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ABSTRACT. In the present paper, we study some new anabelian phenomena of curves over
algebraically closed fields of characteristic p > 0, and formulate two new conjectures concerning
open continuous homomorphisms of admissible fundamental groups that are motivated by the
theory of moduli spaces of fundamental groups. Moreover, we prove the conjectures hold for
genus 0 under certain assumptions.
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1. INTRODUCTION

1.1. Anabelian geometry. In the 1980s, A. Grothendieck suggested a theory of arithmetic
geometry called anabelian geometry ([G]), roughly speaking, which focuses on the following
question: Can we reconstruct the geometric information of a variety group-theoretically from
various versions of its algebraic fundamental group? The varieties which can be completely
determined by their fundamental groups are called “anabelian varieties” by Grothendieck, and
to classify the anabelian varieties in all dimensions over all fields is called “anabelian dream”
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of him. In the particular case of dimension 1, he conjectured that all smooth pointed stable
curves, or hyperbolic curves (defined over certain fields) are anabelian varieties.

1.1.1. Let p be a prime number and #(—) the cardinality of (—). Let
X*=(X,Dy)

be a pointed stable curve of type (gx,nx) over a field k of characteristic char(k), where X
denotes the underlying curve which is a semi-stable curve over k, Dy denotes the (finite) set of

marked points satisfying [K, Definition 1.1 (iv)], gx denotes the genus of X, and nx o #(Dx).
In the present introduction, “curves” means pointed stable curves unless indicated otherwise.

1.1.2. Grothendieck’s anabelian philosophy. Suppose that X*® is smooth over k. When £k is
an “arithmetic” field (e.g. a number field, a p-adic field, a finite field, etc.), Grothendieck’s
anabelian conjectures for curves (or the Grothendieck conjectures for short), roughly speaking,
are based on the following anabelian philosophy (see [G, p289 (6)] for a precise statement):

Hom-version: The sets of dominant morphisms of smooth pointed stable curves
can be determined group-theoretically from the sets of open continuous homo-
morphisms of their algebraic fundamental groups.

In particular, we have the following two versions:

Isom-version: The sets of isomorphisms of smooth pointed stable curves can be
determined group-theoretically from the sets of isomorphisms of their algebraic
fundamental groups.

Weak Isom-version: The isomorphism class of X*® can be determined group-
theoretically from the isomorphism class of its algebraic fundamental group.

Grothendieck’s anabelian philosophy tells us, over arithmetic fields, what geometric behavior
of curves should be anabelian.

1.1.3. Anabelian geometry of curves over arithemetic fields. Grothendieck’s anabelian conjec-
tures over arithmetic fields have been proven in many cases (e.g. see [P], [MNT], [T1] for
surveys). All the proofs of the Grothendieck conjectures for curves over arithmetic fields men-
tioned above require the use of the non-trivial outer Galois representations induced by the
fundamental exact sequences of fundamental groups.

1.1.4. Beyond the arithmetical action. Next, we consider the case where X* is an arbitrary
pointed stable curve, and suppose that k is an algebraically closed field. Let 739™m(X*®) be
the admissible fundamental group of X*® (see 2.2.2). Note that if X* is smooth over k, then
78dm(X'*) is naturally isomorphic to the tame fundamental group 7t(X®). When char(k) = 0,
since the isomorphism class of 78™(X*®) depends only on the type (gx,nx), the anabelian
geometry of curves does not exist in this situation. On the other hand, if char(k) = p, the
situation is quite different from that in characteristic 0. The admissible fundamental group
modm(X*) is very mysterious and its structure is no longer known. In the remainder of the
introduction, we assume that k is an algebraically closed field of characteristic p.

