The Neukirch-Uchida theorem with restricted

ramification

Ryoji Shimizu

RIMS, Kyoto University

This presentation is based on my paper with the same title, whose preprint will be
uploaded in a few weeks.

1/35



Introduction

Let K be a number field and S a set of primes of K. We write Ks/K for the
maximal extension of K unramified outside S and G s for its Galois group.

The goal of this talk is to prove the following generalization of the
Neukirch-Uchida theorem under as few assumptions as possible:
“For i =1,2, let Kj be a number field and S; a set of primes of K;. If Gk, s, and
Gk,,s, are isomorphic, then K; and K3 are isomorphic.”

For this, as in the proof of the Neukirch-Uchida theorem, we first

characterize group-theoretically the decomposition groups in Gk s, and then
obtain an isomorphism of fields using them.
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e G(L/K) &ef Gal(L/K) : the Galois group of a Galois extension L/K

e K : a separable closure of a field K
Gk & G(K/K)
e K : a number field (i.e. a finite extension of the field of rational numbers Q)

e P = Py : the set of primes of K

Ps = Pk, : the set of archimedean primes of K

Pi = Pk, : the set of primes of K above a prime number /
e S : asubset of Pk

o St 5\ Proe
e S(L) : the set of primes of L above the primes in S for an algebraic extension
L/K

For convenience, we consider that an algebraic extension L/K is ramified at a
complex prime of L if it is above a real prime of K.
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Previous works

The Neukirch-Uchida theorem (Uchida, 1976).

Let K1 and K> be number fields. If Gk, ~ G,, then K1 ~ Ko.

This is in the case that S; = P, for i=1,2.
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Previous works

Theorem (Ivanov, 2017).

For i = 1,2, let K; be a number field and S; a set of primes of K;. Assume
Gk,,s; ~ Gk,,s, and that the following conditions hold:

(a) Ki/Q is Galois for i = 1,2 and Kj is totally imaginary.

(b) There exist two odd prime numbers p such that Pk, , C S;.

(c) There exists an odd prime number p such that Py, , C S; and S; is sharply
p-stable for i =1, 2.

(d) For i=1,2, S; is 2-stable and is sharply p-stable for almost all p.
Then K; ~ K>.

Let K be a number field and S a set of primes of K. We say that S is stable if
there are a subset Sy C S and an € € Ry such that for any finite subextension
Ks/L/K, So(L) has Dirichlet density 6(So(L)) > e.
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One of main results

For i = 1,2, let K; be a number field and S; a set of primes of K; with

Pk..0co C Si. Assume Gk, s, > Gk, s, and that the following conditions hold:

(a) Ki/Q is Galois for i = 1,2 and Kj is totally imaginary.

(b) There exist two different prime numbers p such that for i = 1,2, Pk, , C S;.
(c) For one i, there exists a totally real subfield K; o C K; and a set of

nonarchimedean primes T; o of K; o such that 6(T;o(K;)) # 0.

(d) For the other i, §(S;) # 0.
Then K; ~ K.

?Let K be a number field and S a set of primes of K. We say that §(S) # 0 if S
has positive Dirichlet density or does not have Dirichlet density.
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Previous works

Theorem (lvanov, 2013).

Let K be a number field and P,, C S a finite set of primes of K. Assume that
there exist two different prime numbers p such that P, C S, and write / for one of
them. Assume (Gk s, !) are given. Then the data of the /-adic cyclotomic
character of an open subgroup of Gk s is equivalent to the data of the
decomposition groups in Gk s at primes in S¢(Ks).

In the proof, the injectivity of

Hz(GK,S,,u'I‘”) — @ H2(Dp,/~LI°°)
peS

plays an impotant role.

