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Eichler integrals of Eisenstein series
Introduction

Ramanujan’s “Death bed letter”

Dear Hardy, January 1920

“I am extremely sorry for not writing you a single letter up to now. I
discovered very interesting functions recently which I call “Mock”
ϑ-functions. ...they enter into mathematics as beautifully as the ordinary
theta functions. I am sending you with this letter some ....”

Example

One of Ramanujan’s examples:

f(q) := 1 +

∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.
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Introduction

What are mock theta functions?

Some History
In his PhD thesis (’02), Zwegers combined Lerch-type series
and Mordell integrals to obtain non-holomorphic Jacobi forms.

“Theorem” (Zwegers, 2002)

The mock theta functions are (up to powers of q) holomorphic
parts of the specializations of weight 1/2 harmonic Maass forms.
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Introduction

Maass forms

Harmonic Maass forms (note. z = x+ iy ∈ H)

“Definition”

A weight k harmonic Maass form on Γ is any smooth function f on H
satisfying:

1 For all A = ( a bc d ) ∈ Γ ⊂ SL2(Z) we have

f

(
az + b

cz + d

)
= (cz + d)k f(z).

2 We have that ∆kf = 0, where

∆k := −y2
(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

Remark

Classical modular forms represent a density 0 subset of HMFs.
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Introduction

Maass forms

Fourier expansions of HMFs (q := e2πiz)

Fundamental Lemma
If f ∈ H2−k and Γ(a, x) is the incomplete Γ-function, then

f(z) =
∑

n�−∞
c+f (n)qn +

∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn.

l l
Holomorphic part f+ Nonholomorphic part f−

q-series “Period integral of MF”

Remark

Ramanujan’s examples are the f+ with k = 1/2.
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Introduction

Maass forms

Ramanujan’s Strange Conjecture

Conjecture (Ramanujan)

Consider the mock theta q−
1
24 f(q) and modular form q−

1
24 b(q), where

f(q) := 1 +

∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

b(q) := (1− q)(1− q3)(1− q5) · · · ×
(
1− 2q + 2q4 − 2q9 + · · ·

)
.

If q approaches an even order 2k root of unity (i.e. pole of f), then

f(q)− (−1)kb(q) = O(1).
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Maass forms

“q approaches a root of unity”

Radial asymptotics, near roots of unity.
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Introduction

Maass forms

Numerics

As q → −1, we have

f(−0.994) ∼ −1·1031, f(−0.996) ∼ −1·1046, f(−0.998) ∼ −6·1090,
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Introduction

Maass forms

Poles at q = −1 and q = i

Amazingly, Ramanujan’s guess gives:

q −0.990 −0.992 −0.994 −0.996 −0.998

f(q)+b(q) 3.961 . . . 3.969 . . . 3.976 . . . 3.984 . . . 3.992 . . .
.

It is true that

lim
q→−1

(f(q) + b(q)) = 4

lim
q→i

(f(q)− b(q)) = 4i.
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Introduction

Maass forms

Finite sums of roots of unity.

Theorem (F-O-R (2013))

If ζ is an even 2k order root of unity, then

lim
q→ζ

(f(q)− (−1)kb(q)) = −4

k−1∑
n=0

(1 + ζ)2(1 + ζ2)2 · · · (1 + ζn)2ζn+1.

Remark

This behavior “near roots of unity” is a glimpse of quantum modularity.
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Introduction

Maass forms

What is going on?

Question
Ramanujan essentially discovered that

lim
q→ζ

(Mock ϑ− εζMF) =Quantum MF

↑
O(1) numbers
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Introduction

Maass forms

Quantum modular forms

Definition (Zagier)

A weight k quantum modular form is a complex-valued
function f on Q \ S for some set S, such that

for all γ =
(
a b
c d

)
∈

SL2(Z) the function

hγ(x) := f(x)− ε(γ)(cx+ d)−kf

(
ax+ b

cx+ d

)
satisfies a “suitable” property of continuity or analyticity.
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Introduction

Maass forms

Applications of HMFs and QMFs

Integer partitions and q-series

Eichler-Shimura theory
(e.g. modularity of elliptic curves via Eichler integrals)

Arithmetic Geometry (i.e. BSD Conjecture)

Moonshine

Knot invariants.

