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SYMBOLIC COMPUTATION with special functions & sequences

Number Theorists played a pioneering role; e.g.:
“Computers in Number Theory” (Oxford, 196_9\1

el . 3 —i e
! 9 i/ )\

1taken from John B. Cosgrove's home page
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Volume 1, 1st edition 1968, Exercise 1.2.6.63:
[50] Develop computer algebra programs for simplifying sums that
involve binomial coefficients.
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CONCRETE MATHEMATICS

A FOUNDATION FOR COMPUTER SCIEN(

GRAHAM © KNUTH ©O PATASHNIK

1st edition 1989; contains Gosper's algorithm (1978).
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CONCRETE MATHEMATICS

A FOUNDATION FOR COMPUTER SCIENCE

GRAHAM KNUTH PATASHNIK

SECOND EDITION

,,,,,,,

2nd edition 1994: \What is the difference to the 1st edition?
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Answer:




>
[
(@)
s}
o)
xI
G
(@)
s
m
<
~
w0
(D)
o
()
g
@)
—
L
w0
()
b0
Q)
X
O
[gM)
o
O
=2
o

Gosper — Zeilberger:

IX. The eighteenth Century,
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W=+ (o)

Telescoping (Gosper):
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g-binomial coefficients:

n=>0
n=1: 1
n = 2: 1

n = 3: 1 1+q+ q?
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q-Telescoping (g-analogue of Gosper):

(—1)kq(§) (Z)q — (—1)kq(§)+k (n ; 1)q B (_1)k—1q(’§) (Z: 1)(}
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Back to ¢ = 1: We know that there are identities like
“/n
— on
> (1)
k=0

but (7) does not telescope! ~» Creative Telescoping (Zeilberger):



RISC Packages for ¢-Series / A Bit of History

(1)) ()

Creative Telescoping (Zeilberger):

("4 2 =) () =

where
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(1)) ()

Creative Telescoping (Zeilberger):

("4 2 =) () =

where
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k=0

e (1) -2(0) =51 50

Consequently, for

one has:

Alternatively,
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k=0

e (1) -2(0) =51 50

Consequently, for

one has:

Alternatively,
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Zeilberger's algorithm solves Knuth's [50]-problem from 1968:

1st edition 1996
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An algorithmic supplement to “Concrete Mathematics":

The Concrete
Tetrahedron

Symbolic Sums, Recurrence Equations,
Generating Functions, Asymptotic Estimates

&) SpringerWien NewYork

1st edition 2011
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A conversation with Donald E. Knuth conducted
by Edgar G. Daylight (Paris, June 18, 2014):

Coptagand -
e A
LONELY 5CHO 1w
CONVE RS ATICONS

Algorithmic
Barriers
Falling

P=NP?

D Y]

Knuth: Learning how to manipulate formulas fluently, and how to
see patterns in formulas instead of patterns in numbers — that'’s
what my book “Concrete Mathematics” is essentially about.
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A conversation with Donald E. Knuth conducted
by Edgar G. Daylight (Paris, June 18, 2014) [contd.]:

=X
T PTTS

CoCOMINAL FR2a AT ICOTI 0

Algorithmic
Barriers
Falling

P=NP?
NI
EETETTE Ry
Edgar: Which was also the topic of Manuel Kauers this morning?

Knuth: Right. In fact, he and Peter Paule in Austria recently
published a beautiful book called “The Concrete Tetrahedron”,
which is sort of the sequel to "Concrete Mathematics”.
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CONTENTS OF THE “CONCRETE TETRAHEDRON”

recurrences

asymptotics

summation
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In[1]:= << RISC fastZeil"’

Fast Zeilberger Package version 3.61

written by Peter Paule, Markus Schorn, and Axel Riese
Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria
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In[1]:= << RISC fastZeil"’

Fast Zeilberger Package version 3.61

written by Peter Paule, Markus Schorn, and Axel Riese
Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

k

7= {(E)/ (";1)*, (E)/ (le)} // Fullsimplify

out[7]=

In[4]:= (n_) t= Binomial[n, k]

Kk
{_kn+n, 1 k+n}
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In[42]:=
Gosper[(-l)k (E) , {k, 0, 1}]

If "1' is a natural number and n# 0, then:

Out[42)=

(-1)1”L (L-n) Binomial[n, 1] }

{Sum[(—l)kB'inom'ial[n, ki, (k, 0, 1}] =
n

NOTE. MMA procedure (i.e., comes with MMA):
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In[42]:=
Gosper[(-l)k (E) , {k, 0, 1}]

If "1' is a natural number and n+ 0, then:

Out[42)=

(-1)1”L (L-n) Binomial[n, 1] }

{Sum[(—l)kB'inom'ial[n, k], {k, 0, 1}] =
n

NOTE. MMA procedure (i.e., comes with MMA):

In[43]:=
1 [ n
v (),
k=0

Out[43]=
(-1)'Binomial[-1+n, 1]
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Creative Telescoping:
In[44]:=

Zb[(z)*, {k, ©, n}, n, 1]

If 'n' is a natural number, then:

Out[44]=
{2SUM[Nn] - SUM[1 +n] =0}

NOTE. Zeilberger's algorithm delivers a proof certificate:
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Creative Telescoping:
In[44]:=

Zb[(::)*, {k, ©, n}, n, 1]

If 'n' is a natural number, then:

Out[44]=
{2SUM[Nn] - SUM[1 +n] =0}

NOTE. Zeilberger's algorithm delivers a proof certificate:

In[45]:=

Zb[(z) , Ky 1, 1]
Out[45]=

{2F[k, n] -F[k, 1 +n] =2Ax[F[k, n] R[k, n]]}
In[47]:=

show[R]
out[47]= Y

k

1-k+n
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q- Telescoping:
In[48]:=
<< RISC qZeil’

Package g-Zeilberger version 4.50 written by Axel Riese
Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

NOTE. The gZeil package implements objects like:
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q- Telescoping:
In[48]:=
<< RISC qZeil’

Package g-Zeilberger version 4.50 written by Axel Riese
Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

NOTE. The gZeil package implements objects like:
In[49]:=
?2gBinomial

gBinomial[n, k, g] represents the g-binomial coefficient of n and k in base ¢ given by

(qn-k+1

(n) l A P,

k = (q’q)

q .
0, otherwise.
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In[49]:=

?2qBinomial

gBinomial[n, k, g] represents the g-binomial coefficient of n and k in base ¢ given by

n-k+1,
n\ _ " sa)e for k>0,
k = (q: q)k

0, otherwise.
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In[49]:=
?2qBinomial
gBinomial[n, k, g] represents the g-binomial coefficient of n and k in base ¢ given by
n-k+1,
ny . (q ’q)k fork=0,
( k) = (q’ q)k
q .
0, otherwise.

In[50]:=

? qPochhammer
gPochhammera, g] denotes the limit of qPochhammer(a, g, k] for k approaching (positive) infinity.
gPochhammer(a, g, k] represents the g-shifted factorial of @ in base g with index k given by

((I-a)(I-aq)(1-aq"), ifk>0,
], ﬁk:Q

(1__)( _1][ __], if k <0.

(@; )=
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In[51]:=
qP = gqPochhammer;
In[52]:=

(n_) t= gqBinomial[n, k, q]
q
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In[51]:=
qP = gqPochhammer;
In[52]:=
n_ . . .
P = gBinomial[n, k, q]
_ 1 q
In[54]:=
<< RISC qSimplify"
In[55]:=
n qP[q, q, n] . X
(k) / //7 qQSimplify
q qP[dgd, 9, k]l gP[q, g, n - k]
Out[55]=
1
In[56]:=
)/ (") (2)/ (kma) ) s asimens
qSimplify
{( k )q k qa \kl/gqg k-1 q}
Out[56]=
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In[58]:=
n

gTelescope [ (-1) K ( y

) qBinom'ial[k,Z]’ (k, 0, 1}, {n}]
q

Out[58]=

2
{Sum[(—l)kq‘TT gBinomial[n, k, q], {k, 0O, 1}] -

2
(-1)'q2"2

N~

gBinomial[-1+n, 1, q], {n#@}}
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In[58]:=

qTelescope| (-1)* (E) g¥romatlol i, 0, 13, (n}]

q
Out[58]=
K kK2 .
{Sum[(—l) g 2" 2 gBinomial[n, k, q], {k, 0, 1}] =
LoLe .
(-1) "q2" 2 gBinomial[-1+n, 1, q], {I‘]:}EO}}

Recall:

i(_nkq(g) (Z) _ (—1)fgi) (n ; 1)q.