After M. Raynaud and D. Harbater proved Abhyankar’s conjecture, Harbater asked whether
or not the geometric information of a curve over k£ can be carried out from its geometric funda-
mental groups ([Hal], [Ha2]). Since the late 1990s, based on the philosophy concerning “Weak
Isom-version” explained in 1.1.2, some results of Raynaud ([R]), F. Pop-M. Saidi ([PS]), A.
Tamagawa ([T2], [T4], [T5]), and the author of the present paper ([Y1], [Y2]) showed evidences
for very strong anabelian phenomena for curves over algebraically closed fields of characteristic
p (see [T3] for more about this conjectural world based on Grothendieck’s anabelian philoso-
phy mentioned in 1.1.2). In this situation, the arithmetic fundamental group coincides with the
geometric fundamental group, thus there is a total absence of a Galois action of the base field.
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This kind of anabelian phenomenon is the reason why we do not have an explicit description
of the geometric fundamental group of any pointed stable curve in characteristic p.

The anabelian geometry of curves over algebraically closed fields of characteristic p is very
difficult. At present, in this situation, the Grothendieck conjecture was proved only in the case
of weak Isom-version under the assumption that curves are defined over Fp of type (0,nx), and
that curves are defined over F, of type (1,1) if p # 2 ([S, Theorem 1.2], [T4, Theorem 0.2],
[T6], [Y1, Theorem 1.2 and Theorem 1.3], [Y4, Theorem 3.8]).

Since Tamagawa discovered that there also exists the anabelian geometry for certain smooth
pointed stable curves over algebraically closed fields of characteristic p, 28 years have passed.
However, the “Weak Isom-version” is still the only anabelian phenomenon that we know in this
situation, and we cannot even imagine what phenomena arose from curves and their funda-
mental groups should be anabelian until the author of the present paper observed a new kind
anabelian phenomenon explained below.

1.2. Motivation.

1.2.1. A new kind of anabelian phenomenon. When we try to formulate a “Hom-version” con-
jecture for curves over algebraically closed fields of characteristic p based on Grothendieck’s
anabelian philosophy mentioned in 1.1.2 (i.e. an analogue of the conjecture posed in [G, p289
(6)]), we see that the set of dominant morphisms between two pointed stable curves are possibly
empty, and that the set of open continuous homomorphisms of their admissible fundamental
groups are not empty in general (e.g. specialization homomorphisms of a non-isotrivial family
of pointed stable curves). Then the relation of two pointed stable curves cannot be determined
by the set of open continuous homomorphisms of their admissible fundamental groups if we
only consider anabelian geometry in the sense of “Hom-version” mentioned in 1.1.2. In fact,
the existence of specialization homomorphisms is the reason that Tamagawa cannot formulate
a “Hom-version” conjecture for tame fundamental groups of smooth pointed stable curves in
general ([T3, Remark 1.34]).

On the other hand, the author observed a new phenomenon that has never been seen be-
fore: It is possible that the sets of deformations of a smooth pointed stable curve can be
reconstructed group-theoretically from open continuous homomorphisms of their admissible
fundamental groups. This observation implies a new kind of anabelian phenomenon that can-
not be explained by using Grothendieck’s original anabelian philosophy mentioned in 1.1.2: The
topological structures of moduli spaces of curves in positive characteristic are encoded in the
sets of open continuous homomorphisms of geometric fundamental groups of curves in positive
characteristic.

This new kind of anabelian phenomenon can be precisely captured by using the so-called
moduli spaces of admissible fundamental groups and the homeomorphism conjecture introduced
in [Y7], [Y8]. Let us briefly explain them in 1.2.2.

1.2.2. Moduli spaces of admissible fundamental groups and the homeomorphism conjecture. Let
ﬂm be the moduli stack over Z parameterizing pointed stable curves of type (g, n) and Mg,n
the coarse moduli space of Mg,n,z xzﬁp. In [Y7, Section 3.2], the author introduced a topological
space ﬁg,n in a group-theoretical way, whose underlying set consists of the isomorphism classes
(as profinite groups) of admissible fundamental groups of curves of type (g,n), and whose
topology is determined by the sets of finite quotients of admissible fundamental groups of
curves of type (g,n). We shall call ﬁg,n the moduli space of admissible fundamental groups of
type (g, n). - _

There exists a natural map (as sets) M,,, — II,, defined by ¢ — [II,], where 1I, denotes the
admissible fundamental group of the curve corresponding to a geometric point over ¢, and [I1]
denotes the isomorphism class of II,. By introducing the so-called Frobenius equivalence ~ .
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on M, (see [Y4, Definition 3.4]), we have a continuous surjective map ([Y7, Theorem 3.6])

adm ., g7 def 7= T
radm . Myn = Myn/ ~pe— g0, [q — [I1],

g;n

where [g] denotes the equivalence class of ¢, and ,‘)—ﬁgm is the quotient topological space whose
topology is induced by the Zariski topology of Mg,n. Moreover, we posed the so-called homeo-
morphism conjecture ([Y7, Section 3.3]) which says that 730" is a homeomorphism.