. . . .

Ken Ono (University of Virginia) Eichler integrals of Eisenstein series



Eichler integrals of Eisenstein series
Introduction

Maass forms

Eichler Integrals of Modular forms

Definition (Eichler)

If f(z) =
∑
a(n)qn is a weight k modular form, then its Eichler

integral is
Eichlerf (z) :=

∑
a(n)n1−kqn.

Question
Eichler integrals of MFs are prominent in the theory of HMFs.
What about for general “Eisenstein-type” series?

q-series identities?
Harmonic Maass forms?
Quantum Modular forms?
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Eichler integrals of Eisenstein series
Results

“Eisenstein-type series”

Definition

For a ∈ Z, we define the divisor function series

E2−a(z) :=

∞∑
n=1

σ1−a(n)qn =
∞∑
n=1

∑
d|n

d1−aqn.

Remarks

1 For k ≥ 2, the Eichler integral of the modular E2k(z) satisfies

E2−2k(z) = −B2k

4k
· EichlerE2k (z).

These are known to have “modularity properties” via HMFs.
2 Do the E2−a(z) give modular objects for other a?
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Results

Executive Summary of New Results

Bloch-Okounkov q-brackets for t-hooks in partitions give E2−a(z).

Produces various types of Harmonic Maass forms

Produces Holomorphic Quantum Modular Forms

Chowla-Selberg formulas

Relations involving zeta-values and Bernoulli numbers
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Results
t-hooks in Partitions

q-brackets of functions on partitions

Definition (Bloch-Okounkov)

For functions f : P 7→ C on the integer partitions,

the q-bracket
of f is

〈f〉q :=

∑
λ∈P f(λ)q|λ|∑
λ∈P q

|λ| ∈ C[[q]].

Remarks
(Bloch and Okounkov) SL2(Z) quasimodular forms are
generated by q-brackets of shifted symmetric polynomials.
Do q-brackets give other types of modular forms?
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Results
t-hooks in Partitions

Functions on t-hooks of partitions

Notation

H(λ) := {hook numbers of λ}
Ht(λ) := {hook numbers of λ that are multiples of t}.

Definition

If t ∈ Z+ and a ∈ C, then define fa,t : P → C by

fa,t(λ) := ta−1
∑

h∈Ht(λ)

1

ha
.
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Results
t-hooks in Partitions

Examples

Consider the partition λ = 4 + 3 + 1 :

•6 •4 •3 •1
•4 •2 •1
•1

←− Subscripts = Hook numbers

We find that H(λ) = {1, 1, 1, 2, 3, 4, 4, 6} and

H2(λ) = {2, 4, 4, 6} and H3(λ) = {3, 6}.

Therefore, we have

f3,1(λ) = 1 + 1 + 1 +
1

8
+

1

27
+

1

64
+

1

64
+

1

216
=

307

96
,

f3,2(λ) = 22

(
1

8
+

1

64
+

1

64
+

1

216

)
=

139

216
,

f3,3(λ) = 32

(
1

27
+

1

216

)
=

3

8
.
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Eichler integrals of Eisenstein series
Results
t-hooks in Partitions

q-identities

Theorem (B-O-W)

If t is a positive integer and a ∈ C, then we have

〈fa,t〉q = E2−a(tz).

Remarks
1 Proof follows easily from recent work of Han and Ji.

2 Think “log-derivative” of the Nekrasov-Okounkov &
Westbury formula

∑
λ∈P

q|λ|
∏

h∈H(λ)

(
1− z

h2

)
=
∞∏
n=1

(1− qn)z−1.
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Eichler integrals of Eisenstein series
Results

Types of Harmonic Maass forms

Sesquiharmonic Maass forms (a = 2)

Definition

A weight k sesquiharmonic Maass form is a real analytic modular form
that is annihilated by ∆k,2 := −ξk ◦ ξ2−k ◦ ξk, where ξk := 2iyk ∂

∂z
.

