions of 5 are

(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1).

Andrew Sills Rogers–Ramanujan type identities



Euler’s partition theorem

The number of partitions of n into odd parts equals the number
of partitions of n into distinct parts.

Example:

9,711,531,51111,333,33111,3111111,111111111

9,81,72,63,621,54,531,432
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Combinatorial Rogers–Ramanujan
(due to MacMahon and Schur)

The number of partitions of n into parts that mutually differ by at
least 2 equals the number of partitions of n into parts congruent
to ±1 (mod 5).

The number of partitions of n into parts greater than 1 that
mutually differ by at least 2 equals the number of partitions of n
into parts congruent to ±2 (mod 5).
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B. Gordon’s combinatorial generalization of RR (1961)

Let k be a positive integer and 1 ≤ i ≤ k .

Let Ak ,i(n) denote the number of partitions of n into parts
6≡ 0,±i (mod 2k + 1).
Let Bk ,i(n) denote the number of partitions λ of n where

at most i − 1 of the parts of λ equal 1,
λj − λj+k−1 ≥ 2 for j = 1,2, . . . , l(λ) + 1− k .

Then Ak ,i(n) = Bk ,i(n) for all n.

Note: The case k = 2 gives the standard combinatorial
interpretation of the two RR identities.
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G. Andrews’ analytic counterpart to Gordon’s theorem

∑
nk−1≥nk−2≥···≥n1≥0

qn2
1+n2

2+···+n2
k−1+ni+ni+1+···+nk−1

(q)n1(q)n2−n1(q)n3−n2 · · · (q)nk−1−nk−2

=
f (−qi ,−q2k+1−i)

(q)∞
.
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Combinatorial interpretations of these “(d ,e, k)”
identities (S.)

Let d ∈ N and let 1 ≤ i ≤ k .
Let Gd ,k ,i(n) denote the number of partitions π of n such that

md (π) ≤ i − 1 and mdj(π) + mdj+d (π) ≤ k − 1

for any j ∈ N.

Let Hd ,k ,i(n) denote the number of partitions of n into parts
6≡ 0,±di (mod 2d(k + 1)).
Then Gd ,k ,i(n) = Hd ,k ,i(n) for all integers n.
This is a combinatorial interpretation of of the identity obtained
by inserting the Bailey pair (α

(d ,1,k)
n (1,q), β

(d ,1,k)
n (1,q)) into

(PBL) (along with associated systems of q-difference
equations).
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WHO
(outside the partitions and q-series community)

CARES?
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Connections to Lie algebras

In the 1980’s J. Lepowsky and R. Wilson showed that the
principally specialized characters of standard modules for
the odd levels of A(1)

1 are given by the The
Andrews–Gordon identity.

The two Rogers–Ramanujan identities occur at level 3.

The even levels of A(1)
1 correspond to D. Bressoud’s even

modulus analog of Andrews–Gordon.
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Capparelli’s identities (1988)

The Rogers–Ramanujan identities also occur at level 2 of A(2)
2 .

Performing an analogous analysis of the level 3
modules of A(2)

2 , S. Capparelli discovered:

The number of partitions of n into parts ≡ ±2,±3 (mod 12)
equals the number of partitions (λ1, λ2, . . . , λl) of n where

λi − λi+1 ≥ 2,
λi − λi+1 = 2 =⇒ λi ≡ 1 (mod 3),
λi − λi+1 = 3 =⇒ λi ≡ 0 (mod 3)
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Analytic versions of Capparelli’s identity (S.)

1+
∑

n,j,r≥0
(n,j,r) 6=(0,0,0)

q3n2+ 9
2 r2+3j2+6nj+6nr+6rj− 5

2 r−j(1 + q2r+2j)(1− q6r+6j)

(q3; q3)n(q3; q3)r (q3; q3)j(−1; q3)j+1(q3; q3)n+2r+2j

=
1

(q2,q3,q9,q10; q12)∞

∑
n,j≥0

qn2
(

n−j+1
3

)
(q)2n−j(q)j

=
1

(q2,q3,q9,q10; q12)∞
.
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A(2)
2 level 4 identities

In an analogous study of the level 4 modules of A(2)
2 , D. Nandi

(2014) conjectured three partition identities.

