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ABSTRACT. Let (X}, Dx;), j € {1,2}, be asmooth pointed stable curve of type (g9x;,nx;)

over an algebraically closed field k; of characteristic p > 0, Ux, def i\Dx;,,and 7 (Ux,)

the tame fundamental group of (X, Dx;). Suppose that gx, = 0, that k; is an algebraic
closure of the finite field F,, and that (the minimal models of) Ux, and Uy, are not iso-
morphic as schemes. In the present paper, we give an explicit construction of differences
between 7t (Ux,) and 7t (Ux,) via their finite quotients. In particular, our construc-
tion deduces a strong generalization of Tamagawa’s results concerning Grothendieck’s
anabelian conjecture for curves over algebraically closed fields of characteristic p. This
generalization shows that the anabelian phenomena for curves in positive characteristic
can be understood by using not only entire tame fundamental groups but also certain
finite quotients of them.
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1. INTRODUCTION

Let k£ be an algebraically closed field of characteristic p > 0, and let (X, Dx) be a
smooth pointed stable curve of type (gx,nx) over k, where X denotes the (smooth)

underlying curve of genus gx and Dy denotes the (finite) set of marked points with

cardinality nx = #(Dx) satisfying 2gx + nx — 2 > 0. By choosing a base point of

x € Uyx e x \ Dx, we have the étale fundamental group m (Ux,z) of Uy and the tame

fundamental group 7} (Ux, z) of (X, Dx).

1.1. Finite quotients of fundamental groups and main problem. We maintain the
notation introduced above. For simplicity, write m;(Ux) and 7} (Ux) for 7 (Ux,z) and
7§ (Ux, x), respectively, and denote by

™ (Ux), ™4 (Ux)

the sets of finite quotients of 7 (Ux) and 7} (Uy), respectively. Since there is a natural
surjection m (Uy) — 7t (Ux), we have 7%, (Ux) C 7%(Ux).

1.1.1. Suppose that Ux is affine (i.e., nx > 0). In 1957, S. Abhyankar ([A]) made a
famous conjecture which gives a precise description for the set 7% (Uy). In particular, it
says that 7¢(Ux) can be completely determined by the type (gx,nx), and that 7% (Ux)
cannot determine the isomorphism class of Uy as a scheme. The solvable case of Ab-
hyankar’s conjecture was solved by J-P. Serre ([Ser2]) and the full conjecture was proved
by M. Raynaud ([R1]) where Ux = A} is an affine line, and by D. Harbater ([H]) where
Ux is an arbitrary affine curve over k. The next step is naturally to ask how many infor-
mation about the structure of 7 (Uy) can be carried by 7% (Ux). Note that since m (Ux)
is not topologically finitely generated when Uy is affine, the isomorphism class of m (Ux)
(as a profinite group) cannot be determined by the set 7% (Uy).

Furthermore, A. Tamagawa ([T1]) discovered surprisingly that there exist anabelian
phenomena for étale fundamental groups of curves over algebraically closed fields of char-
acteristic p. These kind of anabelian phenomena say that the isomorphism classes of
curves as schemes can be completely determined by the isomorphism classes of their étale
fundamental groups as profinite groups. Tamagawa’s result tell us that there are essential
differences between 71 (Ux) and 7¢(Ux), and that almost no information about m(Ux)
can be carried by 7% (Ux).

1.1.2. Next, we return to the the case where (X, Dy) is an arbitrary smooth pointed
stable curve over k (i.e., nx > 0). Since the tame fundamental group 7}(Ux) is topo-
logically finitely generated, the isomorphism class of 7}(Uy) as a profinite group can be
completely determined by the set of finite quotients 7% (Ux) ([FJ, Proposition 16.10.7]).
So the information carried by 7t(Uy) is equivalent to the information carried by 7% (Ux).

However, unlike the case of étale fundamental groups, the situation is becoming very
elusive. At the present, very little is known about 7% (Ux). For instance, we still do
not know whether a finite group G is contained in 7% (Ux) or not even in the simplest
case where GG is an extension of an abelian group by an abelian p-group (note that the
problem is trivial if G is abelian). On the other hand, if Uy is generic (in the sense of
moduli spaces), there exist criteria to determine whether a finite group G is contained in
7% (Ux) or not, where G is an extension of an abelian group by a p-group ([B], [N], [OP],
[PaSt], [Y4], [Z]). These criteria are deduced from the following geometric observation:
Some evidence suggests that the p-rank of all abelian tame coverings (i.e., Galois tame
coverings whose Galois groups are abelian) of a generic curve can attain mazimum (e.g.
all étale coverings of generic curves are ordinary if ny = 0 ([N], [Z])). However, the
method of above criteria cannot be extended to the case of arbitrary finite groups since
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a result of Raynaud ([R2]) says that the p-rank of the Galois tame coverings of a generic
curve cannot attain maximum in general. On the other hand, even in the case of generic
curves, we still do not know whether the p-rank of all abelian tame coverings of a generic
curve can attain maximum or not if ny > 0 (but see [B] for the case where nyx < 4, and
see [Y4] for a criterion for ordinary abelian tame coverings of an arbitrary generic curve).

1.1.3. Main problem. In fact, one cannot expect an explicit description for 7% (Ux) since
anabelian phenomena also exist for tame fundamental groups. Tamagawa ([T3]) gener-
alized the main result of [T1] to the case of tame fundamental groups. In particular, it
shows that the set of 7% (Ux) depends on not only the type (gx,nx) but also the isomor-
phism class of Ux. See [PoSal, [R3], [T4], [Y1], [Y3] for more results concerning these
kind of anabelian phenomena.

In order to understand more precisely the relationship between the structures of tame
fundamental groups and the anabelian phenomena (or equivalently, the relationship be-
tween the sets of finite quotients of tame fundamental groups and the scheme-theoretical
structures of curves) in positive characteristic world, we ask a problem from a different
view of point of 1.1.2:

Problem 1.1. How does the scheme-theoretical structure of a curve affect explicitly the
set of finite quotients of its tame fundamental group? Or more precisely, what exactly
are the differences for the sets of finite quotients of the tame fundamental groups of non-
isomorphic curves?

1.2. Main result. In the present paper, we solve the above problem for certain curves.

1.2.1. We fix some notation. Let (X;, Dx;,), j € {1,2}, be a smooth pointed stable curve

of type (gx;,nx;) over an algebraically closed field k; of characteristic p > 0, Ux, o

X;\ Dx;, m{(Ux,) the tame fundamental group of (X, Dx;), and 7 (Ux;) the set of finite

quotients of 7} (Ukx,). Let s,b € N be positive natural numbers. We put Dl()l)(ﬂ(UXj)) def

(74 (Ux,), 7t (Ux))(n4 (U, )" and DY (x4 (Ux,)) € DY (DY (x4 (Ux, ) fori € {2,...., s},

where [7}(Ux,), 7{(Ux;)] denotes the commutator subgroup of mj(Ux, ).

We denote by k" the minimal algebraically closed subfield of k; over which Uy, can be
defined. Thus, by considering the function field of X;, we obtain a smooth pointed stable
curve (X}, Dym) (i.e., a minimal model of (X;, Dx;) in the sense of [T2, Definition 1.30
and Lemma 1.31]) such that

UX]- :> ijm Xk;_n k)j

as kj-schemes, where Uxm & X"\ Dxr. Note that the tame fundamental group 77 (Uxx)
of (X}", Dxm) is naturally isomorphic to 7} (Ux; ).

1.2.2.  The main result of the present paper is as follows (see Theorem 6.2 for a precise
statement):

Theorem 1.2. We maintain the notation introduced above. Suppose that kP is an al-
gebraic closure of the finite field Fp, that gx, = 0, and that Uxm % Uxy. Then we can
construct explicitly a finite group G' depending on Uxm and Uxwy such that G ¢ 4 (Ux,)
and G € 4 (Uy,).

Our construction given in Theorem 1.2 (i.e., Theorem 6.2) implies the following inter-
esting anabelian result without any assumptions between the full tame fundamental groups
78 (Ux,) and 7} (Uy,) (see Theorem 6.3 for a precise statement):
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Theorem 1.3. We maintain the notation introduced above. Suppose that ki* is an alge-
braic closure of the finite field IF,, and that gx, = 0. Then we can construct explicitly a nat-

ural number ¢(Z) € N depending on Uxm and finite groups G o W}(le)/DE?%) (7} (Ux,)) €
™ (Ux,), G2 = 74 (Ux,) /Dy (74 (Ux,)) € 7'y(Us,) such that
Uxp = Uxyp

as schemes if and only if
Gl, G2 € Wfq(le) N F;(UXQ).

Moreover, suppose further gx, = gx, = 0 and nx, = nx,. Then we have that
Uxp = Uxyp

as schemes if and only if
G2 € 7TE4(UX1) N 7TE4(UX2).

Remark 1.3.1. Theorem 1.3 shows that the anabelian phenomena for curves over alge-
braically closed fields of positive characteristic can be understood by using not only entire
étale or tame fundamental groups but also certain finite quotients of them.

In [T1] and [T3], Tamagawa proved the following results concerning Grothendieck’s
anabelian conjecture:

We maintain the notation introduced above. Suppose that gx, = 0, and
that k; = ks is an algebraic closure of the finite field IF,. Then the following
statements hold:
(i) Ux, = Ux, as schemes if and only if m (Ux,) = m(Ux,) (see [T1,
Theorem 0.2]), where m,(Ux;,), j € {1,2}, is the étale fundamental
group of Uy;.
(i) Uy, = Uy, as schemes if and only if 7} (Uy,) = 7t(Ux,) (see [T3,
Theorem 0.2]).
(i) and (ii) are the main results of [T1] and [T3], respectively, moreover, we have that
(i) can be deduced from (ii) ([T1, Corollary 1.5]), and that (ii) is much harder than (i).
At the present, these results are also the only results that we know about Grothendieck’s
anabelian conjecture for smooth curves over algebraically closed fields of characteristic p.
A direct consequence of Theorem 1.3 is the following strong generalization of the
above results obtained by Tamagawa which can be regarded as a “finite version” of
Grothendieck’s anabelian conjecture (see Corollary 6.4 for a precise statement):

Corollary 1.4. We maintain the notation introduced above. Suppose that kY is an alge-

braic closure of the finite field F), and that gx, = 0. Then we can construct explicitly a
natural number ¢(Z) € N depending on Uxm such that

Uxp = Uxp
as schemes if and only if
G, = G,
where Gy = 74(Ux,) /DYy (m4 (Ux,)) € 74(Uy,), j € {1,2}.

Remark 1.4.1. Note that we have Gy # G and Gy = Gy, where G, G; are finite groups
constructed in Theorem 1.3 and Corollary 1.4, respectively. Moreover, although Theorem
1.3 implies that the condition Gy, G2 € 7% (Ux,) N7 (Ux,) mentioned in Theorem 1.3 and
the condition Gj = GY mentioned in Corollary 1.4 are equivalent, Theorem 1.3 is much
stronger than Corollary 1.4, and it cannot be deduced from Corollary 1.4. More precisely,
the condition G1, Gy € 74 (Ux, )Ny (Ux, ) only says that there exists a surjection G| — G
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which is much weaker than the condition G} = GY. The difficulties of anabelian geometry
under the conditions G| — G, and G| = G} are essentially different, the former is a
Hom-type problem and the latter is an Isom-type problem.

On the other hand, the condition Gy, G € 7% (Ux,) N 7% (Ux,) is very important when
we apply Theorem 1.3 to study the topological properties concerning the moduli spaces of
fundamental groups (e.g. see §1.3 below), but the condition G| = G}, is far from enough.

1.2.3. Next, we briefly explain the method of proving Theorem 1.2 which is completely
different from the method used in [T1], [T3], and whose main ingredients are a formula
concerning maximum of generalized Hasse-Witt invariants and the theory of combinatorial
anabelian geometry in positive characteristic developed in the papers [Y2], [Y5]. For
simplicity, we may assume (gx,,nx,) = (9x,,nx,) = (0,n) which is the most difficult
part of the present paper. Moreover, under this assumption, Theorem 1.2 is equivalent
to the “moreover” part of Theorem 1.3.

The “only if” part of the “moreover” part of Theorem 1.3 is trivial. In order to prove
the “if” part of the “moreover” part of Theorem 1.3, we need to construct explicitly a
suitable finite group G' € 7' (Ux,) such that the scheme-theoretical structures of Uxm and
Uxp can be controlled by an arbitrary surjection 7y(Ux,) — G. This is an extremely
difficult problem in general since a finite quotient of the tame fundamental group of a
curve cannot contain all information of the scheme-theoretical structure of the curve in
general ([Y6, Theorem 3.6]).

To overcome the difficulty, we introduce the so-called “quasi-anabelian pairs’ (see Def-
inition 4.1) associated to tame fundamental groups. Roughly speaking, a quasi-anabelian
pair consists of two finite quotients of a tame fundamental group which allows us to
consider anabelian geometry via finite quotients. In §4, by using a formula concerning
maximum of generalized Hasse-Witt invariants and the theory of combinatorial anabelian
geometry in positive characteristic, we give an explicit construction for a quasi-anabelian
pair associated to the tame fundamental group of an arbitrary smooth pointed stable
curve (Theorem 4.6). Once a general method for constructing quasi-anabelian pairs has
been established, moreover, in the particular case where X{" is a smooth pointed stable
curve of type (0,n) over F,, we may construct a quasi-anabelian pair (Qy,, Qp,) associ-
ated to m}(Ux,) depending on Uxm and Uxp which contains the information of scheme-

theoretical structure of Uxm. Then we put G & @n, and prove that the information
of scheme-theoretical structure of XJ' can be determined completely by the information
of scheme-theoretical structure of Xi* via an arbitrary surjection 7§(Uy,) — G. This
completes the proof of Theorem 1.3.