Even if S is not finite, we can obtain the “bi-anabelian” version of this
result. In order to use this, in §1 we recover the /-adic cyclotomic character of an
open subgroup of Gk s.
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@ Recovering the /-adic cyclotomic character
© Local correspondence and recovering the local invariants
© The existence of an isomorphism of fields

@ Main results
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§1. Recovering the /-adic cyclotomic character (1/7)

Let K be a number field, and fix a prime number /.
def

e Y =%y ={l,oo}(K)=P UP

e Kw/K : a Z-extension

o [ = G(Ky/K)

o Kx,0/K : the cyclotomic Z-extension

o To=Tko% G(Kuo/K)

Note that K. /K is unramified outside X.
® 7, : the Frobenius element in [ at p € Px \ X
e [, = (7p) : the decomposition group in I at p € P \ X
e S : aset of primes of K

In §1, we assume that ¥ C S. Then p~ C Ks, and we write x(/) = x%) for the
l-adic cyclotomic character Gk s — Aut(pe) = Z;".
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§1. Recovering the /-adic cyclotomic character (2/7)

if =2
We set % _I " We have the following commutative diagram:
1if 1 2.

NO) .
Gk,s =7 (L4+1Z)) X (Z1" ) tor

| -

o w 1417,

We write w = wg : g = 1+ /NZ/ for the bottom homomorphism.
Note that x(’)|GM>5 iy = (Ok,s = To 51+ 1Z1) 6,

PSR

The goal of this section is the following.

Assume that §(S) # 0. Then the surjection Gk s — g and the character
w : [o — 1+ IZ, are characterized group-theoretically from Gk s (and /).

We will see the sketch of the proof of Theorem 1.7.
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§1. Recovering the /-adic cyclotomic character (3/7)

r def

e A=A Zyr)] = lim Z,[F/I” ] : the complete group ring of

o Xs = X[ & (Ker(Gx.s — I)Vy2b

Note that Xs is constructed group-theoretically from Gx s — I by its very
definition, and Xs has a natural structure of A-module.

o (S\X)™ L {pec S\ | pis finitely decomposed in Ka/K}

o (S\ X)) &ef {pe S\X| piscompletely decomposed in K. /K}
Note that S\ X = (S\ D)X ]](S\ X)“.

For p € (S\ £)™ with p1/ C K, the local /-adic cyclotomic character
Gk, — Aut(py~) = Z;" factors as Gg, — I, — Z;" because

My = G(Ky(pie)/Ky), where we write X;/) : Ty — Z;* for the second
homomorphism. Further, when p; C K, and I' = I'g, we have W\rp = xl(g).
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§1. Recovering the /-adic cyclotomic character (4/7)

We have the following structure theorem for the A-module Xs.

Lemma 1.1.

Assume that the weak Leopoldt conjecture holds for K,/K. Then there exists an
exact sequence of A-modules

0— H Jp = Xs = Xz — 0,
peS\X

where Xy is a finitely generated A-module and

N = X)), 1 C Ky and p € (S\ D)7,
Jp =S N/I%, 1 C Ky and p € (S\ X)<,
O’ 12 ¢ Kpa

where [ = #pu(K,)[/°°].

We set J=JF & ] J, C Xs.
peS\X
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§1. Recovering the /-adic cyclotomic character (5/7)

The weak Leopoldt conjecture is true for Ko, /K if and only if

H?*(G(Ks/Kx), Qi/Z;) = 0. Further, the weak Leopoldt conjecture is true for
Koo o/K.

Note that H?(G(Ks/Kx), Qi/Z) can be reconstructed group-theoretically from
Gk,s — [ since G(Ks/Kw) = Ker(Gk,s — I') and Q;/Z, is a trivial
G(Ks/Koo)-module.

Assume that y; C K. Then #(S \ £)°¢ < oo if and only if Xs[/>] is a finitely
generated A-module. Further, (S\ )/ = for Ky o/K.

Note that Xs[/*°] also can be reconstructed group-theoretically from Gk s — T.
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§1. Recovering the /-adic cyclotomic character (6/7)

Definition 1.4.

Let M C Xs be a A-submodule whose quotient Xs/M is a finitely generated
A-module. We set

rodef | 7 For (v,a) € (T x (14 1Z))P"™ and x € M\ {0}
Aw {p'r_>1+/Zl‘W|th'yaEAnn/\(x) o(7) =«

where (I x (1 + 1Z,))P™ %7 (1 x (14 72))) \ (T x (1 + 1Z)))".