Proved by Motoki
Takigiku and Shunsuke Tsuchioka (2019).
One of these identities is:

The number of partitions of n into parts ≡ ±2,±3,±4 (mod 14)
equals the number of partitions (λ1, λ2, . . . , λl) of n where

λi − λi+1 ≥ 2
λi − λi+2 ≥ 3
λi − λi+2 = 3 =⇒ λi 6= λi+1,
λi − λi+2 = 3 and 2 - λi =⇒ λi+1 6= λi+2.
λi − λi+2 = 4 and 2 - λi =⇒ λi 6= λi+1,
Consider the first differences
∆λ := (λ1 − λ2, λ2 − λ3, . . . , λl−1 − λl). None of the
following subwords are permitted in ∆λ:
(3,3,0), (3,2,3,0), (3,2,2,3,0), . . . , (3,2,2,2,2, . . . ,2,3,0).
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Shashank Kanade and Matthew Russell (2014)

Related to level 3 standard modules of D(3)
4 , Kandade and

Russell conjectured several partition identities, including:

The number of partitions of n into parts ≡ ±1,±3 (mod 9)
equals the number of partitions λ of n such that

λj − λj+2 ≥ 3,
λj − λj+1 ≤ 1 =⇒ 3 | (λj + λj+1).
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Kanade–Russell conjectures

Kanade and Russell have released a steady stream of q-series
and partition identity conjectures over the past six years.

Many
have been proved by

Katherin Bringmann, Chris Jennings-Shaffer, and Karl
Mahlburg;
Kagan Kurşungöz;
Hjalmar Rosengren;
Kanade and Russell themselves.
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WHO ELSE
CARES?
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Polynomial RR identities

D0(q) = D1(q) = 1

Dn(q) = Dn−1(q) + qn−1Dn−2 if n = 2

Dn(q) =
∑
j=0

qj2
[
n − j

j

]
q

(MacMahon)

=
∑
j∈Z

(−1)jqj(5j+1)/2
[

n
bn+5j+1

2 c

]
q

(Schur)

=
∑
k∈Z

(
qk(10k+1)τ0(n,5k ; q)− q(5k+3)(2k+1)τ0(n,5k + 3; q)

)
(Andrews)

Andrew Sills Rogers–Ramanujan type identities



Polynomial RR identities

D0(q) = D1(q) = 1

Dn(q) = Dn−1(q) + qn−1Dn−2 if n = 2

Dn(q) =
∑
j=0

qj2
[
n − j

j

]
q

(MacMahon)

=
∑
j∈Z

(−1)jqj(5j+1)/2
[

n
bn+5j+1

2 c

]
q

(Schur)

=
∑
k∈Z

(
qk(10k+1)τ0(n,5k ; q)− q(5k+3)(2k+1)τ0(n,5k + 3; q)

)
(Andrews)

Andrew Sills Rogers–Ramanujan type identities



Polynomial RR identities

D0(q) = D1(q) = 1

Dn(q) = Dn−1(q) + qn−1Dn−2 if n = 2

Dn(q) =
∑
j=0

qj2
[
n − j

j

]
q

(MacMahon)

=
∑
j∈Z

(−1)jqj(5j+1)/2
[

n
bn+5j+1

2 c

]
q

(Schur)

=
∑
k∈Z

(
qk(10k+1)τ0(n,5k ; q)− q(5k+3)(2k+1)τ0(n,5k + 3; q)

)
(Andrews)

Andrew Sills Rogers–Ramanujan type identities



Polynomial RR identities

D0(q) = D1(q) = 1

Dn(q) = Dn−1(q) + qn−1Dn−2 if n = 2

Dn(q) =
∑
j=0

qj2
[
n − j

j

]
q

(MacMahon)

=
∑
j∈Z

(−1)jqj(5j+1)/2
[

n
bn+5j+1

2 c

]
q

(Schur)

=
∑
k∈Z

(
qk(10k+1)τ0(n,5k ; q)− q(5k+3)(2k+1)τ0(n,5k + 3; q)

)
(Andrews)