The homeomorphism conjecture generalizes all the conjectures appeared in the theory of ad-
missible (or tame) anabelian geometry of curves over algebraically closed fields of characteristic
p, and means that the moduli spaces of curves in positive characteristic can be reconstructed
group-theoretically as topological spaces from sets of open continuous homomorphisms of ad-
missible fundamental groups of pointed stable curves in positive characteristic. Moreover, it
sheds some new light on the theory of the anabelian geometry of curves over algebraically closed

fields of characteristic p based on the following new anabelian philosophy:

The anabelian properties of pointed stable curves over algebraically closed fields

of characteristic p are equivalent to the topological properties of the topological

space 11, .
The above philosophy supplies a point of view to see what anabelian phenomena that we can
reasonably expect for pointed stable curves over algebraically closed fields of characteristic p.

1.2.3. Towards the homeomorphism conjecture for higher dimensional moduli spaces. The home-
omorphism conjecture has been proved by the author in the case where dim(Mg,n) <1 (eg.
see [Y7, Theorem 6.7] for the case of g = 0). The main goal of the anabelian geometry of curves
over algebraically closed fields of characteristic p is to prove the homeomorphism conjecture for
higher dimensional moduli spaces. The author believes that it can be proved by the following

steps:

e Step 1 (closed points): prove the homeomorphism conjecture for closed points of ﬁg’n.

e Step 2 (non-closed points corresponding to smooth curves): prove the homeomorphism

conjecture for non-closed points of M, , def g/ ~feC ﬁg,n by using Step 1.

e Step 3 (from smooth to singular): prove the homeomorphism conjecture by using Step
2.

When g = 0, Step 1 has been completed by the author ([Y7, Theorem 6.7]). The Step 2 is
equivalent to the weak Hom-version conjecture and the pointed collection conjecture formulated
in [HYZ, Section 2].

In the present paper, we treat Step 3 and give a precise formulation via the group-theoretical
specialization conjecture explained below. On the other hand, in the remainder of the introduc-
tion, we also treat the case of maximal pro-solvable quotients of admissible fundamental groups
(or pro-solvable admissible fundamental groups for short). Note that the pro-solvable version
is stronger than the original version in general since the pro-solvable admissible fundamental
groups can be reconstructed group-theoretically from admissible fundamental groups.

1.3. Various specializations via fundamental groups.

1.3.1. Let X?, i € {1,2}, be an arbitrary pointed stable curve of type (gx,nx) over k; of char-
acteristic p, I'xs the dual semi-graph of X (2.2.1), and IIxs either the admissible fundamental
group of X? or the maximal pro-solvable quotient of the admissible fundamental group of X?*.
We put Homgg(ﬂ xs, xg) the set of open continuous homomorphisms between I1xe and Ilxs;,
and let ¢ € Homg‘;(ﬂ xs,xg) be an arbitrary open continuous homomorphism. Note that ¢ is
a surjection since the types of X7 and X3 are equal (see [Y7, Lemma 4.3]).

To complete Step 3 mentioned in 1.2.3 (i.e. to prove the homeomorphism conjecture for
arbitrary pointed stable curves by using the homeomorphism conjecture for smooth curves),
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we need to establish a precise group-theoretical correspondence via ¢ between various “pointed
stable sub-curves” (2.2.3, 2.2.4, 2.2.5) of X7 and X3 (e.g. pointed stable curves associated to
irreducible components of X? and X3). Namely, we need the following:

(i) Give a group-theoretical description of various pointed stable sub-curves of
X? via the closed subgroups of ILys.