1.3. A further motivation. Let us explain a further background that motivated the
theory developed in the present paper. In [Y6], the author of the present paper intro-
duced a topological space II,,, (or more general, ﬁg,n). We call I1,,, (or more general,
I,.,) the moduli space of fundamental groups of curves of type (g,n), whose underly-
ing set is the sets of isomorphism classes of tame fundamental groups (or more general,
admissible fundamental groups), and whose topology is determined by the sets of finite
quotients of tame fundamental groups (or more general, the sets of finite quotients of
admissible fundamental groups). Furthermore, in [Y6], we posed the so-called homeomor-
phism conjecture, roughly speaking, which says that (by quotiening a certain equivalence
relation induced by Frobenius actions) the moduli spaces of curves are homeomorphic
to the moduli spaces of fundamental groups. The main results of [Y6], [Y7] say that
the homeomorphism conjecture holds for 1-dimensional moduli spaces of pointed stable
curuves.
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The homeomorphism conjecture generalizes all of the conjectures appeared in the (tame
or admissible) anabelian geometry of curves over algebraically closed fields of positive char-
acteristic. It sheds some new light on the theory of the anabelian geometry of curves over
algebraically closed fields of positive characteristic based on the following consideration:

The anabelian properties of pointed stable curves of type (g, n) is equivalent
to the topological properties of the topological space 11 ,,.

Moreover, this consideration supplies a point of view to see what anabelian phenomena
for curves over algebraically closed fields of positive characteristic that we can reasonably
expect. Then it is important to understand the precise relationship between the open
subsets of Il,,, (or more general, the open subsets of I, ,,) and the sets of finite quotients
of tame fundamental groups (or more general, the sets of finite quotients of admissible
fundamental groups). Theorem 1.2 implies the following result concerning the topological
properties of 1l ,,:

We maintain the notation introduced in 1.2. Let ¢; € o, j € {1,2}, be
the point of Iy, corresponding to the isomorphism class of }(Uy,). Then
we can construct explicitly an open neighborhood U C 11, of g2 such that

q1 93'1/{-

1.4. Structure of the present paper. The present paper is organized as follows. In §2,
we fix some notation concerning curves, tame coverings, and tame fundamental groups.
In §3, we prove that various geometric objects can be reconstructed group-theoretically
from certain finite quotients of tame fundamental groups. In §4, we introduce “quasi-
anabelian pairs” associated to tame fundamental groups and give an explicit construction
for quasi-anabelian pairs. In §5, we prove that the field structures associated to inertia
subgroups and linear structures associated to affine lines can be reconstructed group-
theoretically from quasi-anabelian pairs. In §6, by applying various results obtained in
previous sections, we prove our main result.

1.5. Acknowledgements. The author was supported by JSPS Grant-in-Aid for Young
Scientists Grant Numbers 20K14283.

2. PRELIMINARIES

In this section, we fix some notation which will be used in the remainder of the present
paper.

2.1. Curves and their tame fundamental groups.

2.1.1. Let k be an algebraically closed field of characteristic p > 0, and let
(X7 DX)

be a smooth pointed stable curve of type (gx,nx) over k, where X denotes the (smooth)
underlying curve of genus gy and Dy denotes the finite set of marked points with cardi-
nality ny & #(Dx) satisfying [Kn, Definition 1.1 (iv)] (i.e., 2gx +nx —2 > 0). We put
Ux e x \ Dx. Then Uy is a hyperbolic curve over k.

Let (W, Dw) be a smooth pointed stable curve over k and f : (W, Dy) — (X, Dx)
a morphism of smooth pointed stable curves over k. We shall say that f is étale (resp.
tame, Galois étale, Galois tame) if the underlying morphism W — X induced by f is
étale (resp. the morphism Uy, — Uy induced by f is étale and is at most tamely ramified
over Dy, f is a Galois covering and is étale, f is a Galois covering and is tame).
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2.1.2. By choosing a base point of x € Uy, we have the tame fundamental group
5 (Ux,x) of (X, Dx) and the étale fundamental group (X, z) of X. Since we only
focus on the isomorphism classes of fundamental groups in the present paper, for simplic-
ity of notation, we omit the base point, and denote by

1 (Ux)

the tame fundamental group 7} (Ux, x) of (X, Dx) and 7 (X) the étale fundamental group
m (X, x) of X. Note that there is a natural continuous surjection 7} (Ux) — m1(X).
We shall write
ma(Ux)
for the set of finite quotients of w}(Ux). Since mi(Ux) is topologically finitely gener-
ated, the isomorphism class of 7} (Ux) is completely determined by the set 7% (Ux) ([FJ,
Proposition 16.10.7]).

2.1.3. Let H C 7t(Ux) be an arbitrary open subgroup. We shall denote by (Xg, Dx,,)
the smooth pointed stable curve of type (gg,ny) over k corresponding to H and fy :
(Xu,Dx,,) = (X, Dx) the tame covering of smooth pointed stable curves over k corre-
sponding to the natural injection H < 7%(Ux). Note that the tame fundamental group
78 (Ux,,) of (X, Dx,,) is naturally isomorphic to H.
We put
& def . def .
X = fm  Xp, Dg = fm  Dxy,
HCrt(Ux) open HCrt(Ux) open

and call (X, D) the universal tame covering of (X, Dx) corresponding to 7j(Ux) and

Dy the set of marked points of (X, Dy). Then there is a natural action of 7{(Ux) on D¢
such that D¢ /7m}(Ux) = Dx.

Let € Dx be a marked point and € D¢ a point over z (i.e., the image of T of the
natural surjection D¢ — Dx is ). We denote by Iz C 7} (Ux) the stabilizer subgroup of

7. Let K x,« be the quotient field of O x,z and IA(EM a maximal tamely ramified extension
of K xz- Then the subgroup I; is (outer) isomorphic to Gal(l?}(’z /K x.). Thus, we have

+ = Z(1)”, where (—)” denotes the maximal prime-to-p quotient of (—). We put
def

Edg™ (1 (Ux)) = {Iz}eeny,

where “Edg” and “op” mean “edge” and “open edge”, respectively, since the set of marked
points of a pointed stable curve corresponds to the set of open edges of its dual semi-graph.
The set Edg® (7} (Uy)) admits a natural action of 7§ (Ux) (i.e., the conjugacy action), and
we have the following bijection

Engp(ﬂ'}(Ux))/ﬂ'g(Ux) :> Dx, [g — Z.

2.1.4. Let a,b,s € N be positive natural numbers, Zy = ), and Z; % {b1,...,b;} C N,

i € {1,...,a}, a finite set of positive natural numbers. Let A be a profinite group.
We denote by Dy(A) C A the topological closure of [A, A]JAb where [A, A] denotes

the commutator subgroup of A. We define the closed normal subgroup Dz, (A) of A
inductively by Dz,(A) € A, Dr,(A) € Dy (A) and Dz, (A) € Dy, (Dr,(A)), i €
{1,...,a —1}. We put G% o A/Dz,(A), i € {1,...,a}. Moreover, we define the closed
normal subgroup DI()S)(A) of A inductively by D,()O)(A) LA, D,()l)(A) o Dy(A), and
DAY € Dy(DEV(A)). We put G5 % A/DIP(A). Note that, if A is topologically
finitely generated, then Dz, (A) and DISS)(A) are open characteristic subgroups of A (in
particular, we have #(G%) < oo, #(G%") < o).



8 YU YANG
2.2. Cohomology classes and sets of marked points.

2.2.1. Notation and Settings. We maintain the notation introduced in 2.1.1. Moreover,
we suppose gx > 2 and nx > 0 (i.e., Ux is affine).

2.2.2. Let h: (W,Dw) — (X, Dx) be a connected Galois tame covering over k. We put

Ram;, & {z € Dx | h is ramified over z}.

Let (Y, Dy) be a smooth pointed stable curve over k. We shall say that

IUX déf (gada fX : (YaDY) — (X7DX))

is an mp-triple associated to (X, Dx), where “mp” means “marked point”, if the following
conditions hold:

(i) ¢ and d are prime numbers distinct from each other such that (¢,p) = (d,p) =1
and ¢ =1 (mod d); then all dth roots of unity are contained in F,.

(i) fx is a Galois étale covering (2.1.1) over k whose Galois group is isomorphic to
a, where pg C F)¢ denotes the subgroup of dth roots of unity.

Then we have an injection Hj (Y,F) — H,(Uy,F,) induced by the surjection 7t (Uy) —
m1(Y). Note that every non-zero element of Hj (Uy,F,) induces a connected Galois tame
covering of (Y, Dy) of degree ¢. Moreover, we obtain an exact sequence

0— H(Y,F,) — H}(Uy,F,) = Div}, (Y)®F, =0

with a natural action of 4, where Div}, (V') o {D € Div(Y) | deg(D) = 0, Supp(D) C

Dy }.

2.2.3. Let (Div), (V) ® Fg)#d C Div), (V) ® F, be the subset of elements on which 714
acts via the character s — F; and By, S H & Uy, ) the subset of elements whose
images in (Div}, (Y)@Fg)'ud are non-zero. Write g, : (Y, Dy,) — (Y, Dy), a € Ez, ., for

the Galois tame covering over k£ whose Galois group is isomorphic to Z/¢Z induced by «.

We define ¢ : Ef, = Z, a > #(Dy,), and put Ef, < {a € By, | #(Ram,,) = d}.

Since d|#(Ramy, ) for all o € B3, > we see

Ey, . = {a e Es, . | €(a) = L(dnx — d) + d}.
Note that E%UX is not empty.

Let a € By . Since the image of a is contained in (Div}), (V) ® Fy),,, the action of

fq on Ram,, C Dy is transitive. Thus, there exists a unique marked point z, € Dx such
that fx(y) = z, for all y € Ram,, . Then we may define

Ty o {a € E%UX | go is ramified over fy'(z)}, = € Dy.

Note that we have Ex ~  NEX
Ux »L UX’I
each other and the disjoint union
* . *
E;, = || F5, o

z€Dx

E*

= () for all marked points z’, 2" € Dx distinct from

The following result says that the set of marked points Dx can be described by using the
set Fg, .
X

Proposition 2.1. (i) We define a pre-equivalence relation ~ on E%UX as follows:
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Let o, B € E%UX. We have that o ~ [ if, for each A\, € F; for which
Ao+ puf e E{CUX, we have A+ uf € E%UX.

Then the pre-equivalence relation ~ on E%UX 18 an equivalence relation.
(i1) Denote by Ex,  the quotient set of B3, by ~ defined in (a). Then we have a
natural bijection
V%, : Bx

where [a] denotes the equivalence class of «.

Ux Ux 23 [)Xa kﬂ = Za,

Proof. The proposition is a special case of [Y2, Proposition 2.2] (i.e., the part of the
proposition concerning “(—)°P”). O

Remark 2.1.1. The bijection U5, does not depend on the choices of Ty, in the following
sense: Let Ty, be an arbitrary mp-triples associated to (X, Dx). Then [Y2, Remark 2.2.1]
says that we have a natural bijection

ETU * — E‘IUX

which fits into the following commutative diagram:
Vs,
153/ — Dy
Ux

l |

ﬂgUX
Bs, —2 Dx.

2.3. Generalized Hasse-Witt invariants.
2.3.1. Notation and Settings. We maintain the notation introduced in 2.1.1.

2.3.2. Let n be an arbitrary positive natural number prime to p and u,, C k* the group
of nth roots of unity. Fix a primitive nth root ¢, then we may identify p,, with Z/nZ via
the isomorphism ¢* + i. Let o € Hom(nt(Ux),Z/nZ). We denote by f, : (X4, Dx,) —
(X, Dx) the Galois tame covering (possibly disconnected) over k with Galois group Z/nZ
corresponding to ae. Write Fx,_ for the absolute Frobenius morphism on X,. Then there
exists a decomposition ([Serl, Section 9])

Hl (XOH OXQ) = Hl (XOU OXa)St EB Hl(XOU OXa)ni7

where FY, is a bijection on H!(X,, Ox, ) and is nilpotent on H'(X,, Ox,)™. Moreover,
we have H'(X,,Ox, )" = H'(X,, Ox, )™« ®F, k, where H'(X,, Ox,, )" denotes the
subspace of H!(X,, Ox,) on which Fy_ acts trivially. Then Artin-Schreier theory implies

that we may identify H, ef H}(X,,F,) ®p, k with the largest subspace of H'(X,,Ox,)
on which Fl_ is a bijection.
The finite dimensional k-linear space H, is a finitely generated k[, )-module induced by

the natural action of u, on X,, moreover, it admits the following canonical decomposition

11@ = 6}9 I{aJ7

1€EZ/NZ

where ¢ € p, acts on H,; as the (*-multiplication. We call 7, dof dimy(H,,), @ € Z/nZ,
a generalized Hasse-Witt invariant (see [Kal, [N], [T1], [Y5]) of the cyclic tame covering
fa- In particular, we call 7, ; the first generalized Hasse-Witt invariant of the cyclic tame
covering f,.
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2.3.3. Let Fp be an algebraic closure of F,,, H C 7}(Ux) an open characteristic subgroup,
and Qy % 78 (Ux)/H. Let #(Q°) = pém such that m # 1 and (p,m) = 1, where (—)*
denotes the abelianization of (—).

Let x € Hom(QH,F;) and Qu, C Qu the kernel of x. Then the finite group Qp
admits a natural action of Qg via the conjugation action. We put

N, def {me H,, def Hom(Qp,y, Z/pZ) @, Fp | 7-m = x(r)m for all T € Qg},

def 5.
TN, = dlmﬁp(NX),

where (7 - 7)(x) o m(r™' - z) for all x € Qu,. We define a group-theoretical invariant

associated to the finite group Qg as follows:
max def =X
Yo = max{yy, | x € Hom(Qp,F,) and x # 1}.