k=0 q

NOTE. MMA has no built-in g-hypergeometric summation.
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In[17]:=
R n . 3
quﬂ.[( k) qB1nom1a1[k,2], {k, 0, n}, n, 1]
q

Out[17]=
SUM[n] = (1+q ") SUM[-1+n]
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In[17]:=
R n . 3
qu11[( k) qB1nom1a1[k,2], {k, 0, n}, n, 1]
q

Out[17]=
SUM[n] = (1+q ") SUM[-1+n]

For

this implies
SUM(n) = (1+¢" ") (1 +¢"2)... (1 + q)SUM(0)
= (¢ On-

~> Algorithmically this special case of the g-binomial theorem can
be found as follows:
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In[89]:=

? FindAlphaBeta

FindAlphaBeta is an option for gZeil and qTelescope. With

FindAlphaBeta -> True, gZeil and qTelescope suggest all possible choices of alpha
and beta such that there possibly exists a solution for

F':= F x g"(alpha Binomial[k,2] + beta k).
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In[89]:=

In[87]:=

? FindAlphaBeta

FindAlphaBeta is an option for gZeil and qTelescope. With

FindAlphaBeta -> True, qZeil and qTelescope suggest all possible choices of alpha
and beta such that there possibly exists a solution for

F':= F x g"(alpha Binomial[k,2] + beta k).

quil[(:)

a B

1 Interval[{-w, ©}]

, {k, &, n}, n, 1, FindAlphaBeta -> True]
q
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In[89]:=

In[87]:=

In[95]:=

Out[95=

? FindAlphaBeta

FindAlphaBeta is an option for gZeil and qTelescope. With

FindAlphaBeta -> True, qZeil and qTelescope suggest all possible choices of alpha
and beta such that there possibly exists a solution for

F':= F x g"(alpha Binomial[k,2] + beta k).

quil[(:)

a B

1 Interval[{-w, ©}]

, {k, &, n}, n, 1, FindAlphaBeta -> True]
q

o n inomi k
qze11[(k) qB1nom1a1[k,2] qb y {ky 8, n}, n, 1, {b}
q

SUM[n] = (1+q ") SUM[-1+n] N
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In[95]:=
. n inomi k
qzeﬂ-[(k) qB1nom1a1[k,2] qb y {ky @, n}, n, 1, {b}]
q

Out[95]=
SUM[n] = (1+q1*"") suM[-1+n] N
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In[95]:=
. n inomi k
quﬂ.[(k) qB1nom1a1[k,2] qb y {ky @, n}, n, 1, {b}
q

Out[95]=

SUM[n] = (1+q1*"") suM[-1+n] N
In[96]:=

. n i i
qu11[( k) qB1nom1a1[k,2] Zk, {(k, 0, n}, n, 1]
q

Out[96]=

SUM[n] = (1+q*"z) SUM[-1+n]
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In[95]:=
. n inomi k
quﬂ.[(k) qB1nom1a1[k,2] qb y {ky @, n}, n, 1, {b}
q

Out[95]=

SUM[n] = (1+q1*"") suM[-1+n] N
In[96]:=

. n i i
qu11[( k) qB1nom1a1[k,2] zk, {(k, 0, n}, n, 1]
q

Out[96]=

SUM[n] = (1+q*"z) SUM[-1+n]

Also the g-version of Zeilberger's algorithm delivers a proof
certificate:
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In[96]:=
quﬂ-[(E) qB1'nom1'a1[k,2] Zk, {k, 0, n}, n, 1]
q

Out[96]=
SUM[n] = (1+q """ z) SUM[-1+n]




RISC Packages for ¢-Series / Computer Algebra Session 1

In[96]:=
. n i i
qu11[( k) qB1nom1a1[k,2] zk, {k, 0, n}, n, 1]
q
Out[96]=
-1l+n
SUM[n] = (1+q z) SUM[-1+n]
IN[97]:=
Cert|]
Out[97]=
q—l—k+n (_qk 4 qn) Z
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In[96]:=
quﬂ-[(E) qB1'nom1'a1[k,2] zk, {(k, 0, n}, n, 1]
q
Out[96]=
-1l+n
SUM[n] = (1+q z) SUM[-1+n]
IN[97]:=
Cert|]
Out[97]=
_q—l—k+n (_qk 4 qn) Z
-1 +qg"
—1
fn,k - (1 +q" )fn—l,k = 9n,k — 9n,k—1
and

gng = cert(n, k) fo k.
Details on Cert[]: P. and Riese (1997)
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Computer Algebra Session 2



RISC Packages for ¢-Series / Computer Algebra Session 2

nel= << RISC GeneratingFunctions’

In[7]:=

In[8]:=

Out[8]=

In[9]:=

out[9]=

In[10]:=

Out[10]=

In[11]:=

Out[11]=

In[12]:=

out[12]=

Package GeneratingFunctions version 0.8 written by Christian Mallinger
Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

LF[n ] := Zn', (2"k"k)
k=0 *

Table[LF[n], {n, ©, 5}]

{1, 2, 5, 13, 34, 89}

GuessRE[%, a[n]] N
{{a[n] -3a[l+n]+a[2+n] =0, a[0] =1, a[l] =2}, ogf}
Table[Fibonacci[n], {n, 0, 11}]

{6, 1,1, 2, 3,5, 8, 13, 21, 34, 55, 89}
Table[Fibonacci[2 n], {n, 0, 5}]

(0, 1, 3, 8, 21, 55}

GuessRE[%, a[n]]

{{a[n] -3a[l+n]+a[2+n] =0, a[0] =0, a[l] =1}, ogf}
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To PROVE our guess, we compute the recurrence of the
Fibonacci subsequence in question :

In[13):= ? *RESubx

RecurrenceEquationSubsequence[re,a[n],m*n+k] gives a recurrence that
is satisfied by a subsequence of the form a[mn+Kk] of every solution a[n] of

the input recurrence re.
Alias: RESubsequence

See also: REInfo, REInterlace

nf14)= RESubsequence[{-a[n] -a[l+n] +a[2+n] =0, a[0] ==0, a[l1l] =1},
a[nl, 2n]
oufi4= {a[n] -3 a[l+n]+a[2+n] =0, a[0] =0, a[l] =1}
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In[15]:=

In[16]:=

Out[16]=

In[17]:=

Out[17]=

Next we find a g-analogue to

LF[n_] := i (2nk—k)*

k=0
quﬂ[(an—k) , {ky @, n}, n, 2, FindAlphaBeta-»True]

q

a B

-3 Interval[{-eo,
-2 Interval[{-eo,
-1 Interval[{-w,
0 Interval[{-ww,
1 Interval[{-ew,
2 Interval[{-ew,
3 Interval[{-eo,
4 Interval[{-eo,
5 Interval[{-oo,
6 Interval[{-ww,
7 Interval[{-ew,

88888888888

! g S g S g S g S g gt
[ S Y S S S SR Y S ) S S— —

—
|
w
~
—
N X
—_—
*
+

b k
y {ky 0, n}, n, 2, {b}]

qu‘il[(znk_k) q
q

{}

k
qu‘il[(znk_k)qq1 (2),+bk, {ky @, N}, n, 2, {b}]

{}
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In[18]:=

Out[18]=

In[19]:=

out[19]=

In[20]:=

In[21]:=

out[21]=

In[23]:=

Out[23]=

k
. 2n-k 2 +b k
qu'Il[( K ) q (2)* » {ky @, n}, n, 2, {b}]
q
_ 3_ b+2n_ 1+b+2n SUM —l n
SUM[n] = _q—7+2b+4n SUM[-2 +n] - ( q q q : ) [ +Nn]j
q

k
quil[(znk'k)qq3 (2),*“, {ky @, N}, n, 2, {b}]
{}

k
qu-il[(Z"k‘k)q,;|7 (2)**”, {k, 0, n}, n, 2, {b}]

We chooseb=1:

k
quil[(an-k) q2 (2)*”(’ {k, 0, n}, n,g, {b}]

q
(_qz_an_q1+2n) SUM[—1+n]

q

SUM[N] = -q " SUM[-2 + n] -

Cert[]
_((q-5-4k+2n (_qk+qn) (qk+qn) (_ql+2k+q2n>
(_q8+4k _ q9+4k + 6n 6+2k+2n 5+3k+2n 6+3k+2n T7+3k+2n +

q +q +q +q +q
q5+4k+2n_q q q

3+k+4n_ 2+2k+4n_
((qk_an) (_q1+k+q2n) (_q2+k+q2n) (_q3+k+q2n))>

3+2k+4n _ q4+2 k+4n) ) /
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Another sum for the Fibonacci sequence in question :

S (2042
in2)= RF[n_] = Z (n 5 Kk
k=-n - * 2N+ 2

10k +2

Ine4]= Table[RF[Nn], {n, 0, 5}]

oue4= {1, 2, 5, 13, 34, 89}

Indeed, with Zeilberger' s algorithm one instantly proves that for n>0:
(7%
k
k=0

TASK: Find a g-analogue of this identity.