(ii) Establish a correspondence between the closed subgroups of Ilxs and Ilxs
appeared in (i) via ¢.

1.3.2. Combinatorial data, topological data, and geometric data. For (i) mentioned above, we
introduce the following sets

Com(I'xs), Typ(X;), Geo(Ilxs)

which we call the combinatorial data associated to I'ys, the topological data associated to X
and the geometric data associated to Ilye, respectively (see Section 2.3 and Definition 2.5 for
precise definitions). Roughly speaking, Com(I'xs) consists of various sub-semi-graphs of I'xs
(see 2.1.2) which encodes the gluing data of various pointed stable sub-curves of X, Typ(X?)
consists of the topological types of various pointed stable sub-curves of X?, and Geo(Ilxs)
consists of the closed subgroups of Ilys which are isomorphic to the admissible fundamental
groups (or pro-solvable admissible fundamental groups) of various pointed stable sub-curves of
X?.

Some special cases of the above data have been studied by Tamagawa when X? is smooth over
k; (T3], [T4]) and by the author when X! is an arbitrary pointed stable curve ([Y1], [Y2]).
Moreover, in [Y2], the author proved that the dual semi-graph of a pointed stable curve in
positive characteristic can be reconstructed group-theoretically from its pro-solvable admissible
fundamental groups. As a corollary, we have that Com(I"xs), Typ(X}) can be determined by
Geo(Ilxs), and that Geo(ILys) can be reconstructed group-theoretically from Ilye (see [Y2,
Theorem 0.3] or Theorem 2.6 and Remark 2.6.1 of the present paper for explanations).

1.3.3. Specializations via fundamental groups. For (ii) mentioned in 1.3.1 (this is the main topic
of the present paper), we have the following conjectures (see 3.1.3 and Proposition 3.9 for more
precise formulations and some other equivalent formulations):

Topological Specialization Conjecture . Suppose that Hom® (Ilxs,Ilxs) is not empty.
Then X3 is a degeneration (or reduction) of X as “topological spaces”.

Group-theoretical Specialization Conjecture . Let ¢ € Hom}(Ilxs,xs) be an arbitrary
open continuous homomorphism. Then we have

gb(Geo(HXl- )) g Geo(Hng).

Proposition 3.6 of the present paper says that the topological specialization conjecture can be
deduced from the group-theoretical specialization conjecture.

New anabelian phenomena. Let us explain the anabelian phenomena concerning the above
conjectures. Let q1,qa € M, be arbitrary points such that g, is contained in V(g1 ), where V (¢;)
denotes the topological closure of ¢; in M gn- Then there exist a complete discrete valuation
ring R and a morphism Spec R — M,,, — M,, such that the image of the morphism is
{q1,¢q2}. Let 77 and 5 be a geometric generic point and a geometric closed point over the generic
point and the closed point of Spec R, respectively. Write A'® for the pointed stable curve over

R determined by the morphism Spec R — Mgn, X, for the generic fiber, X7 for the special

fiber, X7 for Xidéf Xy %, 7, and X7 for X3 déf/\,” s
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By the general theories of log geometry and admissible fundamental groups, we obtain a spe-
cialization surjective homomorphism of admissible fundamental groups (=an open continuous
homomorphism of admissible fundamental groups arising from scheme theory, see [SGA1], [V])

P Mg, — Ty,
Since &7 is a reduction of X7, the deformation theory of admissible coverings of X* implies
that

sp%dm(Geo(HX. )) € Geo(Ilxs ),

where Geo(Ily, ), @ € {1,2}, denotes the geometric data associated to Iy, . For instance,
let II; € Geo(HX(;l) be a closed subgroup of II Xz, associated to the pointed stable sub-curve

)N( * determined by an irreducible component X,, of X7 = X, (see 2.2.4 for X;l). Then

sp‘}%dm(ﬂl) is a closed subgroup of II Xz, associated to the pointed stable sub-curve determined

by the degeneration (or reduction) of X,, in Xz = X,,. This means that we have the following
geometric phenomena:

e The combinatorial data Com(I'y, ) and the topological data Typ(Xy,) can be controlled
by the combinatorial data Com(I'x, ) and the topological data Typ(Xg ) via the “de-
Jormation” X* of Xg over R arising from scheme theory.

e The geometric data Geo(Il Xs, ) of X2 can be controlled by the geometric data Geo(II X(;l)

adm

of X7 via an open contlnuous homomorphlsm sp ™ of admissible fundamental groups

arzsmg from scheme theory.