Let def X(Qu) C E: be the image of x which is the group of m/th roots of unity
for some natural number m/|m prime to p. Write (X,, Dx, ) — (X, Dx) for the Galois
tame covering over k with Galois group p,, induced by the composition of surjections

m(Ux) - Qu 5 F:. Suppose
H € DMV(DE) (x4 (Ux)))-

m/

Then x : Qu — F; factors through the natural surjection Qg —» 7r§(UX)/D,()I)(DS,)(WE(UX))).
Thus, we have a natural Qg-equivariant isomorphism Hg (X, F,) ®g, F, = H,,. More-
over, since the actions of Qp on HY(X,,F,) ®g, F, and H,, factor through Qs /Q =
fims, the isomorphism Hg (X, F,) ®r, F, & H,, is also p,y-equivariant. This means
that vy, is a generalized Hasse-Witt invariant of the cyclic tame covering (X, Dx, ) —
(X, Dy).

3. RECONSTRUCTIONS OF MARKED POINTS VIA FINITE QUOTIENTS

In this section, we prove that the sets of marked points of smooth pointed stable curves
can be reconstructed group-theoretically from certain finite quotients of tame fundamental
groups. The main result of the present section is Proposition 3.5.

3.1. Reconstructions of types.

3.1.1. Notation and Settings. We maintain the notation introduced in 2.1.1. Moreover,
suppose ny > 0 (i.e., Uy is affine).
Let m € Z>( be an arbitrary non-negative integer and

def | 0, it m=0,
Clm) = { 3™ Iml, if m #£ 0.

Let

~

ax nx
def
1-‘!]XJ’LX = <a1a"'7&gx7ﬁ17---aﬁgxa’yla---a’ynx | H[araﬁr]H’ys - 1>pro
r=1 s=1

be the profinite completion of the topological fundamental group of a Riemann surface of
type (gx,nx). Now, we fix natural numbers

6, d, T, € {by, ... b} CN, ¢(T,),

such that the following conditions are satisfied:

e / and d are prime numbers distinct from p and distinct from each other such that
¢ =1 (mod d) (then all dth roots of unity are contained in F,).
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o (][ b)) = (d.JTiz, bi) =
o Let e(Z,) < (d]Te, bi. We put e(Z) € #(Toy e /DYr ) (Tggny)) (see 2.1.4 for
Di‘&g)( )). Then we have p|c(Z,), e(Z,)|c(Z,), and (p'Ze —1)|c¢(Z,), where t7, € N
is a natural number satisfying p'% — 1 > C'(e(Z,)(29x + 2nx)).
On the other hand, let s,b € N, Z, = o 0, and Z; {by,...,b;}, 1 € {1,...,a}. For
simplicity, we put (see 2.1.4 for Dz,(—), D,gs (—), GI_ : Gs_b )

def

Dz, ® Dz,(n}(Ux)), Dy < DY (ni(Ux)),
def s, def s
GHEGh = w(Ux)/ Dy (ri(Ux), G X @3 = i (Ux) /DY (i (Ux))
the open characteristic subgroups and the finite quotients of 7} (Uy), respectively. Note

that we have D((% ) C D(?% ) € Dz, C 7i(Ux).

wt(Ux) ~

3.1.2. Anabelian reconstructions. Let F be a geometric object and II# a profinite (possibly
finite) group associated to F. Suppose that we are given an invariant Invz depending on
the isomorphism class of F (in a certain category), and that we are given an additional
structure Addr (e.g., a family of subgroups, a family of quotient groups, etc.) on the
profinite group I+ depending functorially on F.

We shall say that Invz can be group-theoretically reconstructed from Il if there exists a
group-theoretical algorithm whose input datum is Il 7, and whose output datum is Invz.
We shall say that Addz can be group-theoretically reconstructed from 11z if there exists a
group-theoretical algorithm whose input datum is Il 7, and whose output datum is Add .

3.1.3. Firstly, we have the following lemma:

Lemma 3.1. Let H C 7(Ux) be an arbitrary open subgroup, (Xu,Dx,, ) the smooth
pointed stable curve of type (gu,ny) over k corresponding to H, and ¢ def p(pt — 1) a
positive natural number satisfying p' — 1 > C(?gH + nH) Then the following statements
hold (see 2.1.4 for Gy, G3°):

(i) We have 29y + ny < #(m8(Ux)/H)(29x + 2nx).

(ii) Let L|c be a prime divisor of ¢ distinct form p. Then the natural number 29y + ng
can be reconstructed group-theoretically from the finite group G}f = H* @ TF,.

(iii) The type (gu,ny) can be reconstructed group-theoretically from the finite group

2,c
Gy
Proof. (i) The Riemann-Hurwitz formula implies

n
g < #(Ux)/ H)gx + (" D Ux)/H) 1),
On the other hand, we have ny < nx#(w!(Ux)/H). This completes the proof of (i).
(i) Since we assume that Uy is affine, we obtain 2gy + ny = dimg,(G};') 4+ 1. This
completes the proof of (ii).
(iii) By [Y5, Theorem 5.4] and its proof (in particular, line 4, page 82 of [Y5]; note that
the cardinality #(e(F(XH,DxH))) of the set of edges of the dual semi-graph of (Xp, Dx,,)

max )

is equal to ng < C(QgH + nH) if X is non-singular), we have (see 2.3.3 for Ve
T = — 2.
Veie = 9H T Nl

In particular, gy + ng — 2 can be reconstructed group-theoretically from G?f. On the
other hand, let £'|c be a prime divisor of ¢ distinct form p. Since Go*" @ Fp = G3°, (ii)
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implies that 29y +ny — 1 = dimg,, (G}}el) can be reconstructed group-theoretically from
G%°. Then

gn = dimg, (Gy") = 7g8% — 1, ng = 2y25% — dimg, (G ) + 1

can be reconstructed group-theoretically from G 7. We complete the proof of (iii). U
The above lemma implies the following proposition:

Proposition 3.2. We maintain the notation and the settings introduced in 3.1.1. Then
the following statements hold:
(i) Let H C wt(Ux) be an open subgroup such that D(GH)) C H Then the type (gp,nm)

can be reconstructed group-theoretically from the finite group A%y / D(CLJr4 C Gotdella),

(ii) Let N, H C wi(Ux) be open subgroups such that Degj) C N C H. Write fnm :
(Xn,Dxy) = (Xu,Dx,,) for the tame covering over k corresponding to N — H. Then

we can detect whether fy g is étale or not, group-theoretically from the finite groups
H def H/_D a+4) N def N/D(a+4) C Ga+4 C(Ia)'

Proof. (i) We see Gif T —H H/ D (F) Then the proposition follows immediately from
Lemma 3.1 (iii).

(ii) Note that we have deg(fn.y) = #(H/N) = #(H/N). The Riemann-Hurwitz for-
mula implies that fg y is étale if and only if gy — 1 = deg(fn.n)(guy — 1) holds. Then (ii)
follows immediately from (i). O

3.2. Reconstructions of marked points.

3.2.1. Notation and Settings. We maintain the notation and the settings introduced in

3.1.1, and put

Z(Dz,) € {H C ni(Ux) | Dz, C H},

TG L HY H/D “*4 | H e 7(Dz))}.

Moreover, in this subsection, we suppose gx > 2.

3.2.2. Let H C w{(Ux) be an open subgroup such that D(?;l)) CH. Let HY H/D,; “+4)

and (' € {{,d} a prime number. Note that there exists a bijection Hom(H,Z/l'Z )
Hom(H,Z/lU'Z), 5+ (3, induced by the natural surjection H — H. Let € Hom(H, Z/(Z)

be an element and Hp o ker(B) C 7(Ux). We put

N

def

Hom®(H,Z/0'Z) = {5 € Hom(H,Z/{'Z) | the Galois tame covering

(X, DXH/3> — (Xu, Dx,,) corresponding to Hg — H is étale}.
Note that since we assume gx > 2, the set Hom® (H,Z/{'Z) is not equal to 0.

Lemma 3.3. We maintain the notation and the settings introduced above. Then Hom® (H,7/('Z)
can be reconstructed group-theoretically from the finite groups H and Go+4cZa),

Proof. Let B € Hom(H,Z/{'Z) be an arbitrary element and 8 € Hom(H,Z/{'Z) the

element corresponding to 3. Since D(‘(LH)) C H, by the assumptions concerning ¢, d, and

e(Z,) (see 3.1.1), we see D72 C Hy C H and Hy & H/B/D((:'g;? = ker(3) C GatteZa),

e(Za)
Then the lemma follows immediately from Proposition 3.2 (ii). O
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If ¢ = d and 8 € Hom®(H,Z/dZ) is a non-zero element, then the triple (¢, d, (X, DXHﬁ) —
(Xu, Dx,,)) is an mp-triple associated to (Xp, Dx,,) (2.2.2). We shall call

Tr  (4,d,B), B € Hom®(H,Z/dZ) \ {0},
an mp-triple associated to H. Lemma 3.3 implies immediately the following corollary:

Corollary 3.4. We maintain the notation and the settings introduced above. Then we
can construct an mp-triple associated to H group-theoretically from the finite groups H
and Gottea),

3.2.3. Let H € 7(Dz,) be an element and H € .7 (G%) the finite quotient of H. In the
remainder of the present section, we fix an mp-triple
def

T = (L,d, B)
associated to H. Let B € Hom(H,Z/dZ) be the element corresponding 3. Then we have

Dz € Hy and Hy < Hy/D(f7 ) = ker(5) C G*++<%). Denote by

My, % Hom(Hp, Z/(Z), Mg = Hom® (Hy, Z/(Z).
Then Lemma 3.3 and Corollary 3.4 imply that the exact sequence (as Fy[uq]-modules)
é ra  def é
0—>M—t — My, — Mg = MgB/M—t —0

can be reconstructed group-theoretically from the finite groups H, Got4eZe) and the
mp-triple T4 associated to H.
We denote by M%*ﬁ s C Mrﬁaﬂ the subset of elements on which p, acts via the character

g <> IFZX and E;L:ﬁ C Mﬁﬁ the subset of elements whose images in M%a ,, 1€ non-zero.
BrHd

Let @ € Eg_, o € Hom(Hp, Z/UZ) the element corresponding to @, and H, o ker(a).
Denote by
: C{ae By |ny, =(dng — d)+d),
where ng, ny, denote the Cardlnahtles of the sets of marked points of smooth pointed
stable curves corresponding to H, H,, respectively. Since D(((ZH)) C H, C H, Lemma 3.1
(iii) and Corollary 3.4 imply that E;ﬁ can be reconstructed group-theoretically from the
finite groups H and Got4eZa),
Note that we have the following natural isomorphisms

My, = Hy(Ux,, Fe), My, = H'(Xy,,Fo), Mj, =Divp (Y) @ F,

as Fy[ug)-modules. On the other hand, by replacing (X, Dx) by (Xu, Dx,,) and by ap-
plying the constructions obtained in 2.2.3, we obtain E%UX determined by the mp-triple
H

def
(ZUXH = (67 da (XHga DXHﬁ) - (XH7 DXH))
associated to (Xg, Dx, ). We see immediately that there is a natural bijection E%ﬁ =
EgUX . Then we obtain a bijection
H

dﬁf * ~ def 1y
ng E / ~— ETUXH = EIUXH/ ~

where ~ is the equivalence relation defined in Proposition 2.1 (i).

Let N € 7(Dz,) be an element and N € .7 (G%¢) the finite quotient of N. Suppose
N C H. Since we assume (d, []{_, b;) = 1 (see 3.1.1), NN Hg is a subgroup of N such
that N/(N N Hp) is naturally isomorphic to H/Hz — Z/dZ, where H/Hz — Z/dZ is
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the isomorphism induced by 3. Denote by 8y : N — N/(NNHg) = H/Hy = 7Z/dZ the
composition of homomorphisms and NBN o ker(BN) =NnN Fﬁ- Then the finite groups
H, N, and the mp-triple T associated to H determine group-theoretically an mp-triple

(IN déf (ga da BN)

associated to N. Furthermore, by replacing H by N and by similar arguments to the ar-
guments given above, we have that N and T determine group-theoretically the following
sets

def
Er , Bz =FE; | ~.
Tﬁ7 TN Tﬁ/

Then we have the following result:

Proposition 3.5. We maintain the notation and the settings introduced above. Then the
following statements hold:

(i) The set of marked points Dx,, of (Xu, Dx,,) can be reconstructed group-theoretically
from the finite groups H and Go+Za) . Namely, we can identify Dx,, with Ex_ wvia the
composition of bijections

Isy
ﬁgﬁ : Egﬁ :> ETUX :> Dx.

(ii) Let fnm: (XN, Dxy) — (Xu, Dx,) be the tame covering of smooth pointed stable
curves over k corresponding to N — H and fﬁ}}] : Dx,, — Dyx,, the surjection of sets of
marked points induced by fn g. Then the natural injection N — H induces a surjection

ez N - Bry = Bsy

which fits into the following commutative diagram:

9z
E‘}:ﬁ E— DXN

Yo | w5 |
Vs
E‘}:ﬁ — Dy e

Moreover, suppose that N C H is a normal subgroup. Then Ez_ admits an action of
H/N such that Vs is compatible with H /N-actions (i.e., Vs is H /N -equivariant).

Proof. (i) The statement (i) follows immediately from Proposition 2.1 (i), (ii).