2ne2y 10k+2

Zn (n-5k

* k=-n )* 2n+2

in2s):= ? qBrackets

qBrackets[n, q] represents the basic number nin base ¢ given by [n], = 1 + q + G+ +q

In26]= B = qBrackets;

n271= qZeil [ (

2n+2 qB[10 k + 2, q]
n-5k

9 qB[2n+2, q]

y {ky -ny n}, n, 2, FindAlphaBeta-»True]
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qBrackets[n, g] represents the basic number ninbase g given by [n];:= 1+ q + g+ +q"

In26= qB = qBrackets;

2n+2 qB[10 k + 2, q]
n-5k

In[27):= qu'il[( » {ky -n, n}, n, 2, FindAlphaBeta —>True]

9 qB[2n+2, q]

a B

20 Interval[{-w, «}]
21 Interval[{-w, «}]
22 Interval[{-w, «}]
23 Interval[{-w, «}]
24 Interval[{-w, «}]
25 Interval[{-w, «}]
26 Interval[{-w, «}]
27 Interval[{-w, ©}]
28 Interval[{-w, «}]
29 Interval[{-w, ©}]
30 Interval[{-w, w}]

2n+2 qB[10 k + 2, q] qze (:) +8k

In2gl= qZeil [ ( ho 5K

s {Ky -n, n}, n, 2]
T gB[2n+2, q]

outi28]= {}

2n+2 qB[10 k + 2, q] 2e(k) +9k
q ‘s
n-5k

In[29]:= qu‘il[( , {ky, -n, n}, n, 2]
N

9 qB[2n+2, q]

(_q2 _q2n _ q1+2n) SUM[—]_ . n]

q

ouzel- SUM[N] = -q " SUM[-2 + n] -
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In[30]:= Cert[]

Out[30]= _((q—3—10k+n (_q5k+qn) (_q1+5k+qn\) (_q2+5k+qn) (_q3+5k+qn) (_q4+5k+qn))/
((_1+q1+5k) (1+q1+5k) (_1+qn) (l+qn)
(-a+q") (a+q") (-a+a’") (-1+q"7")))

The choice b =9 can be justified as follows :
n k
. 2n-k 2 (2) K
in31):= qLF[n_] &= Z ( K )q q
k=0
in32)= Table[qLF[n] // qSimplify // Factor, {n, 0, 3}]

Out[32]= {l, l+q, 1+q+q2+q3+q4, 1+q+q2+q3+2q4+2q5+2q6+q7+q8+q9}

2n+2 qB[10k+2, Q] 29(;) +b k
q *

n
in33i= qRF[N_] &= (
kZ‘,, n-5klq gqBr2n+2, q

ini34= Table[qRF[n] // qSimplify // Factor // Expand, {n, 0, 3}]

ouag= {1, 1+9, 1+q+9°+q°+q",

1+q+q2+2q3+2q4+2q5+2q6+q7+q8+q9—q12'b}

As a consequence, b =9 is necessary for equality!
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Summary : we rediscovered and proved the Andrews-Schur identity for n=0,

10k+2

A /2n-k k2 = 2n+2 1-g 10k?-k
Z( k )qq =Z(n-5k)q 2nez T '
k=0 k=-n 1-g“™
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Summary : we rediscovered and proved the Andrews-Schur identity for n=0,

10k+2

S (2n-k 2n+2 g 10k2-k
Z( ) Z (n 5k) sz .
k=0 k=-n -qg
2n — k 1 q)on— 1
Note: ( " ) = (% @)on—t — for n — oo,
k), (@GOG Don—20 (D
and
oM -+ 2 o 1
(n+ ) _ (4; 9)2n+2 . for m — oo
n — 5k q (¢ Dn—5k(T Qntsk+2 (¢;9)

hence, by Jacobi's triple product identity, Andrews-Schur turns into
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Summary : we rediscovered and proved the Andrews-Schur identity for n=0,

10k+2

n _ n 1 -q
B (75%), 0 - 3 (2732), A g
k=0 q e ‘B 9 1 _g2n+2
2n — k Q) om— 1
Note: ( " ) = (% @)on—t — for n — oo,
k), (@GOG Don—20 (D
and
2 2 ; 1
( n+ ) _ (45 4)2n+2 . for m — oo
n — 5k q (¢ Dn—5k(T Qntsk+2 (¢;9)

hence, by Jacobi's triple product identity, Andrews-Schur turns into

8

O
H (1— q53+1 = g5t [1st Rogers-Ramanujan id.]
kZ:O J:()
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How to download the RISC packages?



RISC Packages for ¢-Series / How to download the RISC packages?

How to download the RISC packages?
Step 1: go to

< c @ © | & https://www3.risc.jku.at/research/combinat/software/ergosum/ 150% &

9,
£ 2 RIsC
o Research Institute for Symbolic Computation

RISCErgoSum 1.1.5 documentation

RISCErgoSum

RISCErgoSum is a collection of packages created at the Research Institute for Symbolic
Computation (RISC), Linz, Austria. N

Download and Installation

Show Source
® Download and Installation

0O Registration
0 Short Instruction
Go 0 Detailed Instruction
® Packages
0 Asymptotics: A Mathematica package for computing asymptotic series expansions of univariate holonomic
sequences
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® Download and Installation

O Registration

O Short Instruction

O Detailed Instruction

® Packages

O Asymptotics: A Mathematica package for computing asymptotic series expansions of univariate holonomic
sequences

© Dependencies: A Mathematica package for computing algebraic relations of C-finite sequences and multi-
sequences

O Engel: A Mathematica implementation of g-Engel Expansion

o fastZeil: The Paule/Schorn Implementation of Gosper's and Zeilberger's Algorithms

O GeneratingFunctions: A Mathematica package for manipulations of univariate holonomic functions and sequences

O GenOmega: A Mathematica implementation of Guo-Niu Han'’s general Algorithm for MacMahon's Partition Analysis

O Guess: A Mathematica package for guessing multivariate recurrence equations

© HolonomicFunctions: A Mathematica package for dealing with multivariate holonomic functions, including closure
properties, summation, and integration

O MultiSum: A Mathematica package for proving hypergeometric multi-sum identities

© Omega: A Mathematica implementation of Partition Analysis

O OreSys: A Mathematica implementation of several algorithms for uncoupling systems of linear Ore operator
equations

O pqTelescope: A Mathematica implementation of a generalization of Gosper’s algorithm to bibasic hypergeometric
summation

O qGeneratingFunctions: A Mathematica package for manipulations of univariate g-holonomic functions and
sequences

O gMultiSum: A Mathematica package for proving g-hypergeometric multi-sum identities

O qZeil: A Mathematica implementation of g-analogues of Gosper's and Zeilberger’s algorithm

o qSimplify: A Mathematica package for the simplification of g-expressions

o Stirling: A Mathematica package for computing recurrence equations of sums involving Stirling numbers or Eulerian
numbers

O SumCracker: A Mathematica implementation of several algorithms for identities and inequalities of special

sequences, including summation problems

® Notes for Authors

O

')

Getting the Sources

NaAavalamrmmand
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Step 2: email to me and download the RISCErgosum package

Registration

The download is password protected. To get the password, send an email to Peter Paule . It will be
given for free to all researchers and non-commercial users.

Note that redistribution of RISCErgoSum is not allowed.

Short Instruction

Get one of the files riscergosum-1.1.5.tgz or riscergosum-1.1.5.zip from http://www.risc.jku.at
/research/combinat/software/source/mathematicﬁ/ergosum and extract it in the Applications

subdirectory of your local Mathematica suserBaseDirectory.

Detailed Instruction

Start Mathematica and type:
$UserBaseDirectory

at the command prompt.

Suppose this value is /home/hemmecke/.Mathematica. EXit Mathematica and extract the .tgz file into the
Applications subdirectory.
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Suppose this value is /home/hemmecke/.Mathematica. Exit Mathematica and extract the .tgz file into the
Applications subdirectory.

Under Linux (substitute appropriately):

tar xvzf riscergosum-x.y.z.tgz -C /home/hemmecke/.Mathematica/Applications

Under MacOS the output from suserBasedirectory Will most probably look similar to /users/hemmecke
/Library/Mathematica. Thus, in a terminal type:

tar xvzf riscergosum-x.y.z.tgz -C /Users/hemmecke/Library/Mathematica/Applications
Note that the Library folder is usually hidden in the file browser.