A\

Note that this set is constructed from M and .

Proposition 1.5

Assume that pu; C K, I =Tg and #S = co. Let M C J be a A-submodule whose
quotient J/M is a finitely generated A-module. Then A;; = {w}.

| \

Proposition 1.6

Assume that puy C K, T # g, 6(S) # 0, the weak Leopoldt conjecture is true for
Koo /K and #(S\ £)* < co. Let M C Xs be a A-submodule whose quotient
Xs/M is a finitely generated A-module. Then A, = (.
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§1. Recovering the /-adic cyclotomic character (7/7)

We can show the main theorem of §1 using the results obtained so far.

Assume that §(S) # 0. Then the surjection Gk s — o and the character
w : [ — 1+ IZ, are characterized group-theoretically from Gk s (and /).

Proof. Assume that pu; C K. (In the other case, the assertion follows from that of
this case.) By Lemma 1.2 and Lemma 1.3, we can distinguish purely
group-theoretically whether or not a given Z;-quotient I" of Gk s satisfies the
following conditions:

e The weak Leopoldt conjecture is true for Ko /K.
o #(S\ ) < oo (for Koo /K).
Let I' be a Z/-quotient of G s satisfying these conditions and M C XSr a
A-submodule whose quotient Xs/M is a finitely generated A-module.
If [ % To, for any M C XL, Al, = 0 by Proposition 1.6.
If [ = Tq, for sufficiently small M C Xg, A;/, = {w} by Proposition 1.5. O
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§2. Local correspondence and recovering the local invariants (1/4)

Definition 2.1.

For i =1,2, let K; be a number field, S; a set of primes of K;, T; C S; ¢, and
0 : Gk,.5, — Gk,s, an isomorphism. We say that the local correspondence
between T; and T holds for o, if the following conditions are satisfied:
e For any p; € T1(Ku,s,), there is a unique prime o.(p;) € T2(Kz,s,) with
U(Dﬁl) = DU*(EI), such that o, : Tl(Kl,Sl) — T2(K2’52), ]31 — U*(El) is a
bijection.

Then o, induces a bijection o x,: T1 — Ta.
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Local correspondence and recovering the local invariants (2/4)

Definition 2.1. (continued)

Moreover, we say that the good local correspondence between T; and T, holds
for o, if the following conditions are satisfied:

e The local correspondence between T; and T, holds for o.
o For any p; € T1(Kis,), the sets of Frobenius lifts? correspond to each other
under o|p, : Dp, = D,. )

® 0, K, preserves the residue characteristics and the residual degrees of all
primes in T7.

2For a Galois extension A/k of p-adic fields, we say that an element of G(A\/k) is a
Frobenius lift if its image under G(\/k) = G(\/k)/I(A\/kK) is equal to the Frobenius
element, where /(\/k) is the inertia subgroup of G(\/k).
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§2. Local correspondence and recovering the local invariants (3/4)

For i = 1,2, let p; be a prime number, x; a p;-adic field and \;/k; a Galois
extension. Assume that there exists an isomorphism o : G(\1/k1) =+ G,,. Then
p1 = p2, the residual degrees of k1 and k, coincide and o induces a bijection
between the sets of Frobenius lifts. Further, [k1 : Qp,] > [k2 : Qp,].

In the proof,

G ~ 2 x Z)(qi — 1)Z x ) p°Z x 2}

plays an impotant role, where g; is the order of the residue field of x; and a € Z>,.

Proposition 2.3 (Chenevier-Clozel, 2009).

Let K be a totally real number field and S a set of primes of K. Assume that
there exists a prime / with P;U P,, C S. Then the decomposition groups in Gk s
at primes in (S¢ \ P)(Ks) are full.?