(i) Let oy € Ex_ € Hom(H g, Z/EZL Then a7 induceSfl element a7 € Hom(iVBN, Z]CZ)
via the natural homomorphism Hom(H g, Z/(Z) — Hom(N s, ,Z/lZ) induced by Nz, C
Hpg. Since we assume (£, [, b;) =1 (see 3.1.1), ay g is non-zero. Moreover, we have

axg =Y csB, cs €FJ,
pseJ

where J is a subset of Ex_ such that, for 4, 8” € J distinct from each other, the equiva-
lence classes [3'], [8"] € Exz_ of ', 8" are distinct from each other.
Let [ag] € Ex . We define

Vapw(law]) = lag]
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if [8] = [ax] for some 5 € J. It is easy to check that vz is well-defined, and that the
following diagram

is commutative. o o o
Moreover, suppose that N is a normal subgroup of H. Since N,H € 7 (Dz,) (3.2.1)
and (d,[];_, b;) =1, we have H/Ng, = H/N x Z/dZ. Then the natural exact sequence

1— Ngy, —+H— H/Ng, — 1

induces an outer representation H/N < H/Ng, — Out(Ng,) o Aut(Ng,)/Inn(Ng, ).

Thus, we obtain an action of H/N on LBy C Hom(Ng,,Z/¢Z) induced by the outer

representation. Let o € H/N and O, 0 € E*ﬁ. We obverse that o’ ~ o if and only
/"

if o(cl;) ~ (). Thus, we obtain an action of H/N on Eg_ induced by the natural

injection N < H. On the other hand, it is easy to check that the above commutative
diagram is compatible with the H/N-actions. This completes the proof of (ii) of the
proposition. O

4. QUASI-ANABELIAN PAIRS OF FINITE GROUPS

In this section, we introduce the so-called “quasi-anabelian pairs’ associated to tame
fundamental groups. Roughly speaking, quasi-anabelian pairs are pairs of finite quotients
of tame fundamental groups which admit certain anabelian properties. The main result
of the present section is Theorem 4.6.

4.1. Definition of quasi-anabelian pairs.

4.1.1. Notation and Settings. We maintain the notation introduced in 2.1.1. Moreover,
we suppose nx > 0 (i.e., Ux is affine).

4.1.2. Let H C 7§(Ux) be an open characteristic subgroup, Q o 78 (Ux)/H the finite
quotient, and zy € Dy, an arbitrary marked point of (Xpg, Dx,). Then (Xg, Dx,)
admits a natural action of Q. We denote by I, C Qg the stabilizer subgroup of =y,
and put

o def
Edg p(QH) = {IIH}IHEDXH'
We introduce the quasi-anabelian pairs associated to 7§ (Ux) as follows:

Definition 4.1. Let N, H C 7t(Uyx) be open characteristic subgroups such that N C H.

We put Qy & m(Ux)/N, Qn o 7 (Ux)/H the finite quotients. Let (Y, Dy) be an

arbitrary smooth pointed stable curve of type (gx,nx) over an algebraically closed field
[ of characteristic p > 0 and 7} (Uy) the tame fundamental group of (Y, Dy).
We shall say that

(@n, Qn)

is a quasi-anabelian pair associated to w5 (Ux) if, for any surjection ¢ : 78 (Uy) — Qn, the
following conditions are satisfied:

o Let ¢ : 7l (Uy) 4 QN — Qg be the composition of surjections, where Qn — Qu
is the natural surjection induced by N C H. Then for any I; € Edg® (7} (Uy)),
there exists a marked point xy € Dx,, such that ¢(I;) = I, € Edg”(Qn).
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e For any I, € Edg™(Qgu), there exists an element Iz € Edg™(m(Uy)) such that
O(ly) = L,
Namely, (Qn, Q) is a quasi-anabelian pair associated to 7} (Ux) if, for any surjection

. . ¢ .
¢ : m(Uy) - Qn, the composition of surjections ¢ : 7§(Uy) - Qn — Qp induces a
surjection

Y Bdg™ (my(Uy)) — Edg™(Qn), Iy — ¢(I5).

Remark 4.1.1. Let N, H C 7%(Ux) be open characteristic subgroups. The pair (Qx, Qn)

is not quasi-anabelian in general. For instance, we put N = H o ker(mi (Ux) —

7t (Ux)*™ @ Z/nZ) for a positive natural number n prime to p. Then (Qn,Qg) is not
a quasi-anabelian pair if all elements of Edg®(Qy) are non-trivial.

4.2. Explicit constructions of quasi-anabelian pairs. In this subsection, we give an
explicit construction of a quasi-anabelian pair associated the tame fundamental group of
an arbitrary smooth pointed stable curve.

4.2.1. Notation and Settings. Let j € {1,2}, and let (X}, Dx,) be an arbitrary smooth
pointed stable curve of type (gx,nx) over an algebraically closed field k; of characteristic
p > 0 and 7} (Uy,) the tame fundamental group of (X;, Dx,). Moreover, suppose gx > 2
and nx > 0.
We fix the natural numbers
¢, d, I, E {by, ... b} CN, ¢(T,)

introduced in 3.1.1, and put
Dz,; % Dg,(r}(Ux,)), GT* < wi(Ux,)/Dz,(n}(Ux,)), i € {1,...,a},

DY) < Dt (Uy,)), G € 7t(Ux,)/ Dy (7t (Ux,)), s,b € N.

a C . . . (’b a C
Let ¢ : mt(Uy, ) — G5T%%) be an arbitrary surjection and ¢ : 7t (U, ) — G )
G2+ the composition of surjections, where Gg+4’6(z“) — G+ is the natural surjection
induced by Dé(g K C Dgz,2. Note that ¢ and v fit into the following commutative

11)72
diagram

W%(UXJ W{(UXI)

l d

GT+4,C(LZ) ¢ Gt21+470(fa)

l l

G = o

where all vertical arrows are surjections, and ¢, are surjections induced by ¢, 1, respec-
tively.

Let Dé?;;l))Q C H, C 7% (Uyx,) (see 3.1.1 for e(Z,)) be an open subgroup and H, o
H,/ D((:?;; ?2 C GSH’C(I“) the finite quotient of H,. We put H, et 571<ﬁ2) C G’f+4’c(z“),
(Dé‘(lzl 1))1 C)H, C 7t(Uy,) the inverse image of H; via the natural surjection 7t (Uyx,) —»

GCIH’C(Z“) , and

— def = =
G, = Ol - Hi — Ho
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the surjection induced by ¢. Write (X H;» DXHj) for the smooth pointed stable curve of
type (gu,,nm,) over k; corresponding to H; C 7{(Ux;).

If (9,,7#,) = (gm,, nm,) (note that this condition holds if H; = 7 (Ukx;,)), we see that
¢y, induces an isomorphism of finite groups

G, HY Sy,
where (—)P" denotes the maximal prime-to-p qt%otient of (=). Furthermore, let e {t,d}
be a prime number. Note that we have ¢’ ]#(H ). Then the isomorphism ((b ,) " induces
a bijection
%Y Hom (T, Z,/¢'Z) = Hom(H , Z,/¢'Z) = Hom(HY , Z/'Z) = Hom(H,, Z/('Z,).
4.2.2.  We have the following lemma:

Lemma 4.2. We maintain the notation and the settings introduced in 4.2.1. Suppose
(9msmmm,) = (g, ). Then @Y, induces a bijection (see 3.2.2 for Hom® (H;, Z/V'Z))

Byt Hom® (A, 2/07) = Hom® (H,, Z/'Z).

Proof. Let @y € Hom®(H,,Z/l'Z) be an arbitrary element, wl & (@%,) L (@a), w; €
Hom(H}, Z/¢'Z) the element corresponding to @; (3.2.2), and H,,, o ker(wj) C H;. Write
Jo; + (Xn,s Dxy, ) = (X, D XHj) for the Galois tame covering over k; with Galois group
707 Correspondjing to H,, € H; and (gij,nij) for the type of (Xij,DXHWj). The
Riemann-Hurwitz formula implies (see 2.2.2 for #(Ramy, ))

/ ]' !/ /
9n.,, = g, — 1) + 5#(Ramfwj)(€ —-1)+1, ng, = 0 (nHj — #(Ramfwj)) + #(Ramfwj).

In particular, we have gp,, = '(gx,,—1)+1 and ng,, = {'ny, since Wy € Hom® (H,, Z/0'Z).

Let H,, < ker(@;) = H,, /D", Wesee GQ’C L 1, /DS, (H,) =H,, /D) (H.,) C
H,,. By [Y5 Theorem 5.4] and its proof (in partlcular line 4, page 82 of [Y5]), the sur-
JeCtIOIl O lg, : Hoy - H., induces

,YGQ C<Ia) gHw1 + nle - 2 ’YGQ c(Za) — gHwQ + nsz - 2
“’1 “’2

We obtain #(Ramy, ) = 0. This means that f,, is étale. Namely, we have w; €
Hom®(H,,Z/¢'Z). Thus, §%, induces an injection

(@ﬁ}l) 1|Homét(F2’Z/€/Z) : Hom® (Hy, Z/('Z) — Hom® (H,,Z/('7).

Moreover, #(Hom®(Hy, Z/l'Z)) = #(Hom® (Hy, Z,/{'Z)) implies that (2%, ) ™ | yomet (17, 2/02)

_edef /
i (@Y

is a bijection. Then we complete the proof of the lemma if we put @ D itome @ z/02y) "

4.2.3.  We maintain the notation and the settings introduced in 4.2.1. Moreover, in 4.2.3,
we suppose

® (9u,,nm,) = (9Hz i)
Let Tg, o (¢,d, B,) be an mp-triple associated to H, (ie., B, € Hom®(H,, Z/dZ),

see 3.2.2). By Lemma 4.2, we see that the triple T7 oo ¢, d, B, o (@41 (By)) is

an mp-triple associated to H,. Namely, we have §, € Hom®(H,,Z/dZ). Let B; €

Hom(H;,Z/dZ) be the element corresponding to 5 (D QZH))] C)Hg, def ker(3;), Hg, def



18 YU YANG

Hg / Dé‘(l; Y the finite quotient of Hpg,. Then we obtain an exact sequence (as Fy[pq)-

modules see 3.2. 3)
ét ra
0— ]\LHB]- — MHBj — ]\LHB — 0.

i
By replacing Hj, ﬁj by Hpg,, ﬁgj, respectively, and by applying Lemma 4.2, the iso-

morphism @Y 5 MEBI = Mﬁﬁz induces the following commutative diagram of F[u,]-

modules:

0 — MY —— Mz, —— M2 —— 0
B1 A1 Hpg,

—L,ét —l
goHﬂl jf QOHBl J« l

where all vertical arrows are isomorphisms. T hen the bijection @fqﬁ induces a bijection
1
TmpE oy ~ %
Moreover, we have the following lemma:

Lemma 4.3. We maintain the notation and the settings introduced above (in particular,

—mp,* . .. . —mp,* ~
we assume (gu,, "m,) = (G, i) ). Then ¢y, induces a bijection ¢y, By — Eg_
1 2

Moreover, aﬂl . Hy — H, induces a bijection
—mp ~
¢H1 : Ef}jﬁl — E‘}:ﬁg
and a bijection (see Proposition 3.5 (i) for dz_ )
J

Vxy oy Vigy

—gp-mp Hy 1 Ho

¢H1 :DXHl 't Egﬁl = EgﬁQ = DXH2
of sets of marked points, where “gp” means “group-theoretically”.
Proof. Let @y € Ei_ be an arbitrary element, o o (qbl;_}p*) Y(a,) € Et_,and o; €

2 1
Hom(Hp,, Z/(Z) the element corresponding to @;. We put H,, o ker(a;) C Hg,, ga, :
(X, Dxy, ) = (XHBj » Dy, ) the Galois tame covering over k; with Galois group Z/(Z

J J
corresponding to Ha; € Hpg,, (9u,, . nu.,) the type of (Xu, , Dx,, ), and (gHﬁj,nHﬁj)
—_— 7 — J

the type of (XHaj>DXHﬁj)' Note that since 3; € Hom®(H;,Z/dZ) and (gu,,nm,) =
(9m,mm,), We see (gm, snm, ) = (gu,,, M, ). Moreover, since @y € E%m, we obtain
#(Ram,, ) =d (2.2.3). The Riemann-Hurwitz formula implies

1
9H., = f(gHﬂj —1)+ 5#(Ramgaj)(€ —1)+1, nm,, = é(nHﬁj - #(Ramgaj)) + #(Ramgaj).