Under Windows (substitute appropriately) unzip the riscergosum-x.y.z.zip and move the files (and
subdirectories) to $userBaseDirectory/Applications.

After extracting the files into the applications subdirectory, you should find there the subdirectories

Applications/RISC
Applications/InvEulerPhi

and in particular the file

Applications/RISC/MultiSum.m



RISC Packages for ¢-Series / How to download the RISC packages?

After extracting the files into the applications subdirectory, you should find there the subdirectories

Applications/RISC
Applications/InvEulerPhi

and in particular the file

Applications/RISC/MultiSum.m

If you don’t see risc and 1nveulerphi directly under applications, then something went wrong and the
following will not work.

Start Mathematica and type:

<< RISC'MultiSum®

You should then see something like:

Package MultiSum version 2.3 written by Kurt Wegschaider

enhanced by Axel Riese and Burkhard Zimmermann

Copyright 1995-2009, Research Institute for Symbolic Computation (Rf%t),
Johannes Kepler University, Linz, Austria

NOTE. For each of the packages some extra information is given; for
example, for gZeil:
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@,
&£ 5 RISC
E. Research Institute for Symbolic Computation

RISCErgoSum 1.1.5 documentation Packages

Table of Contents g Zeil: A Mathematica implementation of
e g-analogues of Gosper’s and Zeilberger’s

implementation of g-analogues

of Gosper's and Zellberger's .
algortim algorithm
Short Description
ﬁg::rcl:rrlpanylng Files This package is part of the RISCErgoSum bundle. See Download and Installation.

Literature
Short Description
qMultiSum: A
Mathematica package for qzeil is a Mathematica implementation of g-analogues of Gosper’s and Zeilberger's algorithm for

proving g-hypergeometric proving and finding indefinite and definite g-hypergeometric summation identities.
multi-sum identities

The package has been developed by Axel Riese, a former member of the RISC Combinatorics

group.
qSimplify: A Mathematica
package for the
simplification of AuthOI"

g-expressions

® Axel Riese

Show Soues Accompanying Files

® WhatsNew.txt an ASCIl-documentation of all changes and new features since version 1.4

B0 e gZellExamples.nb a Mathematica notebook consisting of about 500 examples

Literature

Information on the installation and use of the package (together with its theoretical background)
can be found in the paper

® P. Paule and A. Riese, A Mathematica q-Analogue of Zeilberger’s Algorithm Based on an Algebraically
Motivated Approach to q-Hypergeometric Telescoping, in Special Functions, g-Series and Related Topics,
Fields Inst. Commun., Vol. 14, pp. 179-210, 1997. [pdf]
Moreover, an up-to-date manual for the package is presented in Riese’s Ph.D. thesis

e A. Riese, Contributi to Symbolic gq-Hypergeometric Summation, Ph.D. Thesis, RISC, J. Kepler
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Not all RISC combinatorics packages are bundled in RISCErgoSum:
® software — Combinato: X

(¢&«)—> C ® © | & https://combinatorics.risc.jku.at/software oo w [\ Y 8 IO

Home RISC Members Publications Seminar Software

Home Software

Software

Software available from the RISC Combinatorics Group

Registration

The source code for our packages is password protected. To get the password send an email to Peter Paule. It will be given for free to all researchers and
non-commercial users.

Available Packages

The researchers on combinatorics at RISC provide the following software, mainly packages for the computer algebra system Mathematica. To download
them, please follow the guidelines given on each page. Most of the Mathematica packages are contained in the RISCErgosum bundle.

Symbolic Summation

Hypergeometric Summation
o fastZeil, the Paule/Schorn implementation of Gosper's and Zeilberger's algorithm in Mathematica (by P. Paule, M. Schorn, and A. Riese).
o Zeilberger, a Maxima implementation of Gosper's and Zeilberger's algorithm (by F. Caruso).
* MultiSum, a Mathematica package for proving hypergeometric multi-sum identities (by K. Wegschaider and A. Riese).

q-Hypergeometric Summation

o qgZeil, a Mathematica implementation of g-analogues of Gosper's and Zeilberger's algorithm (by A. Riese).

 Bibasic Telescope (pqTelescope), a Mathematica implementation of a generalization of Gosper's algorithm to bibasic hypergeometric summation
(by A. Riese).

e gMultiSum, a Mathematica package for proving g-hypergeometric multi-sum identities (by A. Riese).

Multi-Summation in Difference Fields and Rings

o Sigma, a Mathematica package for discovering and proving multi-sum identities (by C. Schneider).
o EvaluateMultiSums, a Mathematica package based on Sigma that tries to evaluate automatically multi-sums to expressions in terms of indefinite
nested sums defined over (g-)hypergeometric products (by C. Schneider).

Symbolic Summation for Stirling Numbers
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Not all RISC combinatorics packages are bundled in RISCErgoSum:
2N, RISC J¥U

[ ) (J
E.( Research Institute for Symbolic Computation UNNERSITAT Ling

The summation package Sigma

Short Description

Sigma Is a Mathematica package that can handle multisums in terms of indefinite nested sums and products. The summation principles of Sigma are: telescoping, creative
telescoping and recurrence solving. The underlying machinery of Sigma is based on difference field theory. The package has been developed by Carsten Schneider, a member of
the RISC Combinatorics group.

Registration and Legal Notices

The source code for this package is password protected. To get the password send an email to Peter Paule. It will be given for free to all researchers and non-commercial users.

Copyright © 1999-2019 The RISC Combinatorics Group, Austria — all rights reserved. Commercial use of the software is prohibited without prior written permission.

A Note on Encoded Files

This package contains one or more Mathematica input files which are encoded. Those files cannot be read or modified directly as plain text, but can be loaded into Mathematica
just like any normal input file (i.e., with <<"file" or Get["file"]). There is no need (and also no way) to decode them by using additional software or a special key.

If loading an encoded file causes a syntax error, open it with a text editor and remove any blank lines at the beginning (for s{}le reason your Mac could have inserted them
silently...).

The Package

The Sigma package consists of the file
® Sigma.m (encoded)

For a demo see the built in help of Sigma.

Literature
For a detailed description and a collection of non-trivial examples we refer, e.g., to the article
C. Schneider, Symbolic Summation Assists Combinatorics, Sem.Lothar.Combin. 56, pp.1-36. 2007. Article B56b. [pdf]

For further literature click [here].
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Symbolic Summation in Quantum Field Theory

JKU Collaboration with DESY (Berlin—Zeuthen)
(Deutsches Elektronen—Synchrotron)

Project leader: Carsten Schneider (RISC)
Partners: Johannes Bliimlein (DESY)
Peter Paule (RISC)
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Evaluation of Feynman diagrams

/@(N,e,a:)dx

Feynman
integrals

Evalutions required for the DESY
LHC experiment at CERN

processable by physicists

RISC

(symbolic summation)

> f(N,e k)

multi-sums

simple sum expressions
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N-3 J —j+N—-3 —l+N—q—3 —l+N—q—s—3
35 35 3 SR SENED SRR SRR
J=0 k=0 I= q=0 s=1 r=0

() (L)) (U N s

(=l+N—q=2)(=j+N-1)(N—q—r—s—2)(q+s+1)
451(—j + N — 1) — 451(—j + N — 2) — 251([%’)

—(S1(~l4+N—-q—2)+S51(—l+N—-q—r—s5—3)—251(r+s)

+2S1(s —1) —2S51(r +s)| + 3 further 6—fold sums
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FO (N) — (using Sigma.m, EvaluateMultiSums.m and J. Ablinger's HarmonicSums.m package)

7 17N +5)S1(N)3  35N%2 —2N —5  13S3(N)  5(—1)V
—5'1(N)4 ( )S1(NV) ( . . 2(V) ( g )Sl(N)2
12 3N(N +1) IN2(N +1) 2 2N

4(13N + 5 4(=1)N (2N +1 13
(~ v + (i = s + (5 - C)Y)ss(m)
N
+ (24 2-1)Y) 82 (V) = 28521 (N) + 13 HD)S1 (V) + (F + (D) Sa()7
2(3N —5) 4(—1)N

—2(—=1)NS_5(N)? + S_3(N)(

(-1)N(5 - 3N) 5
( 2N2(N +1) Nz

+ (26 + 4(—=1)N)S1(N) + +1)
8(—1)N(2N +1)