On the other hand, the topological specialization conjecture and the group-theoretical spe-
cialization conjecture mean that there should exist the following anabelian phenomena:

e The combinatorial data Com(I'y, ) and the topological data Typ(Xy,) can be controlled
by the combinatorial data Com(I'x, ) and the topological data Typ(Xy,) via the “de-
formation” HomOP(HX. HXJQ) explained in 1.2.1 which is arose from group theory.

e The geometric data Geo(H xg,) of X§, can be controlled by the geometric data Geo(Ilx, )
of X7 via an arbitrary open continuous homomorphism ¢ of admissible fundamental
groups which is arose from group theory.

1.3.4. The topological specialization conjecture and the group-theoretical specialization con-
jecture are very difficult. They are highly non-trivial even in the simplest case where X?, i €
{1, 2}, is smooth over k;, Hom® (ILxs, [Txs) = Isompg (ILys, Ilxs) (this condition is equivalent to
Isompy (Tlxs, Ixy) # 0), and ¢ € Isompg(I1xe, [xg) is an isomorphism, where Isomypg (Tlxs, Ixy)
denotes the set of isomorphisms of admissible fundamental groups (or the maximal pro-solvable
quotients of admissible fundamental groups). In this special case, the above conjectures were
proved by Tamagawa which are the main results of [T4] (see [T4, Theorem 0.1 and Theorem
5.2]).

If we assume that Hom(% (Ilxs, [Tys) = Isompg(Tlxe, Ilys), and that ¢ € Isomg,(Ixs, Ilx;)
is an isomorphism, then the group-theoretical specialization conjecture is equivalent to the
so-called “combinatorial Grothendieck conjecture” which is the main conjecture in the theory
of combinatorial anabelian geometry developed by Y. Hoshi and S. Mochizuki (e.g. [HM1],
[HM2], [M2]) in characteristic 0, and by the author in characteristic p ([Y1], [Y2]). Thus, the
group-theoretical specialization conjecture can be regarded as the ultimate generalization of the
combinatorial Grothendieck conjecture in characteristic p.

On the other hand, the combinatorial Grothendieck conjecture is an “Isom-version” problem,
and the group-theoretical specialization conjecture is a “Hom-version” problem. Similar to
other theory in anabelian geometry, Hom-version problems are so much harder than the Isom-
version problems.
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1.3.5. Main results. Now, we give the main results of the present paper. For the topological
specialization conjecture, we have the following result (see Theorem 4.9 for a more precise
statement):

Theorem 1.1. The topological specialization conjecture holds when gx = 0.

The group-theoretical specialization conjecture are so much harder than the topological spe-
cialization conjecture since we need to treat all open subgroups of admissible fundamental
groups. On the other hand, we may ask the following question:

Problem 1.2. Does the topological specialization conjecture imply the group-theoretical special-
1zation conjecture?

By applying Theorem 1.1, we have the following result (see Theorem 5.8 for a more precise
statement):

Theorem 1.3. Suppose that the topological specialization conjecture holds for arbitrary types.
Then the group-theoretical specialization conjecture holds when gx = 0.

1.4. Structure of the present paper. The present paper is organized as follows.

In Section 2, we recall some notation concerning semi-graphs, pointed stable curves, and
admissible fundamental groups. Moreover, we introduce combinatorial data, topological data,
and geometric data.

In Section 3, we introduce the topological and group-theoretical specialization homomor-
phisms of admissible fundamental groups, and formulate the topological specialization conjec-
ture and the group-theoretical specialization conjecture. Moreover, we prove some properties
concerning topological and group-theoretical specialization homomorphisms.

In Section 4, we prove Theorem 1.1.

In Section 5, we prove Theorem 1.3.