?For p € Sr(Ks) and p € S¢ with plp, we say that Dy k. / is full if the canonical
surjection GKw —» DE,Ks/K is an isomorphism.
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§2. Local correspondence and recovering the local invariants (4/4)

We obtain the following using results so far.

Theorem 2.4.

For i =1,2, let Kj be a number field, S; a set of primes of K; with Py, .o C S; and
o : Gk,.s, = Gk,.s, an isomorphism. Assume that the following conditions hold:

o There exist two different prime numbers p such that for i = 1,2, Pk, , C S;.
e Fori=1,2, 0(5;) #0.
Then the local correspondence between S; ¢ and S, ¢ holds for o. Further, let
T1 C S1¢ and T> C Sy ¢ be subsets between which the local correspondence holds
for o and assume that for one /, there exist a totally real subfield Kjo C K; and a
set of primes T; o of Kj o such that T;o(K;) = T;. Then the good local
correspondence between T; and T, holds for o.
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§3. The existence of an isomorphism of fields (1/11)

For a number field K and a set of primes S of K, we set

N - N —s
65UP(S) déf lim sup M7 6inf(5) d:ef liminf M
s—1+0 0g =7 s—1+0 log L5

Note that §(S) # 0 if and only if d5,p(S) > 0.

In §3, for i = 1,2, we set as follows:

K; : a number field

S @ a set of primes of K; with Py, oo C S;
T; C Sjr: asubset

e 0: G5, — Gk,s, : an isomorphism

Fix an algebraic closure Q of Q, and suppose that all number fields and all
algebraic extensions of them are subfields of Q.

The goal of §3 is to prove the following theorems:
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§3. The existence of an isomorphism of fields (2/11)

Theorem 3.2.

Assume that the following conditions hold:

(a) Ki/Q is Galois for i =1, 2.

(b) The good local correspondence between T; and T, holds for o.
(c) 0sup(Ti) > 1/2 for one i.

Then Ki ~ K>.

Theorem 3.4.

Assume that the following conditions hold:

(a) K;/Q is Galois for i = 1,2 and Kj is totally imaginary.

(b) The good local correspondence between T; and T, holds for o.
(c) 4(T;) # 0 for one i.

(d) There exist two different prime numbers p such that for i = 1,2, Pk, , C T;.
Then K; ~ K>.

| A

5\
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§3. The existence of an isomorphism of fields (3/11)

Assume that the following conditions hold:
(a) Ki/Q is Galois for i =1, 2.
(b) The good local correspondence between T; and T, holds for o.
Then the following assertions hold:
(i) Gsup(T1) = dsup(T2)
(i) For i=1,2, dsup(Ti(K1K2)) = [Ki K2 : Ki]dsup(T)-
The similar assertions hold for §i.¢.

Proof. (i): By the good local correspondence between Ty and Ty, for s > 1,
2open, UP) ™ Dper, Wp2)

1 1
|og s—1 IOg s—1

Therefore,

R s N —s
dsup(T1) = limsup M = limsup M

1 1 == 5sup( TQ).
s—1+0 log =5 s—140 log =¢
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(II) For i = 1,2, (Ssup(T,‘(KlKQ)) = [K1K2 . K,'](Ssup(T,').

(ii): We set cs(K/Q) def {p : a prime number | p splits completely in K/Q} for a

number field K. We prove the case for i = 1. By the good local correspondence

between T; and T>, for any prime number p below a prime in T; which is

unramified in K1K>/Q,

“p € cs(K1/Q)" & “there exists p; € Ty of residual degree 1 such that p;|p”
& “there exists pp € T, of residual degree 1 such that pa|p”
& “p e cs(Ky/Q)”
& ‘pe CS(K1 KQ/Q)”.

Therefore,

dsup(T1(K1K2)) = dsup(cs(K1K2/Q)(K1K2) N T1(K1K2))

ZpECS(KlKZ/Q)(Kle)ﬂTl KiKa) N(p)~—°

= limsup
s—1+0 log 15

— lim sup 2pices(i/Q)(k)n T [KLK2 2 Ka]9U(pa) ™
5s—140 |Og 5_%

= [K1K2 . Kl](ssup(cs(Kl/Q)(Kl) N Tl)

= [K1K2 . Kl](ssup(Tl)~ O
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§3. The existence of an isomorphism of fields (5/11)

Theorem 3.2.