NN +1)
Sa(N) + S_a(N) (1081 (N)? + (

N(N +1)
Vv 1S+ SRR (s s - )
(EU D) 2y su) + (5 = 2-1)")S4(N) + (= 6+ 5(-DY)S_a(V)
(- 2(_]1[)3\[(?\[1;“ 5 _ %)52,1(N) + (20 + 2(=1)N)S2,—2(N) + (= 17+ 13(=1)V) S5
B 8(_1)N(2]J\\[7(J1r\flit)4(9N s A(N) = (24 +4(=1)")S_31(N) + (3 = 5(~1)") S2.1

+3252,1,1<N>+<251<N>2 I s <N>>c<2>
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FO (N) — (using Sigma.m, EvaluateMultiSums.m and J. Ablinger's HarmonicSums.m package)
7 (17N +5)S1(N)3 35N2 —2N —5 13S9(N) 5(—1)N
ESl(N)4 3N(N +1) ( 2N2(N + 1)2 2 IN?2 )S1(N)*
4(13N + 5) 4(-1)N@2N+1) 13
(_NQ(N+1)2 ( N(N—{—l) N)SQ(N)+(__( 1) )SB(N)
N
(24 2(=1)N) 851 (N) — 28551 (N) + L”))S (N)+ (5 + (~1)Y)S2(N)?
4 4=V
—2(-1 Z —1)N)S1(N) +
k=

(-1 5
+ v D Z
7=1

S_2.1,1(N Z :
S

= —— Su(N
(N +1) gN/ o T g A 1(N) +

5(-1))

(~DVON +5) 2

+ (- NN N)SQ,l(N) + (20 + 2(=1)N) So,_o(Ng + (— 17+ 13(=1)"V) S5
N

-2 (2];(}11?)4(9]\’ - S—2,1(N) = (24 +4(=1)")S_s§(N) + (3 = 5(=1)") S2,1

325 51,1(N) + <251<N>2 I s <N>><<2>



RISC Packages for ¢-Series / How to download the RISC packages?

Challenges of the project

About 1000 difficult Feynman diagrams have been treated so far

(some took 50 days of calculation time)

!

About a million multi-sums have been simplified

(most were double and triple sums)
Resources

» up to 9 full time employed researchers at RISC/DESY

» 4 up-to-date mainframe DESY computers at RISC
+ exploiting DESY's computer farms

» New computer algebra/special functions technologies
(new/tuned algorithms, efficient implementations,...)
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Not all RISC combinatorics packages are bundled in RISCErgoSum:
R

(——> Cc @ © | & https://combinatorics.risc.jku.at/software RN # 4 YN D@

R R e e R R e NI

nested sums defined over (g-)hypergeometric products (by C. Schneider).

Symbolic Si tion for Stirling Numbers

e Stirling, a Mathematica package for computing recurrence equations of sums involving Stirling numbers or Eulerian numbers (by M. Kauers).
Symbolic Summation and Integration for Holonomic Functions

o HolonomicFunctions, a Mathematica package for dealing with multivariate holonomic functions, including closure properties, summation, and
integration (by C. Koutschan).

Sequences and Power Series

* Asymptotics, a Mathematica package for computing asymptotic series expansions of univariate holonomic sequences (by M. Kauers).

* Dependencies, a Mathematica package for computing algebraic relations of C-finite sequences and multi-sequences (by M. Kauers and
B. Zimmermann).

Engel, a Mathematica implementation of g-Engel Expansion (by B. Zimmermann).

GeneratingFunctions, a Mathematica package for manipulations of univariate holonomic functions and sequences (by C. Mallinger).
ore_algebra, a Sage package for doing computations with Ore operators (by M. Kauers, M. Jaroschek, F Johansson).
gGeneratingFunctions, a Mathematica package for manipulations of univariate g-holonomic functions and sequences (by C. Koutschan).
Guess, a Mathematica package for guessing multivariate recurrence equations (by M. Kauers).

RLangGFun, a Maple implementation of the inverse Schiitzenberger methodology (by C. Koutschan).

Special Function Algorithms for Indefinite Nested Sums and Integrals

e HarmonicSums, a Mathematica package for dealing with harmonic sums, generalized harmonic sums and cyclotomic sums and their related
integral representations (by J. Ablinger).

Permutation Groups

o PermGroup, a Mathematica package for permutation groups, group actions and Polya theory (by T. Bayer).

Partition Analysis

* Omega, a Mathematica implementation of Partition Analysis (by A. Riese).
* GenOmega, a Mathematica implementation of Guo-Niu Han's general Algorithm for MacMahon's Partition Analysis (by M. Wiesinger).

Difference/Differential Equations

o DiffTools, a Mathematica implementation of several algorithms for solving linear difference equations with polynomial coefficients (by
C. Weixlbaumer).
o OreSys, a Mathematica implementation of several algorithms for uncoupling systems of linear Ore operator equations (by S. Gerhold).

a Dathhiff a AMathamatina irmnlamantatinn nf Mark van Llaait'e alanrthm far fndina ratinnal enhtiane Anf Binaar diffarancra antniatinane fhvy A Diaea)
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Not all RISC combinatorics packagesare bundled in RISCErgoSum:
C ® © | & https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/Holc [E] | *= ©@ ¥ v
Z8Y
N RISC
o Research Institute for Symbolic Computation
RISCErgoSum 1.1.5 documentation Packages previous

Table of Contents

HolonomicFunctions: A
Mathematica package for
dealing with multivariate
holonomic functions, including
closure properties, summation,
and integration

Short Description

Author

Accompanying Files

Literature

Some Applications

Guess: A Mathematica
package for guessing
multivariate recurrence
equations

MultiSum: A
Mathematica package for
proving hypergeometric
multi-sum identities

Show Source

HolonomicFunctions: A Mathematica package
for dealing with multivariate holonomic functions,
including closure properties, summation, and
integration

This package is part of the RISCErgoSum bundle. See Download and Installation.

Short Description

The HolonomicFunctions package allows to deal with multivariate holonomic functions and sequences
in an algorithmic fashion. For this purpose the package can compute annihilating ideals and
execute closure properties (addition, multiplication, substitutions) for such functions. An
annihilating ideal represents the set of linear differential equations, linear recurrences, g-difference
equations, and mixed linear equations that a given function satisfies. Summation and integration
of multivariate holonomic functions can be performed via creative telescoping. As subtasks, the
following functionalities have been implemented in HolonomicFunctions: computations in Ore
algebras (noncommutative polynomial arithmetic with mixed difference-differential operators),
noncommutative Grébner bases, and solving of coupled linear systems of differential or difference
equations.

Author

® Christoph Koutschan

Accompanying Files



RISC Packages fo ries / How to download the RISC packages?

© | & https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/Ho B 9% +oIN @

for Mathematica version 6

® ExamplesV5.2.nb
for Mathematica version 5.2

Right now you are using Version 1.7.3 released on March 17, 2017. This version is compatible with '
Mathematica versions from 5.2 to 11.0. Please report any bugs and comments to Christoph

Koutschan.

Literature

The theoretical background of the algorithms implemented in HolonomicFunctions and how to use
the package, is described in

e C. Koutschan, Ad d Applicati of the Hol ic Sy Approach, RISC, Johannes Kepler
University, Linz. PhD Thesis. September 2009. [pdf]
® C. Koutschan, A Fast App h to Creative Tel

259-266. 2010. [pdf]

ping. Mathematics in Computer Science 4(2-3), pp.

The PhD thesis also contains a chapter about how to use the package. All the commands that are
contained in HolonomicFunctions are in detail described in the documentation

® C. Koutschan, HolonomicFunctions (User’s Guide), Technical report no. 10-01 in RISC Report Series,
University of Linz, Austria. January 2010. [pdf]

Some Applications

The package HolonomicFunctions has been applied in many different contexts, some of which are
listed below.

® In Inverse inequality estimates with symbolic computation the HolonomicFunctions package was used to
evaluate holonomic determinants that arose in numerical analysis.

© By means of the holonomic gradient method, the HolonomicFunctions package contributed to the analysis of
wireless communication networks, as described in the papers MIMO zero-forcing performance evaluation
using the holonomic gradient method and Exact ZF analysis and computer-algebra-aided evaluation in rank-1
LoS Rician fading.

© From version 1.5.1 on, HolonomicFunctions provides the closure property twisting g-holonomic sequences by
complex roots of unity via the command DFiniteQSubstitute; more details, examples, and applications in
quantum topology (Kashaev invariant of twist and pretzel knots) are presented in the corresponding paper
(see the above link).

® In Advanced Computer Algebra for Determinants the package HolonomicFunctions was used to carry out
Zeilberger's holonomic ansatz (and variations thereof) for determinant evaluations to solve three conjectures
by George Andrews, Guoce Xin, and Christian Krattenthaler.