In particular, we have gy, = (gu, — 1)+ 3d({ —1)+ 1 and nH&2 = l(ny,, —d)+d.
Let H,, < ker(a;) = Ha, /DY), Wesee Gt < '€ H,,/D) [(Hy,) = Ha,/DS) (Ha,)
H,,. By [Y5 Theorem 5.4] and its proof (in partlcular line 4, page 82 of [Y5]), the sur-

Jectlon O, |Ha : H,, — H,, induces

max max
7G2 c(Za) — gHa1 + nHal - 2 Z ’YG?-IC(IG gHa2 —l— nHa2 - 2

Then we obtain #(Ramy, ) < #(Ramy,, ). This implies
#(Ram,, ) € {0,d}.
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Suppose #(Ramg, ) = 0. This means @, € Mit . On the other hand, Lemma 4.2

B1
implies @, € ]\4’st . This contradicts the assumption @, € ET . Thus, we obtain

#(Ram,, ) = d. N amely7 we have @y € Eg_ . Furthermore, since #(Egﬁ ) = #(E%ﬁ ),

—mp,* ,
¢p, induces a bijection

—mp,* def —mp,*

Ou, = O, |ex 3E;H — By

Hy 1 Hy

Moreover, we see immediately that @) ~ @/ if and only if ng*( ")~ ngp’ (@) for all
oy, af € Ex_, where “~” denotes the equivalence relation defined in Proposition 2.1 (i).
1

Then we obtain that g_le induces a bijection

—mp

d)Hl ETﬁ1 — ETHQ'

Thus, the lemma follows from Proposition 3.5 (i). This completes the proof of the lemma.
O

4.2.4. We maintain the notation and the settings introduced in 4.2.3. Moreover, in 4.2.4,
we suppose

o Hy € T(Dz,2) (see 3.2.1 for T (Dz, 2)).
Then we see immediately H; € 7 (Dz,2). Let Ny € T (Dz,2) be an element such that
N2 C Hy, and Ny € F(G3*) (see 3.2.1 for .7(G%*)) the finite quotient of N,. We put
— def (¢H )"L(N,y) C Hy, (Dg‘(zl))l C)N; C H, the inverse image of N; via the natural

surjectlon H, - H,, and

EN = ¢H1|N Ny — N,
the surjection induced by ¢y . Note that we have N; € 7 (Dz,1) and Ny € 7 (GT*).
Write fn, o, © (Xn,, D XNj) — (Xu,, D XH]_) for the tame covering of smooth pointed stable
curves over kj; corresponding to N; — Hj, (gn,,nn,) for the type of (XNj,DXNj), and
N, @ Dxy, = Dx,, for the surjection of sets of marked points induced by fu, s,
By similar arguments to the arguments given in the fourth paragraph of 3.2.3 and
Proposition 3.5 (ii), we obtain the following data:

e The finite groups N;, H;, and the mp-triple %, o (¢, d,Bj) associated to H;
induce group-theoretically an mp-triple
def

Ty, = (0.d,By,)
associated to Nj.
e The sets Ef_, Ex_ can be reconstructed group-theoretically from N; and T .
j i _
e The natural injection N; — H; induces a surjection
which fits into the following commutative diagram:

D
Ee —3y D

Tz N. mp
H;d Nj,Hj

D
Be —9y D

Then we have the following lemma.
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Lemma 4.4. We maintain the notation and the settings introduced above. Suppose
(gnysnny) = (gnysnN,) and (guy,nmy) = (9uy,nm,). Then the commutative diagram of
finite groups

— b —
Ny L>.]\[2

Lo

_ & _
H, % H,

mduces group-theoretically a commutative diagram

~gp-mp
PN,

Dxy, — Dx,,

mp mp
W, | s |

—gp-mp
(oyes

DX — DXHQ'

Hy

Namely, the diagram

18 commutative. Moreover, suppose that Nj - Fj 15 a normal subgroup. Note that we have
H,/N, = Hy/Ny induced by Gy, - We identify Hy /N, with Hy/ N via this isomorphism.
Then ai,pl_mp is H;/N j-equivariant.
Proof. Firstly, since (gu,,nm,) = (9m, nu,) and (gn,,nn,) = (gny, nv, ), Lemma 4.3 im-
. —- —- . .. X =mp ~ —mp ~
plies th.at ¢y, and ¢y, induce bijections ¢, : Egﬁl — E§ﬁ2 and ¢y, : Egﬁl — E§ﬁ2,
respectively.
Next, to verify the commutativity of the second diagram appeared in the statement of
the lemma, we only need to prove the commutativity of the following diagram

def ,~—gp-mp, _ def def
Let zn, € DXN27 TNy = (¢N1 ) 1(1‘N2) S DXN17 THy = ]r\Ifl;HQ(xN2) S DXN27 TH =

m —8p-mp, _ def ,—gp-mp,__ .
(f3Pp, © (qbi,pl Y (zw,) € Dxy , and 2y, = (qﬁz YU ay,) € Dx,, . We will prove
Ty, = 2y, Write Sy, and Sy, for the sets (fx" )" (27,) and (fyFy,) " (zw,), respec-
tively. Namely, we have

I’Nz —_— JTNI

l

THy s
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LNy

l

/
xHQ > xH17

and )
TN, € SN2 SN

l |

/
T, ——— Ty
To verify xp, = 2, it is sufficient to prove zy, € Sy,

Let ap, € E§EQ@H2, where E%ﬁﬂ% is the subset of E%ﬁQ corresponding to the subset
* * * . .. . * ~ * .
ETUX 1 (see 2.2.3 for ETUXHZ ) of ETUXH2 via the bijection Egﬁ2 — ETUXHQ obtained

in Proposition 3.5 (i). Lemma 4.3 implies that @y, induces an element @y, € E;ﬁ .
177 Hy

1

T Hy

We put ap, : Hg, —»Hg — Z/EZ and (X,

Qo

DXaHj) — (XHBj’DXHaj) the Galois tame

covering over k; with Galois group Z/{Z corresponding to ag,. We consider the Galois
tame covering (XaH27DXaH2) XXty Dxpy,) (Xnos Dxy,) — (XNBNQ’DXN@NQ) over ko with

Galois group Z/lZ, and denote by @y, an element of E*ﬁ corresponding to this Galois
2

>t € Bt ,

c2E€SN,

where {., € (Z/{Z)* and @, € E7__.,. Note that we have ¢, # 0. On the other hand,

Lemma 4.3 implies that @,, induces an element a((bi}?{mp)—l(cﬁ € B ()1 (e2)" Then

tame covering. Then we have

ay, induces an element

_ def _ —

T = D el e + by Ba, € Bry

c2€Sn, \{z Ny }
Note that since ay, is an element corresponding to the Galois tame covering
(XOéHl ) DX@Hl ) X(Xn, Dxy,) (XN1= DXNl) - (XNBNI J DXNBN1 )
over ky with Galois group Z/¢Z, the composition of the Galois tame coverings (X, o D Xag, )X X, Dxpy )
1
(X Dxy, ) = (X, » Dxy, ) = (XN, Dxy, ) is tamely ramified over Sy, . This means
1 Ny

that zy, is contained in S,
On the other hand, the “moreover part” of the proposition follows from Proposition 3.5
(ii). This completes the proof of the lemma. O

4.2.5. We have the following proposition:

Proposition 4.5. We maintain the notation and the settings introduced in 4.2.1 (in
particular, we assume gx > 2). Then the pair of finite groups

(Gg+4,c(zu)’ G%a)
is a quasi-anabelian pair (Definition 4.1) associated to wt (U,
to verlfy the proposition,

).
Proof. By the definition of quasi-anabelian pairs (Definition 4.1),
E (UX1 ) a+4 e GIa

it is sufficient to prove that the surjection (see 4.2.1 for ¢) ¢ : 7
induces a surjection

¥ Edg™ (my(Ux,)) — Edg*™(G3°).
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We see immediately that the kernel Ny & ker(¢) C 7t (Ux,) of ¢ contains Dz, ;. We put
EQNl :Qn, o 7 (Ux,)/N1 = G%* the isomorphism induced by 1. Note that there is a

surjection Edg®(m}(Ux,)) — Edg®®(Qy,) induced by the natural surjection 7%(Ux,) —
Qn, (Le., the map Iy — Iy /(Iz N Ni) € Qn,). Then to verify the proposition, it is
sufficient to prove that the isomorphism QZJQ - induces a bijection map

boy, + EdgP(Qn;) = Edg™(G3*).

For simplicity, we write Dy, Dy for Ny, Dz, o, respectively. Moreover, we denote by
fp, : (Xp,, Dx,, ) = (Xj, Dx,) the Galois tame covering of smooth pointed stable curves
J

over k; corresponding to D; C 7 (Usx;), fln,lf : DXDj —» Dx; the surjection of sets of
marked points induced by fp,, and (gp,,np,) the type of (Xp,, DXDJ-)' We claim the
following;:

Claim: We have (gp,,np,) = (9p,,"p,)-
Let us prove the claim. Firstly, we have filtrations

{6} = DIa(QNl) C DIa71(QN1) c.---C DIO(QN1) = QN17

D2 difDI QCDZ 12C CDIO2d§f7T1(UX2)
Write Dy ; C 7} (Ux,), @ € {0,...,a}, for the inverse image of Dz,(Qx,) of
the natural surjection 7¢(Ux,) — Qn, and Dy, for Dz, o, i € {0,...,a}.
Note that we have Dl,a = D1 = Nl, Dg’a = _D2 = DIa,27 and Dj’g =
71 (Ux,). Moreover, we denote by (gp,,,np,,) the type of smooth pointed
stable curve over k; corresponding to D;; C 7 (Uk,).
There is an isomorphism

(DL'(QNl)/DZH.l (QNl))p,;(D27Z'/D2,i+1)p,, 1 € {0, NS 1},

induced by EQM . Moreover, denote by m; Oy ( (Dz,(Qn,)/D1,,, (Qn, ))p/) :
We see

D% @ Z/miZ = (Dz,(Qn,) / Dz, (Qn,))" (Do) Doyis1)” = D35 @ Z/miZ

foralli € {0,...,a—1}. Then we obtain that (9p, ..., 7D, ,41) = (9Ds.i1> MDsis1)
if (9p,..mp,.) = (9ps.>MpD,,). Thus, the claim follows immediately from
(9D10:MD1o) = (9Dog>MDsy) = (gx,nx). This completes the proof of the
claim.

On the other hand, we have the commutative diagram of finite groups (see 4.2.1 for @)

- def—

= def a ¢py =015, — def a
Dy & Dy/DYY, 270 Dy py/DlY,
G?+4,C(Z,1) @ Gg+4,c(Z,1)

where all vertical arrow are injections, and G¢T+%) /D = Qn, & 7t(Ux,)/Dy = GZe.
Since D, G?H’C(I") € y(G]I-“) (see 3.2.1 for 7(GJI“)), by the claim, Lemma 4.4 implies
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that the above commutative diagram of finite groups induces group-theoretically a com-
mutative diagram of sets of marked points

Dx, —— Dyx,,
and that gzﬁ%p " is a Qu, (= GL*)-equivariant. Then by the definitions of Edg®®(Qy,) and
Edg®™(G3*) (4.1.2), EQM : Qn, = G2* induces a bijection map @OQle : Edg®(Qn,) =
Edg®®(G%+). This completes the proof of the proposition. O

4.2.6. Now, we can state the main result of the present section.

Theorem 4.6. Let by = p"by € N be a positive natural number such that (p,by) =1 and
by # 1, and let
<E27 DE2>

be a smooth pointed stable curve of type (g,n) over ky and 7t(Ug,) the tame fundamental
group of (Es, Dg,). Suppose n > 0. We shall write
(X27 DXQ)

for the smooth pointed stable curve of type (gx,nx) over ko corresponding to the open
subgroup Dl(,(l))(ﬁi(UEQ)) C 71(Ug,). Note that we have gx > 2 and nx > 0 since by # 1,
and that the tame fundamental group 7i(Ux,) of (X2, Dx,) is naturally isomorphic to

Dlg(l))(ﬁ(UEQ)). Let ¢(Z,) be the natural number defined in 3.1.1. Then the pair of finite
groups

(74 Ur)/ DSE (D8 (74 (UR)), 7 (Ui, Dr, (DL (73 (UR))) )
is a quasi-anabelian pair associated to 75 (Ug,).

Proof. Let (Ey, Dg,) be an arbitrary smooth pointed stable curve of type (g,n) over ky
and 7§ (Ug, ) the tame fundamental group of (Ey, Dg,). Let

op, 74 (Ur,) — 74 (Us,) /DYty (D (74 (Un, )

be an arbitrary surjection and

Uy T (Un) S 7 (U, /DS (DY (54 (Us,))) — 74 (Un,)/ D, (DY (i} (U))

the composition of surjections, where the second arrow is the natural surjection.

We put (D (4(Up,)) ) Hy € 651 (DS (74(Un,))/ Dt ) (DS (74 (Ug,)))) € 74 (Ug,)

and write (X1, Dx,) for the smooth pointed stable curve of type (gx,,nx,) over k; cor-
responding to the open subgroup H; C 7} (Ug,). Note that the tame fundamental group
78 (Ux,) of (X1, Dx,) is naturally isomorphic to H;, and that we have

(71 (Ue,)/ Dy (71 (U))" 5 (7 (U, )/ Hi)" 5 (53 (Ur,) /Dy (7} (U,)))”
Then since the types of (Ey, Dg, ) and (FEs, Dg,) are equal to (g, n), we obtain (gx,,ny,) =
(9x,nx).
We identify 7} (Ux, ), 7 (Ux,) with Hy, D( (7} (Ug,)), respectively. Let

6w (Ux,) — Gy Z DIV (i (Ug,)) /D) (DY) (7w (Us,))),

i (Us,) — G« = DIV (7t(Ug,))/ Dz, (DY) (7t (Ug,)))
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be the surjections induced by ¢g, and g, , respectively. By Proposition 4.5, ¢ induces
group-theoretically a surjection

Y Bdg™ () (Ux,)) — Edg™(G5%).

On the other hand, write Nz, ) (Edg™ (7} (Ux, ))) for the set of normalizers of elements
o . o La
of Edg®(n}(Ux,)) in 7§(Ug,) and NWE(UEQ)/DIQ(Df,;)(?ri(UEQ)))(Edg P(G3*)) for the set of

normalizers of elements of Edg®?(G%*) in 7t (Ug,) /D1, (Dl(,(l))(ﬂf{(U £,))), respectively. Then
we see immediately

Nt (g, (Edg™ (71 (Ux,))) = Edg® (m (Ur, ),

N 11 011 0, (B (G3)) = Edg (i (Ui )/ D, (D) (4 (U ).

Thus, ¥°P induces a surjection
% Bdg™(m}(Us,)) - Edg™(n}(Us,)/ Dz, (D} (w1 (Ur,))))-

This completes the proof of the theorem. O

5. RECONSTRUCTIONS OF ADDITIVE STRUCTURES AND LINEAR STRUCTURES VIA
FINITE QUOTIENTS

In this section, we prove that the field structures associated to inertia subgroups can
be reconstructed group-theoretically from certain finite quotients of tame fundamental
groups. Moreover, for smooth pointed stable curves of genus 0, we prove that the linear
structures induced by the underlying curves can be reconstructed group-theoretically from
certain finite quotients of tame fundamental groups. The main results of the present
section are Proposition 5.2 and Proposition 5.3.