1.5. Acknowledgments. The main results of the present paper were obtained in the summer
of 2021. The author would like to thank the referee very much for understanding my research,
for carefully reading the manuscript, and for giving me many comments which substantially
helped improving the quality of the paper. Special thanks are due for identifying a gap in the
construction of the boundary sub-semi-graphs in Section 5. This work was supported by JSPS
KAKENHI Grant Number 20K14283, and by the Research Institute for Mathematical Sciences
(RIMS), an International Joint Usage/Research Center located in Kyoto University.

2. GEOMETRIC DATA ASSOCIATED TO POINTED STABLE CURVES

In this section, we recall some notation concerning pointed stable curves and their admis-
sible fundamental groups. Moreover, we introduce the so-called geometric data associated to
admissible fundamental groups of pointed stable curves.

2.1. Semi-graphs. In this subsection, we recall some notation concerning semi-graphs ([MI,
Section 1]).

2.1.1. (a) Let

G = (0(G), e(G), {CC : e = v(G) U {0(G)}}eeec))

be a semi-graph. Here, v(G), e(G), and {(F}ccc(q) denote the set of vertices of G, the set of
edges of G, and the set of coincidence maps of G, respectively. Note that {v(G)} is a set with
exactly one element.

Let e € e(G) be an edge. Then e % {bl, 52} is a set of cardinality 2 for each e € e(G). The

er e

set e(G) consists of closed edges and open edges. If e is a closed edge, then the coincidence
map (€ is a map from e to the set of vertices to which e abuts. If e is an open edge, then the
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coincidence map (€ is a map from e to the set which consists of the unique vertex to which e
abuts and the set {v(G)} (i.e. either (& (b!) or ¢&(b?) is not contained in v(G)).

(b) We shall write e°P(G) C e(G) for the set of open edges of G and e(G) C ¢(G) for the
set of closed edges of G. Note that we have

e(G) = eP(G) U e?(G).

Moreover, we denote by €P’(G) C e(G) the subset of closed edges such that #(¢%(e)) = 1
(i.e. a closed edge which abuts to a unique vertex of G), where “Ip” means “loop”. For each
e € e(G), we denote by v%(e) C v(G) the set of vertices of G to which e abuts. For each
v € v(G), we denote by €% (v) C ¢(G) the set of edges of G to which v is abutted.

(c) We shall say G connected if G is connected as a topological space whose topology is

induced by the topology of R?, where R denotes the real number field. We denote by rg o

dimg(H' (G, Q)) the Betti number of G, where Q denotes the rational number field. Moreover,
we shall call G a tree if rqg = 0.

Let v € v(G). We shall say that G is 2-connected at v if G\ {v} is either empty or connected.
Moreover, we shall say that G is 2-connected if G is 2-connected at each v € v(QG).

(d) We define an one-point compactification G* of G as follows: if e?(G) = ), we put
G°P' = G; otherwise, the set of vertices of G' is the disjoint union v(G") o v(G) U{vs},
the set of closed edges of GP* is el (GeP!) o eP(G) U e(G), the set of open edges of G* is
empty, and every edge e € eP(G) C e?(GP') connects v, with the vertex that is abutted by
e.

Remark. The motivations of the above notation concerning semi-graphs are the dual semi-
graphs of pointed stable curves (see 2.2.1 below).

Example 2.1. Let us give an example of semi-graph to explain the above notation. We use
the notation “e” and “o with a line segment” to denote a vertex and an open edge, respectively.
Let G be a semi-graph as follows:
€1

G: 63 V2 ey

Then we see v(G) = {v1, 02}, e (G) = {e1, €2, €3}, €P(G) = {es}, (S(e1) = {v1,v2}, (S (e2) =
{or,v2}, (S(es) = {vi}, and (G(es) = {v2,{v(G)}}. Moreover, we have e®(G) = {es},
vG(er) = {or, v}, v%(e2) = {vr,v2}, v(es) = {vi}, v(es) = {v2}, €%(v1) = {e1, €2, €3},
and € (vy) = {eq, €2, €4}

Moreover, G°' is the following:

Giept. es ‘ Vo Voo

2.1.2. (a) Let G’ be a connected semi-graph. We shall say G’ a sub-semi-graph of G if either
G’ = {e} for some e € ¢(G) or the following conditions hold:
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(i) v(G') # 0 and v(G') C v(G).
(i) e(G') C e (QG) is the subset of closed edges such that v%(e) C v(G’).
(iii) eP(G') C (eN(G) U e°P(G)) \ e?(G’) is the subset of edges such that

#(v%(e) Nv(G)) = 1.