Theorem (B-O-W)
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Results

Types of Harmonic Maass forms

Harmonic Maass forms (a ≥ 4 even)

Theorem (B-O-W)

Proof.

Eichler integrals of holomorphic modular forms are “mock modular”.

The nonholomorphic part is the “period integral” of E2k(z).
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Results

Types of Harmonic Maass forms

Modularity of 〈f2k,t〉q (Case k ≥ 1)

Notation

For k ∈ N, we define the Bernoulli number polynomial

P−2k(z) := −1

2
(2πi)2k+1

k+1∑
m=0

B2m

(2m)!

B2k+2−2m

(2k + 2− 2m)!
· z2m−1.

Corollary (B-O-W)

If k and t are positive integers and

M−2k,t(z) := 〈f2k+2,t〉q −
1

2
P−2k(tz) +

1

2
ζ(2k + 1),

then for z ∈ H we have

M−2k,t(z) = (tz)2kM−2k,t

(
− 1

t2z

)
.
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Types of Harmonic Maass forms

Modularity of 〈f2k,t〉q (Case k = 1)

Notation

We require functions

Pt(z) := −t
(
t+

πi

12

)
z +

1

z
and Lt(z) := −1

4
· log(tz).

Corollary (B-O-W)

If t is a positive integer and

Mt(z) := 〈ft〉q + Pt(z) + Lt(z),

then for all z ∈ H we have

Mt(z) = Mt

(
− 1

t2z

)
.

Ken Ono (University of Virginia) Eichler integrals of Eisenstein series



Eichler integrals of Eisenstein series
Results

Types of Harmonic Maass forms

Modularity of 〈f2k,t〉q (Case k = 1)

Notation

We require functions

Pt(z) := −t
(
t+

πi

12

)
z +

1

z
and Lt(z) := −1

4
· log(tz).

Corollary (B-O-W)

If t is a positive integer and

Mt(z) := 〈ft〉q + Pt(z) + Lt(z),

then for all z ∈ H we have

Mt(z) = Mt

(
− 1

t2z

)
.

Ken Ono (University of Virginia) Eichler integrals of Eisenstein series



Eichler integrals of Eisenstein series
Results

Types of Harmonic Maass forms

Modularity of 〈f2k,t〉q (Case k = 1)

Notation

We require functions

Pt(z) := −t
(
t+

πi

12

)
z +

1

z
and Lt(z) := −1

4
· log(tz).

Corollary (B-O-W)

If t is a positive integer and

Mt(z) := 〈ft〉q + Pt(z) + Lt(z),

then for all z ∈ H we have

Mt(z) = Mt

(
− 1

t2z

)
.

Ken Ono (University of Virginia) Eichler integrals of Eisenstein series



Eichler integrals of Eisenstein series
Results

Chowla-Selberg Formulas

Algebraic Parts of Dedekind’s eta values

Definition (Dedekind)

The Dedekind eta-function is defined by

η(z) := q
1
24 ·

∞∏
n=1

(1− qn).

Theorem (Chowla and Selberg (1967))

Suppose that D < 0 is a fundamental discriminant and let

ΩD :=
1√

2π|D|

 |D|∏
j=1

Γ

(
j

|D|

)χD(j)
 1

2h′(D)

.

If τ ∈ Q(
√
D) ∩H, then we have

η

(
− 1

τ

)
∈ Q ·

√
ΩD.
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Chowla-Selberg Formulas

Ramanujan’s Examples

Ramanujan discovered that

,

where

.
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Chowla-Selberg Formulas

Modularity for Gen Fcn of fa,1

Notation

For a ∈ C and k ∈ N define

Ha(z) := q−
1
24

∑
λ∈P

fa,1(λ)q|λ|.