5.1. Additive structures.

5.1.1. Notation and Settings. Let j € {1,2}, and let (X}, Dx,) be an arbitrary smooth
pointed stable curve of type (gx,nx) over an algebraically closed field k; of characteristic

p > 0 and 7}(Uy,) the tame fundamental group of (X, Dy,). Let t € N be a positive

natural number, and let H,, O, e p

p-1
subgroups such that Hy C Os.
Let ¢ : 71(Ux,) = Qum, o 78 (Ux,)/Ha be a surjection such that ¢ induces a surjection
(e.g. there exists an open characteristic subgroup Ny C 7t (Uyx,) such that (Qn, o
75 (Ux,)/Na2, Qu,) is a quasi-anabelian pair associated to 7} (Uy,))

¢Op : Edgop(ﬂ-i(U)ﬁ)) - Edgop(QH2)7 Ifl = ¢(I§1)

We put H, & ker(¢)) and O, o ™Y Oy/Hy) C 7t(Uyx,). Note that we have O; =

D;%ll(W}(UXI)) since p* — 1 is prime to p. Write fg, : (XH].,DXH]_) — (X}, Dx;), fo, :
(Xoj,DXOj) — (X}, Dx;) for the tame coverings over k; corresponding to Hj;,O; C

(7} (Ux,)) € 7t(Ux,) be open characteristic

74 (Ux, ), respectively, and (g, 1), (90, 10,) for the types of (X, Dy ); (Xo,, D)
respectively. Moreover, we denote by Qpg, o 7 (Ux,)/H1, Qo, o m(Ux,)/O;, and
— T " L Y
Y Qu, - Qp, the surjection induced by ¢. The composition of surjections 7} (Uy,) —»
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Qu, - Qo, factors through the natural surjection 7} (Ux,) — Qo,. Namely, we have

W%(U)ﬁ) 7T11;(UX1)

l d

QO1 —_— QOz?

where p is an isomorphism. Furthermore, the above commutative diagram implies the
following commutative diagram

Edg™(t (Ux,)) ——— Edg™(Qu,)

l !

Edg™(Qo,) —— Edg™(Qo.),
where the vertical arrows are the natural surjections induced by 7} (Ux,) — Qo, and
Qu, = Qo,, respectively, and p°® denotes the surjection induced by °P.
Let 7y € Dg (see 2.1.3 for Dg ), Iz, € Edg™(m(Ux,)), and I, def PP (Iz,) €
Edg®®(Qp,) for some xgy, € Dx,,. Let xo, € Dx, be the image of 7 of the natural

surjection D % D Xo, and Tp, the image of xy, of the natural surjection D X, = D Xo,-
Then we have

[:rol S Edgop(Q01)7 Isz € Edg0p<Q02>

which are equal to the images of Iz,, I, of the natural surjections Edg™ (7} (Ux,)) —

Edg®(Qo,), Edg®®(Qn,) — Edg’®(Qo,), respectively. The above commutative diagram
implies p°P(I,,, ) = I, . We put

L P Ay
Pzo, .m0, = p’Izol s tzo, — T,

the isomorphism. Moreover, let Ty € D¢, be a marked point of ()?2, Dg,) over xp, (ie.,
a marked point of Dy whose image of the natural surjection Dg — Dxy, is © ,) and
[53\2 € Edgop(ﬂ-il;(UXz))'

Additive structures associated to inertia subgroups. Write Fm-, j € {1,2}, for the algebraic
closure of IF,, in k;. We put

Fs, < (I, @2 (Q/2))) Ufxs,},
where {*z,} is an one-point set, and (Q/ Z)?l denotes the prime-to-p part of Q/Z which

can be canonically identified with (Q/Z)?l(l) o U p.my=1 tm(k;). Moreover, let ag; be a
generator of Iz,. Then we have a natural bijection

I, @2 (Q/Z)Y S Z &z (Q/Z)Y, az, @ 1 1® 1.
Thus, we obtain the following bijections
I, ®2 (Q/2)} = 2@z (Q/Z)] = (Q/Z)] (1) 5 T, ;.

This means that Fz, can be identified with Fm- as sets, hence, admits a structure of field,

whose multiplicative group is Iz, ®z (Q/ Z)?l, and whose zero element is 3.
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Suppose that I, is non-trivial (e.g. nx > 2). Moreover, write a,, for the image
J J
of az;, of the natural surjection Iz —» Ixoj. Since there are natural homomorphisms

Ly S 7/ = 1)Z 3 pp_y (k) — F

o .
OJ

the set

».j» where the first arrow is determined by Ugp, = 1,

Foo,t = Lnp, U {%3,}

$O7

admits a structure of field induced by F,, ; Wthh is isomorphic to the subfield of F, ; with
cardinality p'.

5.1.2. Firstly, by applying similar arguments to the arguments given in the proof of [Y5,
Theorem 6.4, we have the following lemma:

Lemma 5.1. We maintain the notation and the settings introduced in 5.1.1. Suppose
nx = 3,

t > log,(C(gx) +1) (see 3.1.1 for C(gx)), and Hy € D}(05) = DIV(DS) (w1 (Ux,))).
Then the field onj +t can be reconstructed group-theoretically from Qg, and QO Moreover,

)

the isomorphism py, | 20,

= Iy, induces a field isomorphism

fd I

prOl »LOg

xoz

ot — ]F:EOQ R2)

where “fd” means “field”.

Proof. Let Fp be an algebraic closure of F, and F,: C Fp the subfield with cardinality p’.
The field structure of ]Fmoj + is equivalent to the subset

Homfd(IFxoj by Fpt) g HOmgp(FX

To, ,t)

F),

where “gp” means “group”. Then in order to prove the first part of the theorem, it is
sufficient to prove that the set Homfd(IFxoj +,[F,t) can be reconstructed group-theoretically

from Qg, and Qo,.
Let x; € Hom,,(Qo,, F,). We put

Hy, © ker(Qu, — Qo, 3 F%), My, & H® @ F,.

Then Mx admits a natural action of @y, via the conjugation action. Since we assume
H, C D! (02) we see My, = (ker(n}(Ux,) - Qo, X ]F;t))ab ® F,. Denote by
M., [x;] o {a€ M, ®5,F, | 0-a=yx;(0)aforall o€ Qo,},
def
Yx; (ng) dlmF (MXj X))

The integer 7, (M,,) is a generalized Hasse-Witt invariant of the cyclic tame covering of
(X;, Dx;,) corresponding to ker(mj(Ux,) = Qo, X F) — mi(Ux,). Note that nxy =3
implies 7y, (M) < gx +1 ([Y5, Lemma 2.7]). We define two maps

Res;, : Homgp(on,F;t) — Homgp(lﬁ‘;o t,IF;t),
Do s Homg,(Qo,, Fry) = Zso, X5 = Yy (My;),
where the map Res;, is the restriction with respect to the natural inclusion F; ot =
]zoj — Qo,. Since we assume ¢ > C(gx), the “non-moreover” part of the lemma follows
from Claim A mentioned in the proof of [Y5, Theorem 6.4] (see page 95 of [Y5]) which
says
Homeg(Fr, 4 Fpt) = Homig (B, F) \ Res;o (T ({gx +1})),
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where Hom;fJ

Next, we prove the “moreover” part of the lemma. Let ko € Hom,,(Qo,, F;t). Then we
obtain a character

(—, —) denotes the subset of Homg,(—, —) whose elements are surjections.

K1 € Homgp(Qol,IF;z)

induced by 7 : Qo, — Qo,. Moreover, the surjection ¢| H., @ Hs — Hg, induces a
surjection M, [k1] — M, [r2]. Suppose k2 € I'; 1 ({gx + 1}). The surjection My, [r1] —
M,, ko] implies v, (M,,) = gx + 1. Namely, we have x; € I';({gx + 1}). Thus, the
1

TOg * 77Oy
ReSQ,t(FQf%({gX +1})) — Reslﬁt(f‘l—j({gx +1})).

Since #(Homfd (Fxol £ ]Fpt)) = #(HOHIfd(IFzOQ’t,]Fpt)), the isomorphism py, .., induces a
bijection

isomorphism pz,, | — Iy, induces an injection

Homfd (Ffﬁoytv ]Fpt) :> HOIIlfd (Fwol,t; }Fﬁ).
If we choose Fyr = F,, ¢, then the image of idg, _, via the above bijection induces a field
.
isomorphism

fd . ~
p.Z‘Ol,IO2 : ]F‘zol it — ]F‘1027t'

This completes the proof of the lemma. O
The main result of the present subsection is as follows:

Proposition 5.2. We maintain the notation and the settings introduced in 5.1.1. Suppose
nx Z 37
t > log,(C(gx) + 1) (see 3.1.1 for C(gx)), and Hy C Dy (0z) = DY) (DY) | (7t(Ux,))).

pt—1
Then the field IFIO]_ +t can be reconstructed group-theoretically from Qg, and Qo,. Moreover,

the isomorphism prq 20, * oo, = I, induces a field isomorphism

fd . ~
pxol,m02 : ]Fﬂﬁol )t - ]F$02 it

Proof. If ny = 3, the proposition follows from Lemma 5.1. To verify the proposition, we
suppose nx > 3.

Write 251 € Dy, for the image of zp, € DXO2 of the surjection DXO2 — Dy, induced by
the tame covering fo, over ky. Let 299,293 € Dx, \ {21} be marked points distinct from

each other, SQ déf DX2 \ {$2,1,$272,J,’273}, 502 déf f621(52) Q DX027 and SH2 déf fI};(SQ) Q
Dx,,. We put

o def o o def o
EngZ(QHz) = {LE € Edg p(QHz) |£C € SH2}7 EngZ(QOz) = {Iw € Edg p<QO2> | S 502}
and

Edg? (! (Ux,)), Edg2 (r}(Ux,))
the inverse images of the surjections Edg®?(w}(Uy,)) = Edg®®(Qn,) — Edg™(Qo,) and
Edg® (7} (Ux,)) — Edg®(Qo,), respectively. Write
[SH2 g QH27 ISOQ g Q027 I§1 g 7T;(l—j)ﬁ% I§2 g 7T5<UX2>

for the closed subgroups generated by elements of

Edgg (Qm.), Edgg(Qo,), EdgZ (m(Ux,)), EdgZ (m1(Ux,)),

respectively. Note that the images of Ig and [g in Qpu, of the surjection o : i (Ux,) —
Qmu, and the natural surjection 7{(Ux,) — Qm, are equal to Ig,, , respectively, and that
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the image of I, in Qo, of the natural surjection Qpu, - Qo, is equal to Is, . Then we
obtain the following diagram

7T'1;(UX2)

l

m(Ux,)/1g,
o
3

7]-11;<UX1) — W%(UXJ/[@} — QHQ/[SH2

J

QOQ/[SO2 ’

where ¥ is the surjection induced by 1 : 7t (Ux,) — Qu,.
The above constructions concerning Iy imply immediately that T (Ux,)/1 g, is naturally

isomorphic to the tame fundamental group of a smooth pointed stable curve of type (gx, 3)
over k; whose underlying curve is X;, and that 1°? and v induce a surjection

Y Edg™ (i (Ux,)/I5,) - Bde™(Qm/Is,,).

Furthermore, note that we have Oy & D(1 (1 (Ux,)/1g,) = ker(my(Ux, ) /I3, — Qo,/Is,,),
and that H, C D' )(02) = D,(Jl)(DfDl) <7T1(UX2))) implies

t—1
Hy < er(m} (Ux,) /T, — Quma/Isu,) € DY (DL (m(Ux,)/I3,)).
Then by replacing 7{(Ux,), Hz, Oz, and ¢ by W}(ij)/lgj, Hy, O, and 1, respectively,
the proposition follows from Lemma 5.1. We complete the proof of the proposition. [

5.2. Linear structures.

5.2.1. Notation and Settings. We maintain the notation and the settings introduced in
5.1.1. Note that we have Dy, — Edg®®(rt(Ux,))/nt(Uy,) and Dx, — Edg®®(Qu,)/Qm,-
Moreover, the surjection ¢ : 7t (Ux,) — Qp, and the surjection °P : Edg® (7t (Uy,)) —»
Edg®®(Qp,) induce a bijection

™ Dx, = BEdg™ (m(Ux,))/m (Ux,) = Edg™(Qn,)/Qm, = Dx,.
In the remainder of this subsection, we suppose

* (gx.nx) = (0,nx).

Linear structures associated to affine lines. Fix two marked points x; ., ;¢ € DX]. dis-

a2

tinct from each other. We choose any field k7 = k;, and choose any isomorphism

¢; + X; = P}, as schemes such that ¢;(z;.) = 0o and ¢;(z;0) = 0. Then the set
J

of kj-rational points X;(k;) \ {2} is equipped with a structure of F,-module via the

leeCtIOIl ¢;. Note that since any k’-isomorphism of Pk, fixing oo and 0 is a scalar mul-

tiplication, the F,-module structure of X;(k;) \ {z;, OO} does not depend on the choices
of k} and ¢; but depends only on the ch01ces of 2. and x;9. Then we shall say that
Xi(kj) \ {7j00} is equipped with a structure of F,-module with respect to xj . and x;.
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5.2.2.  We have the following proposition:

Proposition 5.3. We maintain the notation and the settings introduced in 5.2.1. Write
Ta oo and Tog for Y™P(x1 o) and ¢™P (1), respectively. Let

E bxlﬂh = T1,0

z1€Dx; \{Z1,00,%1,0}

be a linear condition with respect to x1 ~ and x19 on (X1, Dx,), where by, € F,, for each
r1 € Dx, \ {#1,00,T10}. Suppose that there exist natural numbers t € N and b, € Zxo,
x1 € Dx,, such that b, = b,, (mod p) and

pt -2 > Z biﬁ > 2
:vlerl\{fL"l,oo@l,O}
Then the linear condition
Z bmwmp(‘rl) = ¢mp(x170) = 22,0
z1€Dx, \{Z1,00,%1,0}

with respect to T and xa29 on (Xa, Dx,) also holds.