Note that the definition of G’ implies that G’ can be completely determined by v(G’) if v(G’) #
0.

The condition (ii) implies that, if e € €P(G) is a loop and v (e) C v(G'), then e € e?(G’) C
e(G). If G' = {e} for some e € e¢(G), we will use e to denote G’. Moreover, there exists
a natural injection G’ — G, and G’ can be regarded as a topological subspace of G via this
injection.

(b) Suppose that G’ is a sub-semi-graph of G such that v(G’) # 0. Let L C ¢?(G’) be a
subset of closed edges of G’ such that G’ \ L (i.e. removing L from G’) is connected. For any

e ¥ (b v € L, we put e & (b}, b2}, i € {1,2}, and shall call e’ the i-edge associated to e.

e’ Ve et

We shall say that G, is the semi- gmph associated to G’ and L if the following conditions hold:

(i) 0(GL) = o(G).

(i) e*P(G) e (G U{e!, e }eer, (24 (e) = {¢F' (1), {v(Gh)} }if e = {bL, 02} €
eP(G') and (G (b!) € U(G ) CSr(e) (S (0)), {v(G))}} if € is the l-edge
associated to e € L, and Ce2 (e?) = o {CS"(0?), {v(G")}} if €2 is the 2-edge asso-
ciated to e € L. ,

(iii) e(G7) = e(G') \ L, and (7 (e) = (F(e) if e € (G \ L

Then we have a natural map of semi-graphs

def

5(G’,L) : G/L — G/

which is defined as follows:

e a n)(v) = for v € v(G).
e S ny(e) =efor e € e(Gh)\ {e', e }ecr.
e da.p)(e') =e, i€ {1,2}, for i-edge associated to e € L.

Moreover, we put g, : G, (G " G’ — G the composition of maps of semi-graphs. Note that
5G/L|G/L\{617€2}56L Is an injection.

Remark. The motivations of the above notation concerning semi-graphs are the dual semi-
graphs of pointed stable sub-curves (see 2.2.3, 2.2.4, and 2.2.5 below).

Example 2.2. We give some examples of semi-graphs to explain the above notation. We use

13 b

the notation “e” and “o” to denote a vertex and an open edge, respectively.
Let G be a semi-graph, G’ the sub-semi-graph of G such that v(G’) = {v;}, and L &f {e1} C
e (G’) a subset of edges of G’ and {el, €2} the set of 1-edge and 2-edge associated to e;. Then
we have the following:
€2

G: 61 V2 ey
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€2

G’ €1 U1
€3
6% €9

G : U1
6% €3

2.2. Pointed stable curves and admissible fundamental groups. In this subsection, we
recall some notation concerning pointed stable curves and their admissible fundamental groups.

2.2.1. Let p be a prime number, and let
X* = (X, Dy)

be a pointed stable curve over an algebraically closed field k of characteristic p, where X
denotes the underlying projective semi-stable curve and Dx denotes a finite set of marked
points satisfying [K, Definition 1.1 (iv)]. Write gy for the genus of X and nx for the cardinality
#(Dx) of Dx. We shall call (gx,nx) the topological type (or type for short) of X*.
Recall that the dual semi-graph
def .
[xe = (U(FX')7 6<FX')7 {CSX }eEe(FX.))
of X* is a semi-graph associated to X* defined as follows (see also [Y6, Section 1B]):

(i) v(I'xe) is the set of irreducible components of X.

(ii) €°P(I'xe) is the set of marked points Dy.

(iii) e(I"xs) is the set of singular points (or nodes) X*®8 of X.

(iv) ¢I'x*(e), e € e°P(T'xe), consists of the set {v(T'x+)} and the unique irreducible
component containing e.