© The proofs of some evaluations of Pfaffians have been carried out with HolonomicFunctions.
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Some Applications

® In Inverse inequality estimates with symbolic computation the HolonomicFunctions package was used to
evaluate holonomic determinants that arose in numerical analysis.

By means of the holonomic gradient method, the HolonomicFunctions package contributed to the analysis of
wireless communication networks, as described in the papers MIMO zero-forcing performance evaluation
using the holonomic gradient method and Exact ZF analysis and computer-algebra-aided evaluation in rank-1
LoS Rician fading.

From version 1.5.1 on, HolonomicFunctions provides the closure property twisting g-holonomic sequences by
complex roots of unity via the command DFiniteQSubstitute; more details, examples, and applications in
quantum topology (Kashaev invariant of twist and pretzel knots) are presented in the corresponding paper
(see the above link).

In Advanced Computer Algebra for Determinants the package HolonomicFunctions was used to carry out
Zeilberger's holonomic ansatz (and variations thereof) for determinant evaluations to solve three conjectures
by George Andrews, Guoce Xin, and Christian Krattenthaler.

The proofs of some evaluations of Pfaffians have been carried out with HolonomicFunctions.

The article Lattice Green's Functions of the Higher-Dimensional Face-Centered Cubic Lattices by Christoph
Koutschan studies random walks in certain lattices; these studies involved heavy computer calculations.

In physics, the HolonomicFunctions package has contributed to the evaluation of relativistic Coulomb integrals
and to the study of fundamental laser modes in paraxial optics.

In numerical analysis, finite element methods are used to construct approximate solutions to partial differential
equations. In some instances, HolonomicFunctions was able to derive the differential-difference relations
between the basis functions, that are necessary for an efficient implementation for Maxwell's equations; this
work finally led to a registered patent.

The Proof of George Andrews’ and David Robbins’ g-TSPP conjecture was a remarkable result by Christoph
Koutschan, Manuel Kauers, and Doron Zeilberger, that settled a 25-years-old conjecture. The computations
which established its computer proof were done by HolonomicFunctions. This work has been awarded the
David P. Robbins Prize 2016 of the American Mathematical Society.

The article “The integrals in Gradshteyn and Ryzhik. Part 18: Some automatic proofs” by Christoph Koutschan
and Victor Moll uses HolonomicFunctions to deals with some integrals from the book by Gradshteyn and
Ryzhik. The notebook GR18.nb (for Mathematica version 7) contains the computations for these examples.
HolonomicFunctions was used in The 1958 Pekeris-Accad-WEIZAC Ground-Breaking Collaboration that
computed Ground States of Two-Electron Atoms (and its 2010 Redux) by Christoph Koutschan and Doron
Zeilberger.

Ira Gessel's conjecture about the enumeration of certain random walks has been proven by the computer,
using the package HolonomicFunctions. The corresponding article is Proof of Ira Gessel's Lattice Path
Conjecture (Manuel Kauers, Christoph Koutschan, Doron Zeilberger), Proceedings of the National Academy
of Sciences 106(28), pp. 11502-11505, July 2009.

N @

The package HolonomicFunctions has been applied in many different contexts, some of which are
listed below.

The HolonomicFunctions package is registered in swMATH, where a more extensive list of papers
using and citing the package can be found.

Not all RISC combinatorics packages are bundled in RISCErgoSu

b L q/\loeoqwﬁ‘a Oﬁo ml’

is [
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Ismail-Zhang formula: leads to the frontiers of what in the
“holonomic universe” is computationally feasible today.
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Ismail-Zhang formula: leads to the frontiers of what in the
“holonomic universe” is computationally feasible today.

Important classical expansion of the plane wave in terms of Gegenbauer
polynomials C% (x):

it — (3) T mi (0 4 m) oo (1) CW) ().

r
=0

g-analogue?
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Ismail-Zhang formula: leads to the frontiers of what in the
“holonomic universe” is computationally feasible today.

Important classical expansion of the plane wave in terms of Gegenbauer
polynomials C% (x):

it — (%) T gim(v +m) o () CO ().

g-analogue? Mourad Ismail and Ruiming Zhang [1994] found:

—UV

(45 @)oo w
(975 @) 00 (—qw?; %) o

. -, v+m m? v
X 31— @) g AT (203 ) Con (3 ¢”g),

m=0

Eq(xsiw) =
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—V

(¢ 9)oo w
(93 9)00 (—qw?; ¢?) oo

Eq(xsiw) =

% Z im(l . qu—I-m) qm2/4’]1£3-)m(2w; q) Cm<CIJ, QV’CI),

m=0
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—V

(¢59)o0w
(93 9)00 (—qw?; ¢?) oo

Eq(xsiw) =

% Z im(l . qu—I-m) qm2/4’]153-)m(2w; q) Cm<£6, QV’CI),

m=0

. J,Ei)m(Zw; q) is Jackson's (second) g-Bessel function:

v+1. ) 0 (_1)n(z/2)v—|—2n
JISQ) 21 q) 1= (q 4 ) oo q(y—l—n)n
#4) (43 9)oo EE% (;

s On(@" T On
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—V

i) — (G Dow
Sl ) = e e (% )

% Z Zm V—I-m 2/4J]E+)m(2w; q) Cm(ZC, qy’q)j

m=0
. Jﬁﬁm(Zw; q) is Jackson's (second) g-Bessel function:
2)1/—|—2n
JISQ) 2:q) = 7q o0 (I/—I—n)n (Z/ .
#4) Z ) (@ @)n

e Cpy(7;¢”|q), © = cos(0) are the continuous g-ultraspherical
(¢-Gegenbauer) polynomials :

C(cost; Blq) : Z )m £ ilm=2k)0,
k=0 q;q q;49)m—k
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—V

(45 @)oo w
(¢¥5 )00 (—qw?; ¢?) oo

Eq(xsiw) =

3 A= gty g A TR (2w;q) O (367 |g),

® The basic exponential function €,(z;iw) [Ismail & Zhang, 1994];
For © = cos(f) and |w| < 1, in terms of basic sine and cosine,

Eq(zyiw) == Cy(x;w) + 1.9 (x; w),

where
O (:00) = (—w* P o (—¢€*5 %), (_q6_2w§q2)j(_w2)3
g\ ™) = 2. 2 e 2. (A2 42) . ’
(9% ¢)o0 = (¢:47); (4% ¢%);
and
w2 g2 2914 0 20, 2\ . (. —2i0. 2 .
Sq(a:,w) — ( w=q ) q wCOS(e)Z( qe » q )J( qe » q )J (_w2)j

(—qw?;¢*)e 1 —g¢
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Eq(zriw) = Cy(x;w) + 1 Sy(x;w),

where
7q 00 (_qe—2z’9;q2),
Cy(z;w) == 5 7 — 7 (—w?),
—qw?; ¢?) ); (4% ¢%);

and

—w? ) 2¢ 4w 0 —2i0. 2\ _
Sq(az;w) — (_w27.q 2) Q_ COS Z ( qe y q )j (_w2)].

(—qw?¢?)o0 1 —¢q )g(q q?);

J=

NOTE. It is not difficult to check that

lim Cy(z;w(l —q)/2) = cos(wz),

q—1—

ql_l}I{l_ Sq(z;w(1 — ¢)/2) = sin(wz).
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With the help of

= << RISC HolonomicFunctions’

HolonomicFunctions Package version 1.7.3 (21-Mar-2017)
written by Christoph Koutschan

Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

--> Type ?HolonomicFunctions for help.

it is possible to provide a computer-assisted proof of the
Ismail-Zhang formula. To this end, for each side of the identity one
computes generators of an ideal of annihilating operators.

Details: C. Koutschan and P., “Holonomic Tools for Basic
Hypergeometric Functions”, 2016.
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Not all RISC combinatorics packages are bundled in RISCErgoSum:
® software —Combinato: X

(&)= C @ © | & https://combinatorics.risc.jku.at/software v U W R |\ W IO

S —————

.............................. gy

* Guess, a Mathematica package for guessing multivariate recurrence equations (by M. Kauers).
* RLangGFun, a Maple implementation of the inverse Schiitzenberger methodology (by C. Koutschan).

Special Function Algorithms for Indefinite Nested Sums and Integrals

e HarmonicSums, a Mathematica package for dealing with harmonic sums, generalized harmonic sums and cyclotomic sums and their related
integral representations (by J. Ablinger).

Permutation Groups

e PermGroup, a Mathematica package for permutation groups, group actions and Polya theory (by T. Bayer).