Proof. For each T; € Dg over xy € Dy,, write Iz . for the image of the composi-
tion of homomorphisms Iz, < 7t(Ux,) — 7t(Ux,)*. Moreover, since the image of Iz, .
does not depend on the choices of 1 € D %, over rj, we may write I, for Iz, .p. The
structure of maximal prime-to-p quotient of 7i(Uy,) implies that 7t (Ux,)* is gener-
ated by {[zl}mepx , and that there exists a generator a,, of I,,, v1 € Dx,, such that

Hac1€DX =1. We put

le,oo — Z/(pt - 1)Za aml,oo = 17
]xl,o — Z/(pt - 1)Z’ Az 0 ’_)< Z b;l)—

z1€Dx, \{Z1,00,%1,0}
]9[31 — Z/(pt — 1)Z, Ay, —b;l, T € DX1 \ {1‘1700,23170}.

Then the homomorphisms of inertia subgroups defined above induce surjections

5 t_ 1,1 W%(UXJab ® Z/(pt - 1)Z — Z/(pt - 1)Z,

ab
—-1,1

Spr—11 i (Ux,) = i (Ux) " @ Z/ (0 = 1)Z "= Z/(p = 1)Z.
Note that ker(5 ¢ 1.1), ker(d,e—1,1) do not depend on the choices of the generators {ay, }z,epy, -
Let I, o YP(Iz,) € Edg™(Qp,) for some zy, € Dy, and z € Dy, the image
of xpy, of the surjection DXH2 — Dy, induced by fg,. Write [, for the image of the
composition of homomorphisms I, < Qu, — Q?}; Note that I,, does not depend on

the choices of zp, € ff)(z2). Since (p,p" — 1) =1 and H, C D;P_l(ﬂ(U)Q)), ¥ induces

an isomorphism ¢2> | @ 7} (Ux,)** ® Z/(p' — 1)Z = Qf, ® Z/(p' — 1)Z = Qo,. Note that
P implies that w“‘l{l induces a bijection

YRt Edg® (n1(Ux,)™ @ Z/(p' — 1)Z) = Edg™(Qip, ® Z/ (' — 1)),
and that ¢ab Ve, ®Z)(P" = 1)Z) = Lymo(ay) @ Z/(p" — 1)Z. Then the surjection 05, |,

the isomorphism ¢ 1, and the bijection wab °P imply the following homomorphlsms of

inertia subgroups:
1

T2,00

— Z/(pt - 1)Z, gy oo F 1,
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]332,0 — Z/(pt - 1)27 arz,o = ( Z bgcl) - 17

z1€Dx; \{*1,00,21,0}

I, — Z/(pt —1)Z, az, — =, 21 € Dx, \ {#1,00, 710},

T1?

where z, & VP (21), ag, o ¥(ag,), r1 € Dx,. Then the homomorphisms of inertia

subgroups defined above induce surjections
5;})—1,2 : Q??; ® Z/(pt - I)Z - Z/(Pt - 1)Z7
53? 1,2
Op12: Qmy, = Q, ®Z/(' = VZ —" Z/(p' = 1)Z.
We put Hy, o ker(d,t—1;), M, def
commutative diagram:

H gbt,l - ® F,. Then we obtain the following

¢|H§pt71 )
6pt71,1 H‘sptq,z
t P
7T1(UX1) QHQ
6pt—1,1J( 5pt—1,2J/
Let F, be an algebraic closure of the finite field F,. We fix an injection Z/(p* — 1)Z —

F; . Note that the [F)-vector spaces M;, M, admit natural actions of I3 I et

1,007 xHQ,oo
Y (I3, ..) which coincides with the action via the following character

(Sptfl,l

Xby it e = m(Ux) = Z/(0" = 1)Z = F,,

1)

pt—1,2

XI:CHQ,oovt : ‘[I'Hz,oo — QH2 —» Z/(pt — 1)Z — F;
We put

Mixr.. 4 &of {a€ My ®x, F, | o(a)=xr,, ilo)aforalloelz }

Tl,007 Z1,00°

def

M2[XIIH2,00¢] = {a € M, ®p, Fp | o(a) = XIIH%Wt(a)a for all o € LCHWO}

Note that dimg (Mi[xr,, .|) and dimg (Ma[xr,, _.]) are the first generalized Hasse-
, OO 2,0
Witt invariants (see 2.3.2) of the cyclic tame coverings of Uy, and Uy, corresponding to
Hs, € 7(Ux,) and the inverse image of Hs,  , of the natural surjection 7}(Ux,) —
Qu,, respectively.
Since the actions of I, , Iy, .

Y| my . induces a surjection
pt—1,1

on M; ® Fp, My ® Fp are semi-simple, respectively,

Milxs, o = Malxr,,, i)

On the other hand, the third and the final paragraphs of the proof of [T1, Lemma 3.3]
imply that the linear condition
Z brl r1 =1T10

21€Dx; \{Z1,00,%1,0}
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with respect to z1 and x1 on (X, Dx,) holds if and only if Ml[inlooyt] = 0. Thus,
we obtain Ms[xs,, ¢} = 0. Then the third and the final paragraphs of the proof of [T1,
Lemma 3.3] imply that the linear condition

Z bxl¢mp($1) = ¢mp($1,o) = T2,

z1€Dx, \{#1,00,21,0}

with respect to 29~ and x4 on (X, Dy,) holds. This completes the proof of the propo-
sition. ]

6. EXPLICIT CONSTRUCTIONS OF DIFFERENCES OF TAME FUNDAMENTAL GROUPS

In this section, we apply the results obtained in previous sections to construct explicitly
differences of tame fundamental groups of certain non-isomorphic curves. The main result
of the present section is Theorem 6.2.

6.1. Anabelian conjecture via finite quotients.

6.1.1. Notation and Settings. Let j € {1,2}, and let (X;, Dx;) be a smooth pointed
stable curve of type (gx,nx) over an algebraically closed field k; of characteristic p > 0,
71 (Ux,) the tame fundamental group of (X, Dy, ), and F,; the algebraic closure of F,, in
k;. Moreover, in the present section, we suppose the following conditions hold:

e (gx,nx) = (0,n) (note that we have n > 3);
def —=

[ ] kl = Fp,l'
Then, without loss of generality, we may assume
1 def def def
X1 =P, Dx, = {2100 = 00,710 = 0,211 = L,212,...,Z1n 2},

where z1,, € ky for all w € {2,...,n —2}.

Minimal models of curves. Let (X, Dx) be a smooth pointed stable curve over an alge-
braically closed field k of characteristic p > 0. We denote by £™ the minimal algebraically
closed subfield of k over which Ux can be defined. Thus, by considering the function
field of X, we obtain a smooth pointed stable curve (X™, Dxm) (i.e., a minimal model of
(X, Dx) in the sense of [T2, Definition 1.30 and Lemma 1.31]) such that Ux = Uxm Xgm k

as k-schemes, where Uxm L xm \ Dxm. Note that the tame fundamental group 7¢(Uxm)
of (X™, Dxm) is naturally isomorphic to the tame fundamental group 7§ (Ux) of (X, Dx).

def =

6.1.2. Since z1, € ky = F,; for all w € {2,...,n — 2}, there exists a positive number
reN
prime to p such that F,((.) C Fm is a subfield contains rth roots of z1 9, ..., 21 2, Where

(, denotes a fixed primitive rth root of unity in Fp,l. We put

t= [Fp(Gr) < Fpl.

For each z1, € {%12,...,21,-2}, we fix a rth root :171/7: in F,(¢.). Then we have the
following linear condition:

t—1
x},/’: = Zbl,qu:7 u € {2,...,TL— 2}7
v=0

where by, € F, for each u € {2,...,n —2} and each v € {0,...,t — 1}.
Let X; \ {71} = SpecF,1[t1], and let fp, : (XB,, Dx,,) — (X1, Dx,) be the Galois
tame covering over Fp,l with Galois group Z/rZ determined by the equation y] = g,
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(9B,;np) the type of (X, Dx, ), and By the open normal subgroup of 7j(Uy,) corre-
sponding to the tame covering fg,. Then fp, is totally ramified over {71 o = 00,219 = 0}
and is étale over Dy, \ {%10,210}. Note that Xp, = Pl oL and that the marked points

of (X, Dx;, ) over {Z100, 710} are {Tp, oo % ,Tpy, o X O} We put

def 1
Tp Ly = :131/7: € Dx, w€{2,...,n—2},

Tp 1 dﬁfg”eDXB,ve{O L t—1}

Note that we have 37%1,1 = 1. Thus, we obtain a linear condition

t—1 -
Tpyu = Z b1, (or equivalently, 0 = xp, 0 = g, 4 — (Z bl,uvxv31,1>)

v=0 —
with respect to zp, ~ and IBI’O on (Xp,, Dxy ) for each u € {2,...,n — 2}. Moreover,
let b}, € Zxo, u € {2,. — 2}, v € {0,...,s — 1}, be a natural number such that
Y s = 1,0 (mod p) and Zt 1 00lww =2, u€{2,...,n—2}.

Let
t/

be a positive natural number such that p! — 2 > MaXye(2,.. n— 2}{Zt ! 0 U1.uv} holds.

6.1.3. Now, we fix natural numbers

6, d, T {bo,b;} CN, ¢(T),

satisfying the following conditions hold
e / and d are prime numbers distinct from p and distinct from each other such that
¢ =1 (mod d). Note that all dth roots of unity are contained in F,.
o 7|by, (p' —1)|bo, (p*' — 1)|by, p|b1, and (£, boby) = (d, boby) = 1, where r, ¢, are the
natural numbers defined in 6.1.2
o Let e(Z)  0dboby. We put e(I) (FO n/De'(l;Q (F0n>) (see 2.1.4 for D(aJr2 (—)
and 3.1.1 for T'p,,). Then we have p|c(Z), e(T)|c (I) (p' —1)p't — 1, and ( -
1)|p'z — 1, and (p'* — 1)|¢(Z), where t7 satisfies p'z — 1 > C(e(Z )(2n)) (see 3.1.1
for C(—)).
Note that c(Z) depends only on the isomorphism class of Uxxm.
We put Dz(rt(Uy,)) = DyY(DS)(xt(Ux,))) and (Ya, Dy,) the smooth pointed stable

curve over ko of type (gy,ny) corresponding to Dé;)(W}(U X)) C 7(Ux,). Note that we

have gy > 2. If we put 7y = {b1}, e(Z) = (dby, and e(Z1) = #(Tgy ny /Dir 0 Ty my))

(see 3.1.1 for fgyyny), then we have p'7 — 1 > C(e(Z1)(2gy + 2ny)). This means that
¢,d, c(Z) satisfy the conditions introduced in 3.1.1.

6.1.4. We have the following result:

Theorem 6.1. We maintain the notation and the settings introduced in 6.1.1. Let ¢(Z)
be a natural number depending on Uxm constructed in 6.1.5 and W{(UX2)/D£(%)(7T{(UX2))
a finite group depending on UY, and UY,. Then

UXin =~ Uxén
as schemes if and only if

i (Ux,) /D), (74 (Ux,)) € 74 (Ux,) Ny (Ux,).
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Proof. The “only it” part of the theorem is trivial. We treat the“if” part of the theorem.

Denote by Ny & D) (i(Ux,)), Hy € Dr(ni(Ux,)), Qn, = wi(Usx,)/Dy (74 (Ux,)),

and Q g, o 78 (Ux,)/Dz(m4(Ux,)). Since Qn, € 7% (Ux,) N4 (Ux,), we take an arbitrary

. ¢ .
surjection ¢ : 7 (Ux,) — Qn, and put ¢ : 78(Ux,) - Qn, — Qu, the composition of

surjections, where (Qn, — g, is the natural surjection induced by Ny C H,. By Theorem
4.6, we obtain that (Qn,, Qm,) is a quasi-anabelian pair associated to 7} (Ux,). Then
induces a surjection

U - Edg™ (7 (Ux,)) — Edg™ (Qm,).

Denote by N, & ker(¢) C H; g ker(v) C 74 (Ux,), Qn, & 8 (Ux,)/N1, and Qp, o
4 (Ux,)/H;. Let Fy C 7i(Ux,) be an arbitrary open subgroup such that Hy C F,, and
that #(mt(Ux,)/F2) is prime to p. Denote by Qr, <= 7t(Ux,)/Foy Fi < ¢~ (Qg,) C
i (Ux,), and Qp, o 75 (Ux,)/Fi. Then ¢ and ¢ induce a commutative diagram

1 (Ux,) 1 (Ux,)
| al
Qw, —— Qm

l l

PF
QF1 - QFQ?

where ), Pr, are isomorphisms. Furthermore, the above commutative diagram implies
the following commutative diagram

Edg®(rt(Ux,)) —— Edg™(Qu,)

l H

—op

Edg®(Qm,) —— Edg®(Qm,)

! l

—op

P
Edgop(QF1> i> Edgop<QF2)a

where the vertical arrows are the natural surjections induced by 7§(Ux,) — Qr, and
Qn, — QF,, respectively, and EOp,ﬁ?}: denote the bijections induced by 1°P. Note that
we have the following bijections

Edg™ (m(Ux,))/m(Ux,) = Edg™(Qn,)/Qu, — Edg™(Qr)/Qr — Dx,,
Edgop(QHz)/QH2 — Edgop(QF2>/QF2 = DX2'

Then 1°° (or ", pp) induces a bijection ™ : Dx, — Dy, of sets of marked points.