Assume that the following conditions hold:

(a) Ki/Q is Galois for i =1, 2.

(b) The good local correspondence between T; and T, holds for o.
() dsup(Ti) > 1/2 for one i.

Then K; ~ Ks.

Proof. By Lemma 3.1, we have dg,p(T1) = dsup(T2) > 1/2 and

1> daup(Ti(K1K2)) = [Ki1 K2 @ Ki]dsup(Ti) for i = 1,2. Hence we have
[KiKo : Ki] =1 for i =1,2, so that K; C K> and K1 D K>.

ThUS, K1 = Kg. O
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§3. The existence of an isomorphism of fields (6/11)

Assume that the following conditions hold:
(b) The good local correspondence between T; and T, holds for o.

(d) There exist two different prime numbers p such that for i = 1,2, Pk, , C T;.
Then [K: : Q] = [K2 : Q).

Proof. The assertion follows from the fact that [Ki : Q] = >_,cp, [Kip: Qp]. O
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The proof of Theorem 3.4 (7/11)

Theorem 3.4.

Assume that the following conditions hold:

(a) Ki/Q is Galois for i = 1,2 and Kj is totally imaginary.

(b) The good local correspondence between T; and T, holds for o.

(c) 4(T;) # 0 for one i.

(d) There exist two different prime numbers p such that for i = 1,2, Pk, , C T;.
Then Ki ~ K>.

Proof. Take a prime number [ such that for i = 1,2, Pk, ; C T;. (By (d), we can
take at least two different such prime numbers.) For i = 1,2, we set
Gk.s, —~ T def G N./ter ~ Z; and write K( ) — K,(Oo ) for the correspondmg
subextension of K, S /K with thls surJectlon Note that rc(Kj) +1 < r < [K; : Q]
by class field theory. ¢ induces 7 : ['; 5Ty, so that ;= r» for which we write r.
Since K; is Galois over Q for i = 1,2, K(Oo) and Kl(oo)K(oo) are also.

It suffices to prove that Ky C K2( Indeed, then K; C ﬁ/K(Oo D — = Kj, so
that we obtain K; = K; by [K; : Q] = [K2 Q]
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The proof of Theorem 3.4 (8/11)

Kloo) K2OO)

T

KK, Ky K

K A k()

First, we prove [Kl(oo) : Kl(oo) N Kz(oo)] < 00.
For this, it suffices to prove K K{**) = Ky K{>).
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We set I & G(

We write 7 for T — G(K\") Ka/K1K>)

Ky K™

S

K{>)

K nkiky /"

K>

KK 1K Ky) and for i = 1,2, T1 < G(K™) /K™ 1 Ky k).

restriction

=

I < Ty and definemy : T — T,

similarly. It suffices to prove that m, is injective. Note that (my,m2) : [ < Ty X T,

is injective.
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K™K, Ky K$*)
/ r \
Kl(oo) K(OO)
ri I
1 Kl K2 2
r / \ r
NCKS) N KK, K nKik, /2
K1 K2

Since 6( T1(K1K2)) # 0, the closed subgroup of I generated by Frobenius
elements at primes in T1(K1K2) \ Pk,k,,1 of degree 1 is open by the Chebotarev
density theorem. By the good local correspondence between T; and T,, for

p € T1i(K1K2) \ Pkk,,i of degree 1, we have & o 71 (Frob,) = Frob,, , (4|, ) and
m(Frob, ) = Froby, . Hence 37 € G(K>/Q) s.t. 7% 0@ o m1(Froby,) = m(Frob, ).
Therefore, 37 € G(K2/Q) s.t. 7* 0T o 1 = mp, so that

Ker(mp) = Ker(7* 05 o 1) = Ker(my). Thus, m; and 75 are injective. o



The proof of Theorem 3.4 (11/11)

Since I'y(~ Z!) is torsion free, K\°) = Ky (K!®) 0 K{*). Hence

restriction
o3 6K Nkl /Ky N KS) is an isomorphism, so that the number ¢/
of independent Z-extensions of Ki N K2(°°) satisfies that r < r’ < [Ki N Kz(oo) Q).