Partition Analysis

* Omega, a Mathematica implementation of Partition Analysis (by A. Riese).
* GenOmega, a Mathematica implementation of Guo-Niu Han's general Algorithm for MacMahon's Partition Analysis (by M. Wiesinger).

Difference/Differential Equations

 DiffTools, a Mathematica implementation of several algorithms for solving linear difference equations with polynomial coefficients (by
C. Weixlbaumer).
o OreSys, a Mathematica implementation of several algorithms for uncoupling systems of linear Ore operator equations (by S. Gerhold).
 RatDiff, a Mathematica implementation of Mark van Hoeij's algorithm for finding rational solutions of linear difference equations (by A. Riese).
* SumCracker, a Mathematica implementation of several algorithms for identities and inequalities of special sequences, including summation
problems (by M. Kauers).

Misc

# Singular, a Mathematica interface to the Singular system (by M. Kauers and V. Levandovskyy).

* ModularGroup, a Mathematica package providing basic algorithms and visualization routines related to the modular group, e.g. for drawing the
tessellation of the upper half-plane (by T. Ponweiser).

* math4ti2, a Mathematica interface to the 4ti2. (by R. Hemmecke and S. Radu).

* RaduRK, a Mathematica implementation of Radu's Ramanujan-Kolberg Algorithm (by N. Smoot)
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Not all RISC combinatorics packages are bundled in RISCErgoSum:

c © | & https://risc.jku.at/sw/RaduRK/ ooe w 2 [\ W en IO

7N, pisc J¥u

L)
E.{ Research Institute for UNIVERSITAT LiNZ

Symbolic Computation

RaduRK: Ramanujan-Kolberg Program

Authors

Nicolas Smoot

RaduRK is a Mathematica implementation of an algorithm developed by Cristian-Silviu Radu. The algorithm takes as input an arithmetic sequence
a(n) generated from a large class of g-Pochhammer quotients, together with a given arithmetic progression mn+j, and the level of a given
congruence subgroup. The algorithm produces expressions for the generating function of a(mn+j) in terms of Q-linear combinations of Dedekind
eta quotients which are modular over the subgroup. Identities of this form include famous results by Ramanujan which demonstrate the divisibility
properties of p(5n+4) and p(7n+5). The algorithm relies on certain powerful finitehess conditions imposed by the study of modular functions, and
illustrates the utility of the subject to computational number theory. The package has been developed by Nicolas Allen Smoot.

Licence

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be
neefiil but WITHOLIT ANY WARRANTY: withotit even the imnlied warrantvy of MERCHANTARILITY or FITNFSS FOR A PARTICLII AR PIIRPOSF
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Not all RISC combinatorics packages are bundled in RISCErgoSum:

C ® © | & https://risc.jku.at/sw/RaduRK/ o O v N o @

Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program.
If not, see https://www.gnu.org/licenses.

The package

For using the package, download the file RaduRK.m, which can be found at
e RaduRK.m

Place this file into a directory where Mathematica will find it. For a demonstration of how to use the package see
e RKSupplementl.nb.

For more ambitious examples, see:
e RKSupplement2.nb.

The package requires 4ti2 and math4ti2.m, see installation instructions.

Literature

Instructions for the proper installation for these packages and RaduRK can be found in the following paper:

¢ N.Smoot, "On the Computation of Identities Relating Partition Numbers in Arithmetic Progressions with Eta Quotients: An Implementation of
Radu's Algorithm".

For details concerning the design of the algorithm, consult the following:
e S.Radu, "An Algorithmic Approach to Ramanujan’s Congruences," Ramanujan Journal, 20, pp. 215-251 (2009).
e S.Radu, "An Algorithmic Approach to Ramanujan-Kolberg Identities,” Journal of Symbolic Computation, 68, pp. 225-253 (2015).

Bugs

Please report any bugs or other suggestions to Nicolas Smoot.

Computation (RISC)
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Radu’s Ramanujan-Kolberg Algorithm
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George £ Andrews

Andrew V Sills

G.E. Andrews and R. Roy, “Ramanujan’s Method in
g-Series Congruences”, 1997:

“Ramanujan is the discoverer of the surprising fact that the
partition function, p(n), satisfies numerous congruences. Among
the infinite family of such congruences, the two simplest examples

p(bn+4) =0 (mod 5) (1.1)

and
p(Tn+5)=0 (mod 7)." (1.2)

p(4) =5 4,34+1,24+2,24+14+1,14+1+1+1
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Ramanujan’s Congruences

p(dn +4)
p(Tn +5)
p(11n + 6)

0 (mod 5),
0 (mod 7),
0 (mod 11)
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Ramanujan’s Congruences

p(5n +4)
p(5°n + 24)
p(5°n 4 99)

(mod 5),
(mod 5%),
(mod 5%),

|l
o o o

etc.
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PROOF (mod 5 congruence).

ip(&'m +4)g" =5 ﬁ (- q5.j)5
n=0

s (1=¢)°

<
I
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PROOF (mod 5 congruence).

n __ 1 (1_q5])5
nzzop(?m—l—él)q —53[[1 10

“It would be difficult to find more beautiful formulae
than the ‘Rogers-Ramanujan’ identities . ..; but here
Ramanujan must take second place to Prof. Rogers;
and, if | had to select one formula from all
Ramanujan’s work, | would agree with Major
MacMahon in selecting ..." [G.H. Hardy]

http://www-history.mcs.st-andrews.ac.uk/BigPictures/Hardy_5. jpeg
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PROOF (mod 7 congruence).

Zp(?n—l—S)q"
n=0
_7ﬁ( —q7’)3+4gqﬁ( —q7)"
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PROOF (mod 7 congruence).

Zp(7n+5)q"

n=0

o (-7 71 —47)"
_7].:1_[1 = g) —|-49qj1;[1 T= gy

NOTE 1. Radu's Ramanujan-Kolberg algorithm computes both of
Ramanujan’s [1919] witness identities.
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PROOF (mod 7 congruence).

Zp(7n+5)q"

n=0

o (-7 71 —47)"
_7]-:1_[1 = g) —|—49qj1;[1 T= gy

NOTE 1. Radu's Ramanujan-Kolberg algorithm computes both of
Ramanujan’s [1919] witness identities.

NOTE 2. Nicolas Smoot produced a beautiful implementation of
Radu’s algorithm.
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PROOF (mod 7 congruence).

Zp(?n—l—S)q"

n=0

o (-7 71 —47)"
_7]-:1_[1 = g) —|—49qj1;[1 T= gy

NOTE 1. Radu's Ramanujan-Kolberg algorithm computes both of
Ramanujan’s [1919] witness identities.

NOTE 2. Nicolas Smoot produced a beautiful implementation of
Radu’s algorithm.

QUESTION. What about the 11 congruence?
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Computer Algebra Session 3
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Pick up and open Smoot's Mathematica notebook “RKSupplementl.nb”:

Edit Insert Format Cell Graphics Evaluation Palettes Window Help

Supplement (I) to the article

“An Implementation of Radu’s Ramanujan--Kolberg Algorithm”
by Nicolas Allen Smoot,

Research Institute for Symbolic Computation (RISC),

Johannes Kepler University Linz

Begin with the program RaduRK

In[1]:= << RaduRK"

math4ti2: Mathematica interface to 4ti2 (http://www.4ti2.de/)
Copyright (C) 2017, Ralf Hemmecke <ralf@hemmecke.org>
Copyright (C) 2017, Silviu Radu <sradu@risc.jku.at>

RaduRK: Ramanujan--Kolberg Program Version 2.8

Copyright (C) 2020, Nicolas Allen Smoot <nicolas.smoot@risc.jku.at>
Research Institute for Symbolic Computation

Johannes Kepler Universitat, Linz
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Next, establish the two key variables qand t (“generic” variables):
n2)- {SetVarl[q], SetVar2[t]}
out2l- {q, t}
® For each case we work over a modular curve Xy(N), with N a positive integer.

® Take an arithmetic function a(n) defined by a generating function which can be
constructed with an integer M and an integer-valued vector r indexed over the divisors of M:

- N
Yama" = [[(a%97)
n=0 6|M

Ex.M = 1land rs=-1,

ipm)q” = (a5 a7) 0 = ][]

0 51 k:11 q

35
I}

® Finally, take the linear progression mn+j, as n goes over the nonnegative integers.

Za mn +3) q" Ex.m=5and j =4, Zp(5n+4)
n=0
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Classical Identities

Section 3.1 (refers to Smoot’s article “An Implementation of Radu’s...” )

Start with the ordinary partition function, with the progression 5n+4 - as
in the example above. If we work over N=5, we retrieve Ramanujan’s famous identity.