Andrew Sills Rogers–Ramanujan type identities



Polynomial RR identities

We can prove these polynomial identities via recurrences, and
then the original series–infinite product identity follows via
asymptotics of q-bi/trinomial coëfficients, and the triple product
identity.
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q-binomial and q-trinomial coëfficients

[
A
B

]
q

:= (q)A(q)−1
B (q)−1

A−B if 0 5 B 5 A; 0 o/w

T0(L,A; q) :=
L∑

r=0

(−1)r
[
L
r

]
q2

[
2L− 2r

L− A− r

]
q

T1(L,A; q) :=
L∑

r=0

(−q)r
[
L
r

]
q2

[
2L− 2r

L− A− r

]
q

τ0(L,A; q) :=
L∑

r=0

(−1)r qLr−(r
2)
[
L
r

]
q

[
2L− 2r

L− A− r

]
q
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T1(L,A; q) :=
L∑

r=0

(−q)r
[
L
r

]
q2

[
2L− 2r

L− A− r

]
q

τ0(L,A; q) :=
L∑

r=0

(−1)r qLr−(r
2)
[
L
r

]
q

[
2L− 2r

L− A− r

]
q
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linear combinations of q-trinomial coëfficients

U(L,A; q) := T0(L,A; q) + T0(L,A + 1; q)

and

V(L,A; q) := T1(L− 1,A; q) + qL−AT0(L− 1,A− 1; q).
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The Andrews Method of Finitization

G(q) :=
∑
j=0

qj2

(q)j
.

G(t) := G(t ,q) :=
∑
j=0

t2jqj2

(1− t)(tq; q)j
.

lim
t→1−

(1− t)G(t) = G(q) (by Abel’s lemma).

G(t) = 1 + tG(t) + t2qG(tq)

G(t) =
∑
n=0

Dn(q)tn.

lim
n→∞

Dn(q) = G(q)
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I “algorithmitized” and generalized Andrews’ heuristic, and
implemented it in Maple.

“Finitized” all 130 identities in Slater’s list of RR type
identities.
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Ramanujan’s Lost Notebook, p. 35 of Narosa Edition

∑
j=0

qj(j+1)/2(−q2; q2)j

(q)j(q; q2)j+1
=
ψ(−q2)

ϕ(−q)
.

For fixed n,

∑
i,j,k=0

qj(j+1)/2+i2+i+k
[
j
i

]
q2

[
j + k

k

]
q2

[
n − 2i − 2k

j

]
q

=
∑
j∈Z

(−1)jq2j(2j+1)V(n + 1,4j + 1;
√

q).

q-Pell numbers: P0 = 1, P1 = q + 1, P2 = q3 + q2 + 2q + 1

Pn = (1 + qn)Pn−1 + qPn−2 + (qn − q)Pn−3.
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Bowman–McLaughlin–S.

∑
j=0

qj(j+1)(−q3; q3)j

(−q)j(q)2j+1
=

f (−q3,−q6)f (−q3,−q15)

(q)∞(q18; q18)∞

For fixed n,

∑
i,j,k ,l,m=0

(−1)k+mqj2+2j+3i(i+1)/2+k+l+m
[
j
i

]
q3

[
j + k − 1

k

]
q

×
[
j + l

l

]
q2

[
j + m − 1

m

]
q

[
n − 3i − j − k − 2l −m

j

]
q

=
∑
k∈Z

q9k(3k+1)/2
[

n + 1
bn+9k+3

2 c

]
q
−q3

∑
k∈Z

q27k(k+1)/2
[

n + 1
bn+9k+6

2 c

]
q
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Berkovich–Uncu

∑
j=0

q3j2(−q; q2)3j

(q6; q6)2j
=

f (q4,q8)

ψ(−q3)

For fixed n,

∑
i,j,k=0

(−1)kq3j2+i2+3k
[
3j
i

]
q2

[
2j + k − 1

k

]
q3

[
n + j − i − k

2j

]
q3

=
∑
j∈Z

q6j2+2j (T0(n,2j ; q3) + T0(n − 1,2j ; q3)
)
.
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Japanese translation in preparation!
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THANK YOU!
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