Here, assume that K; # K N Kz(oo). Then
K>

[Kin KD Ql < [Ki:Ql/2 - Ki# Ky K™

= rc(K1) " K1 is totally imaginary
<re(Ki)+1

<r

finite
Iy

t 2 This contradicts the above estimate.

Thus, K; = Ky N K™, so that
Ki Ky C K, 0

/

Ky N K>
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The proof of Theorem 3.4 (11/11)

Since I'y(~ Z!) is torsion free, K\°) = Ky (K!®) 0 K{*). Hence

restriction
o3 6K Nkl /Ky N KS) is an isomorphism, so that the number ¢/
of independent Z-extensions of Ki N K2(°°) satisfies that r < r’ < [Ki N Kz(oo) Q).

Here, assume that K; # K N Kz(oo). Then
K>

[Kin KD Ql < [Ki:Ql/2 - Ki# Ky K™

= rc(K1) " K1 is totally imaginary
<re(Ki)+1

<r

finite

This contradicts the above estimate.
Thus, K; = Ky N K™, so that
Ki Ky C K, 0
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§4. Main results (1/3)

Finally we see the three main results in this talk.

By Theorem 2.4 and Theorem 3.2, we obtain the following theorem.

Theorem 4.1.

For i = 1,2, let K; be a number field and S; a set of primes of K; with
Pk..0co C Si. Assume Gk, s, > G, s, and that the following conditions hold:

(a) Ki/Q is Galois for i =1, 2.
(b) There exist two different prime numbers p such that for i = 1,2, Pk, , C S;.

(c) For one i, there exist a totally real subfield K;o C K; and a set of
nonarchimedean primes T; o of Kj o such that de,p( Ti0(Ki)) > 1/2.

(d) For the other i, §(S;) # 0.
Then K; ~ K>.
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§4. Main results (2/3)

By Theorem 2.4 and Theorem 3.4, we obtain the following theorem.

Theorem 4.2.

For i =1,2, let K; be a number field and S; a set of primes of K; with
Pk..co C Si. Assume Gk, s, ~ G, s, and that the following conditions hold:

(a) Ki/Q is Galois for i = 1,2 and Kj is totally imaginary.
(b) There exist two different prime numbers p such that for i = 1,2, Pk, , C S;.

(c) For one i, there exist a totally real subfield Kjo C K; and a set of
nonarchimedean primes T; o of Ko such that 6(T;o(K;)) # 0.

(d) For the other i, 6(S;) # 0.
Then K; ~ Ks.
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§4. Main results (3/3)

If the Dirichlet densities are large enough, we can omit some assumptions.

Theorem 4.3.

For i = 1,2, let K; be a number field and S; a set of primes of K; with
Pk;.co C Si. Assume Gk, s, =~ Gk, s, and that the following conditions hold:

(A) K1/Q is Galois.
1
(B) 5sup(51) > 1—m
(C) Gsup(S1) + Gin(S2) or Gin(S1) + Guup(S2) is larger than 2— o
where [K> : Q]! is the factorial of [K> : Q).
Then K; ~ K>.

In the proof, we show that the conditions in Theorem 4.2 hold.

This theorem is a generalization of Neukirch’s original result.

34/35



Future perspectives

Future issues are to weaken the assumptions on K; and S;.

In particular, we have the following questions:

To recover the /-adic cyclotomic character from Gk, s, when §(S;) = 0.

To study the structures of the decomposition groups in G; s; in the case
where we cannot use the result of [Chenevier-Clozel], and to recover local
invariants.

To prove K; >~ K, without assuming “Galois over Q".

To search for counterexamples when §(S;) = 0.
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