Ex.N=5, and M = 1, rs=-1, and m=5and j =4,

Zp (5n+4)q" wichp (n) q" := H (qé qé);l
n=0 n=0 611

Input: RK[N, M,r, m,j] = RK[5, 1,{-1}, 5,4] with r=(xs).

in[7:= RK[5, 1, {-1}, 5, 4]
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In[7]:=

out[7)=

RK[5, 1, {-1}, 5, 4]

[T@5a)e = )lamaq
5|M n=0

1 Samana

j'ePm,r (3) n=0

f1(q) -

D gpg (1)

geAB

Modular Curve: Xg(N)

N: 5
My (rs)sm} s {1, {-1}3
m 5
Pm,r () {4}
f1(q) ((939)e)®
([e*50°),)°
t: ((939)0)®
q((e59°)_|°
AB: (1}
{pg (t): geAB} {5}
Common Factor: 5
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L\/J8

fia) - []

J'€Pm,r (3)

amn+j")yq" = ) g-pg(t)
0 gcAB

35
Il

after substituting the output data, turns into

(((;5 qS;O Zp (5n+4) Zg pg (t) = 1-5

n=0 ge{l}

In standard notation,

: = (#-4°%)°
p(5n+4)q" = 5. [Ramanujan]
Z’ ﬂ (2-4")°

Why is the output given in the format

f1 (q) - ﬂ Za mn+3")q" = ) g-pg(t)] 7

J Epm r . gGAB




RISC Packages for ¢-Series / Computer Algebra Session 3

Why is the output given in the format

j'€Pm,r (J) n=0 geAB

ANSWER : Radu’s algorithm computes an integer set Py, (3)
withjePy, » (j),andanetaquotient £; (q) suchthat

f:= £ (- [] Dla@ma+ing
j'€Pp,r (j) n=0

isa MODULAR FUNCTION £ for X, () where £ has poles
(ifany)onlyat oo ; i.e., feM(Xp (IN)).

If £ can be presented as a linear combination

of eta quotients geAB, with geM (X, (V) ) and with coefficients
being polynomials py (x) € €[x], the algorithm finds it.
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n@}= RK[7, 1, {-1}, 7, 5]
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n@}= RK[7, 1, {-1},

[

(M

Out[9)=

7, 5]

(@392 = ) am)q"
n=0

f1(q) -

n=0

I mza(mmj')q": D g-pg (1)

J'ePm,r (3)

geAB

Modular Curve: Xg(N)

N: 7
{M, (rs)sm}: {1, {-1}}
m: 7
Pn,r(3) ¢ {5}
f1(q) (939)2)8
a(ld"sa")T7
oy 14
v Tl
AB: (1)
{pg (t): geAB} (49 + 7 t}

Common Factor:




RISC Packages for ¢-Series / Computer Algebra Session 3

j'ePm,r (J) n=0 g=AB

after substituting the output data, turns into

((q5 9).) ((9; 9))?
p (7n+5) = g-pg (t) = [49+7 -1
q((q 5 q) Z g;} a((a’sa’),)"
In standard notation,
. o 7k)7 o (1_q7k)3
p(7n+4) q" = 49 .q + 7- _— [Ramanujan]
Z:', ﬂ -q)° ﬂ (1-4¢)°
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fra) - ] wZa(mn+j‘)q"= ), Pg (1)

j'ePm,r (J) n=0 g=AB

after substituting the output data, turns into

((q3 ) )’

((q
p (7n+5) = g-pg (t) = [49+7 -1
q((q ; q) Z ge{zl} a((as5a’),)"
In standard notation,
o o 7k)7 o (1_q7k)3
Zp (7n+4) q" = 49.¢q ﬂ + 7- 1_[—4 [Ramanujan]
n=o k=1 k-1 (1-49)

NOTE. From modular function point of view, the cases NV =5 and
N = T are simple:

M(Xo(N)) = Clt] (= (C[t] - 1)

Eg.,if N=71,



RISC Packages for ¢-Series / Computer Algebra Session 3

Section 3.3. [What happens for p(11n+6)?]

We examine next the ordinary partition function, with the progression 11n+6.
@ Start with N=11.

n(i0:= RK[11, 1, {-1}, 11, 6]

[ w02 = ia(n)q"
n=0

5|M

fo(a) - |] wza<mn+j')q"= ), & Pg (1)

j'€Pm,r (J) n=0 geAB

Modular Curve: Xg(N)

Out[10]=
N: | 11

{M,(r6)6|M}: ‘ {l, {_l}}
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Modular Curve: Xg(N)

Out[10}=
N: 11

{M, (rs)sm}: {1, {-1}}
m: 11
Pn,r(J): {6}

£1(q) : ((959) ) 12

q4 ((qll;qll) )11

@

s (339 0) 12
* 5 11, .11 12
@ ((a75077),)

AB: (13

{pg(t): geAB} | No Membership
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{pg (t): geAB} |[No Membership

Common Factor: None

We find no identity over Xy(11). This is in part why no simple witness identity for p(11n+6)
exists, in contrast to the cases of p(5n+4), p(7n+5).

= Let’s next try N=22.

(2= Timing[RK[22, 1, {-1}, 11, 6]]

o«

[T@sa)2 = )ama

&M n=0

j'ePm,r (3) n=0

fo(a - ][] wZa(mn+j'>q“ =

D g pg (1)

geAB

Modular Curve: Xg(N)
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f1 (q) - ﬂ chZal(mmj')q":Zg-Pg(t)

j'ePp,r (3) n=0 geAB

Modular Curve: Xg(N)
outf12]= {34.3996,

N: 22
M, (rs)smi: {1, {-1}}
m: 11
Pa,r(3) ¢ {6}
(@920 ((%362) )2 ((q'159%1) |12
fi(a): 14 ((qzz’q22);J22 =
. ) (@52)((att5qtt) )1t ([25¢2) |8 ((qll;qll)m)4 3@ 7 ([qt5qtt) |2 }
: 56 @ ([@502) N T 0@ (waw ([P52) )8 88q5((q2,q2) )3((q22 @) )7
(@3] ([athsqtt) 1 2 ((qz @))% ([a15q11) ) 5 (@@ ((ahatl) |3
AB: {l 5 27,22 (1 " 322,22, |8 3 [[22, 422 )
8¢ (4;9)= (g ). 1 (qGa=?((6*256%2) ) SSf(( @) )|l ) )*
5 (@230 ([ahat) )P 3 ((@@) )8 ([athsatt) ) (G [[dhdl) )3 }
i n - — T +
4 @ ((a?72562) 1 1 (@ ((¢225672) |5 44q ([a% 2) )3(( 22, qzz)w)7
{(pg(t): geAB} {6776 + 9427 t + 15477 t? + 13332 t7 + 1078 t*,

-9581+ 594 t + 5390 t? + 187 t*, -6754 + 5368 t + 2761 t* + 11 t*}

Common Factor: 11
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Section 3.2

® What about, for instance,

Zp(5n+l) q"
n=0

] Kolberg originally computed the following identities.

In[15]= RK[5, 1, {-1}, 5, 1]

[T - Tam

5|M

fra) - || Za mn+3')a" = ) g-pg (t)

J'ePm,r (J) n=0 geAB
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fi@- []  Dlamn+ing’ = ) gopg(t)
j'ePm,r (3) n=0 geAB

Modular Curve: Xg(N)
N: 5

{M;(r6)6|M}: {1’ {‘1}}

" 5
Pm,r(3) ¢ 1, 2)
Out[15}= fi(q): : ((((:5; :7;?)) :)210
t: (@30 e) N
q((qsuﬁ)m)G
AB: (1

{pg (t): geAB} (25+2 t}

Common Factor: None
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There is no " Common Factor” (i.e., no divisibility), but the program
delivered an identity which was first established by Kolberg [1957]:

Observe that we obtained,

j=1€ P, ,.(j) ={1,2}.
Together with the other output data this gives,

1 (9% < S n
—%-Zp@n—kl)q > p(on+2)g" =25+ 21
¢ (¢°: )5 =, —

with

NOTE. As already remarked,
M(Xo(5)) =CJt], wheretis as above.
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Conclusion
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Plan for Workshop Lectures

& Partition Analysis:
linear systems of Diophantine equations over Z>y,
generating functions and g¢-series, plane partitions, etc.

¢ Symbolic Summation:
g-hypergeometric sums and series, etc.

O g-Holonomic Functions and Sequences:
g-contiguous relations, differential equations
and modular forms, etc.

& Modular Functions and Forms:
Ramanujan type congruences, Radu’s algorithm, etc.