Ψ−2k(z) := −P−2k

(
−1

z

)
− 1

2

(
1− z−2k

)
ζ(2k + 1).

Corollary (B-O-W)

If z ∈ H and k ∈ N, then

H2k+2

(
−1

z

)
− 1

z2k
√
−iz

H2k+2(z) =
Ψ−2k(z)

η
(
− 1
z

) .
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Chowla-Selberg Formulas

Chowla-Selberg for Ha(z)

Corollary (B-O-W)

If k ∈ N and τ ∈ Q(
√
D) ∩H, where D < 0 is a fundamental

discriminant, then

H2k+2

(
−1

τ

)
− 1

τ2k
√
−iτ

H2k+2(τ) ∈ Q · Ψ−2k(τ)√
ΩD

.
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Results

Holomorphic Quantum Modular Forms

What about the other E2−a(tz) = 〈fa,t〉q?

Question
So far all the results are about

E2−a(tz) = 〈fa,t〉q

for even a ≥ 2.
What can be said if a ≤ −1 is odd?

Example
For instance, if a = −1 then we have

〈f−1,1〉q =

∞∑
n=1

σ2(n)qn.
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Holomorphic Quantum Modular Forms

Holomorphic Quantum modular forms

Definition (Zagier)

A weight k holomorphic quantum modular form is a
function f : H 7→ C, s.t.

for all γ =
(
a b
c d

)
∈ SL2(Z) the function

hγ(x) := f(x)− ε(γ)(cx+ d)−kf

(
ax+ b

cx+ d

)
is holomorphic on a “larger domain” than H.
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Holomorphic Quantum Modular Forms

New holomorphic quantum modular forms

Theorem (B-O-W)

Suppose that a ≤ −1 is odd. Then the following are true:

Remark (“Larger domain”)

For γ = ( a bc d ) ∈ SL2(Z), the hEk,γ(z) extends to a holomorphic function on

Cγ :=

{
C \

(
−∞,− d

c

)
c > 0,

C \
(
− d
c
,∞
)

c < 0.
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Cγ :=

{
C \

(
−∞,− d

c

)
c > 0,

C \
(
− d
c
,∞
)

c < 0.
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Asymptotic Expansions

Notation
If a ≤ −1 is odd, then we have

Ĝ2−a(t) :=

∞∑
n=1

σ1−a(n)e−nt = E2−a
(
it

2π

)
.

With k = 2− a, the series above agrees, as t→ 0+, with

G̃k(t) :=
Γ(k)ζ(k)

tk
+
ζ(2− k)

t
+
∞∑
n=0

Bn+1

n+ 1

Bn+k
n+ k

(−t)n

n!
.
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Case where a = −1

t Ĝ3(t) G̃3(t) Ĝ3(t)/G̃3(t)

2 ≈ 0.2602861623 ≈ 0.2602864321 ≈ 0.9999989634

1.5 ≈ 0.6578359053 ≈ 0.6578359052 ≈ 0.9999999998

1 ≈ 2.3214805734 ≈ 2.3214805734 ≈ 1.0000000000

0.5 ≈ 19.0665916994 ≈ 19.0665916994 ≈ 1.0000000000

0.1 ≈ 2403.2805424358 ≈ 2403.2805424358 ≈ 1.0000000000
...

...
...

...

0 ∞ ∞ 1
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t-hook functions on partitions

Definition

If t ∈ Z+ and a ∈ C, then define fa,t : P → C by

fa,t(λ) := ta−1
∑

h∈Ht(λ)

1

ha
.

Theorem (B-O-W)

If t is a positive integer and a ∈ C, then we have

〈fa,t〉q = E2−a(tz) =
∞∑
n=1

σ1−a(n)qn.
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Positive even a

Theorem (B-O-W)

Theorem (B-O-W)
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Summary

Odd a ≤ −1

Theorem (B-O-W)

Suppose that a ≤ −1 is odd. Then the following are true:

Remark

These asymptotics are analogous to Ramanujan’s O(1) numbers that arise
with “classical” quantum modular forms.
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