Reconstructing field structures. Let F; = O; o D1 (71 (Ux;)). Note that the conditions

(p' —1)|bo and p|by (see 6.1.3) imply Hy C DSV (0y) = DY(DY) | (71(Ux,))). Let 25,00 <
VP (21,005 Tou dof PP (21,,), u € {0,...,n — 2}, and let Ty oo, T4, u € {0,...,n — 2}, be
the elements of Dg over 21,c0, T1,u, U € {0,...,n — 2}, respectively. We put

def | o def |4
I$H2,oo - ¢ p(ISﬁ,oo)? ]$H2,u - ¢ p(Iﬂ?Lu)v u € {07 RN [ 2}’
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and put
].Z’Ol,oo7 Ixohu,u 6 {0, e 777, — 2}’
T0g,007 Ixowt’u < {07 s, 2}3
the images of I3, _, Iz, ,,u € {0, ..., n—2} of the surjections Edg®” (7} (Ux,)) - Edg™(Qo,),

Edg® (7} (Ux,)) = Edg®(Qn,) — Edg®®(Qo,), respectively. In particular, we have

ﬁ%pl (Iﬂﬁol,o) = 13302,0)'
Let Fz,, ot (Iz,, ® (Q/Z)?) U {#z,,} (5.1.1). Then Fz,, can be identified with F,;
¥ and whose zero element is 30

7
By applying Proposition 5.2, the isomorphism ps, ;0,0 &f ﬁOllfzol , 1

as fields, whose multiplicative group is I, , ®z (Q/Z)

xol,o — [$02,0

induces a field isomorphism

fd

prl,()»IOQ,O : IF12701,011% — F

04,050

where T f Lo, o U {*3,,} admits a structure of field induced by F,; which is

moj’o,t zj
isomorphic to the subfield of F,; with cardinality p’. Thus, F,, ,: can be regarded as
the subfield F,(¢,) of F, ;. Moreover, we put

def fq
57“ = pxol,()axOQ,O (CT) < Fxo%o’t'

Then F,,, ,+ can be regarded as the subfield F,(&;) of F,o.

Constructing tame covering of (X2, Dx,) corresponding fp,. Let By C 7} (Ux,) be the
open normal subgroup introduced in 6.1.2 and B, the inverse image of ¢(B;) C Qpy, of
the natural surjection 7} (Ux,) — Qu,. Note that r = #(7t(Ux,)/B1) = #(7t(Ux,)/B2)
is prime to p (6.1.2). Let F; = B;. Write

f32 : (X327DX32) - (XQ?DXQ)

for the Galois tame covering over ko with Galois group Z/rZ corresponding to Bs.
Then the isomorphism pp and the bijection ﬁ%pl imply that fp, is totally ramified over
{200, 20} and is étale over Dx, \ {200, Z20}. Note that we have Xp, = IP’,ij, and that
the types of (Xg,, Dx,, ) and (Xp,, Dx,, ) are equal (i.e., (95,n5)).

The construction concerning ¢(Z) (6.1.3) implies N; € H; C B;. We put By, o

B;j/N; C Qn;, EH]. dof i/H; € Qp,. Then ¢ and v induce the following commutative

diagram
Bl fr— Bl
o8,
-
By, — B,
Vg,
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On the other hand, we see Edg®(B;) = {I ﬂ B; | I € Edg™(7{(Ux,))}, Edg™(Bpy,) =
{INBy, | I € Edg™(Qmu;)}. Then ¢°P and ¢ induce the following commutative diagram

op

Y _
Edg™(B,) —2+ Edg®™(By,)

l H

—op

_ P _
Edg®(By,) — Edg®(Bpy,).
Note that we have
Engp(Bl)/Bl :> EngP(EHI)/EHl :> DXB17
Engp(FHQ)/E}b :> DXBQ'
Then @;pl induces a bijection Egp : Dxp, = Dx,, of sets of marked points. We put

d f — def —
T Bs,00 - ngxBl, )7 TBsy,0 = ngxBQ,O)’

—mp

def —mp def
Tpyu = U, (TByu), w€{0,...,n =2}, a% 4 - Up, (¥5,1), v€{0,...,t =1},
where Tp, «, B, .0, T8, u; Th 1 € DXB1 are the marked points 1ntroduced in 6.1.2. Without
loss of generality, we may put z% , = 1.

Constructing a linear condition on (Xp,, Dx,,). By the constructions given in 6.1.2, we
have a linear condition

t—1
TBiu = bl,uval bl uv xBl bl uv<
v=0

with respect to xp, » and zp, o on (Xp,, ‘DXB1> for each u € {2, ...,n—2}. Note that the
condition concerning by implies Hy C D;j)i L(Bs). Then by replacing 7 (Ux;, ), Hj, O, Qu,,

— ¢By — —
and ¢ : 7t (Uy,) — Qu, in5.1.1 by B;, H;, Df;?_l(Bj), Bp,, and ¥p, : By — By, — B,
respectively, and by applying Proposition 5.3, the linear condition

t—1
_ E v
TByu = bl,uv$3271
v=0

with respect to ¥p,  and g, on (Xp,, Dx,, ) holds for each w € {2,...,n —2}. Since
& -ah, = T, 1, We obtain

t—1
§ v § §

TBou = bl,qu:B2 bl uv IB2 1 bl uv£
v=0

Then we have
tf

—_

(]

— T —
Tiu = 'TBl,u - (

t—1
b)) w20 =t = (S bws), we {2, -2}
v=0

S
Il
o

~—

Moreover, pxo 07I020<£T = (, implies

pidol 0,205, O(xl,u) = T2u-

Thus, we obtain

1 _ _ _
PFIO ot \ {951,00 =o00,r10=0,211 = 1,212,... 7$1,n72}

= P}pxo ot \ {Z2,00 = 00,720 = 0,721 = 1, Pmol 000 (L12)5 - - 7P§;d01 oz0y.0(TLn-2)}-
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Since

~, 1
UX1 = UXin — (]P)Fxol oot \ {xl,oo = 00,10 = 0;"[}1,1 = 17ZL'172, . 71’17”_2}) XF“fOl,O’t k’l,

~ 1 —
UX;‘ — (PFIOQ ot \ {1’1’00 = 00,13270 = 0, $2,1 = 171‘2,2, e ,I‘Lnfg}) XFZOQ it Fp’g,

we obtain Uym = Uxm as schemes. This completes the proof of the theorem. O
6.2. Main result.

6.2.1. Now, we can state our main result of the present paper:

Theorem 6.2. Let j € {1,2}, and let (X, Dx;) be a smooth pointed stable curve of type
(9x,,nx,) over an algebraically closed field k; of characteristic p > 0 and 7 (Ux,) the
tame fundamental group of (Xj, Dx,). Then the following statements hold (see 2.1.4 for
Dé:)(_»:

(i) Suppose 2gx, + nx, # 29x, + nx,. Let £’ be a prime number distinct from p. Then
we have

Tt (Ux,) /Dy (4 (Ux,)) ¢ 74(Ux,), mt(Ux,)/ Dy (4 (Ux,)) € 74(Usx,).

(ii) Suppose m o 2g9x,+nx, = 29x,+nx,. Let c be a positive natural number satisfying
p(p' — 1)|c and p* —1 > C(m) (see 3.1.1 for C(m)). If gx, + nx, < gx, + nx,, we have

WE(UX2)/D£2)(7T§(UX2)) g 7T21<UX1)’ 7T11:(UX2)/D£2)<7TE(UX2)) S WZ(UXz)'
If gx, + nx, > gx, + nx,, we have
W;(UXl)/D£2) (7T113<UX1>> S WELX(UXJ? W%(le)/ng (WE(le))) g WZ(UX2)'

(i11) Suppose that 2gx, +nx, = 2gx, +nx, and gx, +nx, = gx, +nx, (or equivalently,
(9x1,mx,) = (9x5:nxz) ), that Uxp % Uxp as schemes (see 6.1.1 for Uxm ), that ky* (6.1.1)
is an algebraic closure of the finite field F,,, and that gx, = 0. Let ¢(Z) be a natural number
depending on Uxm constructed in 6.1.5. Then we have

4 (Ux,) /DY (73 (Uxs,)) € 74(Ux, ), 74 (Ux,) /Dy (74 (Ux,)) € 74 (Ux,).

Proof. (i) follows immediately from the structures of the maximal prime-to-p quotients of
tame fundamental groups, and (iii) follows immediately from Theorem 6.1. We treat (ii).

def

Suppose gx, +nx, < gx, +nx,. We put G; < 7t(Uy,)/DE (w4(Ux,)).

Suppose Gy € 1Y% (Ux,). Let ¢ : mj(Ux,) — G2 be an arbitrary surjection. Then we
see immediately that the surjection ¢ factors through Gi. This means that ¢ induces a
surjection ¢ : Gy — G5. By [Y5, Theorem 5.4] and its proof (in particular, line 4, page
82 of [Y5]), we have (see 2.3.3 for &™)

’Ygfx =9gx, +Nx, — 2> gx, T Nx, — 2= ,yg’l;x'

This contradicts the assumption gx, +nx, < gx, + nx,. Then we have Gy & 7% (Uy, ).

Similar arguments to the arguments given above imply (ii) holds if gx, +nx, > gx,+nx,-
We complete the proof of (ii). O
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6.2.2. Theorem 6.2 implies the following anabelian result:

Theorem 6.3. Let j € {1,2}, and let (X, Dx;) be a smooth pointed stable curve of type
(9x,,nx,) over an algebraically closed field k; of characteristic p > 0 and 7 (Ux,) the
tame fundamental group of (X;, Dx;). Suppose that ki* (6.1.1) is an algebraic closure of
the finite field ¥,, and that gx, = 0. Let ¢(Z) be a natural number depending on Uxm

constructed in 6.1.3 and (see 2.1.4 for DE:)(—))

)
& () (Ux,)/ D2 (x4 (Ux,), 7(Uny) /D (4 (Ux,))}

a set of finite groups depending on Uxm and Uxm (see 6.1.1 for UX;_n). Then we have that
Uxp = Uxyp
as schemes if and only if
6 C 7]-:;4<UX1) N WZ(UXQ)'
Moreover, suppose further gx, = gx, =0 and nx, = nx,. Then we have that
UX{“ =~ UX;‘
as schemes if and only if
6
T (Ux,)/ Dy (7 (Ux,)) € 4 (Ux,) N (Ux,).

Proof. The “only if” part of the theorem is trivial. We only treat the “if” part of the
theorem. Note that the construction of ¢(Z) (see 6.1.3) implies that there exists a prime
number ¢'|c(Z) distinct from p, and that ¢(Z) satisfies the conditions concerning the
natural number ¢ mentioned in Theorem 6.2 (ii). We put

/ def
&' = {7} (Ux,)/ Dy (w4 (Ux,)), wi(Ux,) /DGy (i (Ux,)),

™ (Ux,)/ Dy (7 (Ux,). i (Ux,)/ Dy (mi (Ux,))}
Moreover, & C 7%, (Ux,) N 74 (Uy,) implies
&' C 7% (Ux,) N4 (Ux,)
since there are natural surjections

™ (Ux,)/ D\, (x4 (Ux,)) — w4 (U, )/ Dy (i (Ux,)),

4 (Ux,) /Dy, (74 (Ux,)) = 74 (Ux,) /DSy, (7 (Uxs,)) — 74 (Usx,) /Dy (x4 (Ux, ).

Then by Theorem 6.2 (i), (ii), we see immediately (gx,,nx,) = (9x,,nx,). Thus, the
theorem follows from Theorem 6.2 (iii).

Furthermore, the “moreover” part of the theorem is Theorem 6.1. This completes the
proof of the theorem. 0

Remark 6.3.1. Moreover, Theorem 6.3 is the best form in the following sense:

Theorem 6.3 does not hold if we replace & mentioned in the statement of
Theorem 6.3 by a set of finite groups depending only on one of the curves
Uxm,Uxp.

Namely, the following statement does not hold:

Suppose (0,n) o (0,nx,) = (0,nx,). Then there exists a finite group

G' € 7% (Ux,) such that, for an arbitrary smooth pointed stable curve
(X1, Dx,) of type (0,n), Uxm = Uxyp if and only if G" € 7%y (Ux, )Ny (Uxs,).
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In fact, [Y6, Theorem 3.6] (note that the admissible fundamental group of a smooth
pointed stable curve coincides with its tame fundamental group) implies that, for any
finite group G’ € 74 (Uy,), there exists a smooth pointed stable curve (X, Dx,) of type
(0,n) such that G' € 7% (Ux,) N 7Y% (Ux,) holds.

In particular, Theorem 6.3 implies directly the following “finite version” of Grothendieck’s
anabelian conjecture which is a strong generalization of the main results of [T1], [T3].

Corollary 6.4. Let j € {1,2}, and let (X}, Dx,) be a smooth pointed stable curve of type
(9x,,nx,) over an algebraically closed field k; of characteristic p > 0 and 7{(Ux,) the
tame fundamental group of (X;, Dx;). Suppose that ki* (6.1.1) is an algebraic closure of
the finite field ¥,, and that gx, = 0. Let ¢(Z) be a natural number depending on Uxm

constructed in 6.1.3 and (see 2.1.4 for Dg:;(—)). Then we have that
Uxp = Uxp
as schemes if and only if

w4 (Ux, )/ DYy (74 (Ux, ) 2w (Ux,) /DG, (i (U, ).

Proof. Since there is a natural surjection 7} (Uy, )/Dg?%) (i (Ux,)) — 7t (UXI)/DE?%) (7} (Ux,)),

the condition 7t (U, ) /DY), (w4 (Ux,)) 2 74 (Ux,)/ Dy, (7 (Ux,)) implies that
{mi(Ux,)/ Dy (73 (Ux,), 74 (Ux,)/ DYy (w5 (Ux,))} € 74y (Ux,) Ny (Ux,).

Then the corollary follows from Theorem 6.3. U

Remark 6.4.1. Note that the condition & C 7t (Ux,) N 7% (Ux,) mentioned in Theorem
6.3 is much weaker than the condition ﬂ(UXl)/Dg% (7} (Uy,)) & w{(UXQ)/Dg%(WE(UXQ))
mentioned in Corollary 6.4, and that Theorem 6.3 cannot be deduced from Corollary 6.4.
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