(v) (Ix*(e), e € e(T'xe), consists of the irreducible components containing e.

Example 2.3. We give an example to explain dual semi-graphs of pointed stable curves. Let
X* be a pointed stable curve over k whose irreducible components are X,, and X,,, whose

node is z.,, and whose marked point is x., € X,,. We use the notation “e” and “o” to denote
a node and a marked point, respectively. Then X* is as follows:

Te, X,,

Leq

X,

We write vy and v, for the vertices of I'xe corresponding to X,, and X,,, respectively, e; for
the closed edge corresponding to x.,, and es for the open edge corresponding to x.,. Moreover,

we use the notation “e” and “o with a line segment” to denote a vertex and an open edge,
respectively. Then the dual semi-graph I'xe of X* is as follows:
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(& U
FX': e L '2 0€2

2.2.2. By choosing a base point z € X*™ \ Dx of X°*, where X denotes the smooth locus
of X, we have the admissible fundamental group (see [Y4, Section 2] or [Y5, Section 1.1 and
Section 1.2] for the definitions of admissible coverings and admissible fundamental groups)

7T_zlaLdm (X., LC)

of X*. In the present paper, since we only focus on the isomorphism class of 72d™(X*® z), we
omit the base point x and write 724™(X*®) for 739m(X*® x). Moreover, we put 739m(X*)*! the
mazimal pro-solvable quotient of 739™(X*). We shall write 7¢¢(X), m/°°(I'yx.), 75*(X)*!, and
% (T xe)*! for the étale fundamental group of X, the profinite completion of the topological
fundamental group of I'yxe, the maximal pro- solvable quotient of 7{*(X), and the maximal
pro-solvable quotient of 7" (I"y.), respectively.
From now on, we denote by

Tye

either m34™(X*®) or wadm(X*)%l ynless indicated otherwise. If Ilxe = 739M(X*), we denote by
%, € 78(X), IR < 7 (Dxe).
If I xe = 724m(X*)*! we denote by
Het def Tt( X)sol’ Ht)?? def W;Op (FX.)sol.
Then we have the following natural surjections
Mxe —» TS, — TI%E.

Let H C Ilys be an arbitrary open subgroup. We write X7}, for the pointed stable curve of
type (9x,,nx,) over k corresponding to H and I'ys for the dual semi-graph of X7. Then we
obtain an admissible covering

fn: Xy —=X°

over k induced by the natural injection H < Ilxe, and obtain a natural morphism of dual
semi-graphs

induced by f};, where “sg” means “semi-graph”. We shall say that f}; is étale if the underlying
morphism fy : Xy — X induced by f;; is étale.

Moreover, if H is an open normal subgroup, then I'xs admits an action of 1Ix. /H induced
by the natural action of IIx«/H on X. Note that the quotient of I'xe by Ilye/H coincides
with I'xe, and that H is isomorphic to the admissible fundamental group ITxe of X3. We also

use the notation H® and H'*P to denote Hgg. and Hmp , respectively.
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2.2.3.  We define pointed stable curves associated to various semi-graphs introduced in 2.1.2.
Let I' C I'xe be a sub-semi-graph (2.1.2 (a)). We write Xt for the semi-stable sub-curve of
X (i.e. a closed subscheme of X which is a semi-stable curve) whose irreducible components
are the irreducible components corresponding to the vertices of v(I'), and whose nodes are the
nodes corresponding to the edges of e?(T"). Moreover, write Dy, for the set of closed points
X1 N {Ze}eceor(r)ce(rye)s Where z. € X denotes the closed point corresponding to e € e(I'xe).
We define a pointed stable curve of type (gr,nr) over k to be

Xt = (Xr,Dxy).

Note that the dual semi-graph of X7} is naturally isomorphic to I'. We shall call X} the pointed
stable curve of type (gr,nr) associated to T'. We denote by

T

the admissible fundamental group (resp. the maximal pro-solvable quotient of the admissible
fundamental group) of X if IIx. is the admissible fundamental group (resp. the maximal
pro-solvable quotient of the admissible fundamental group) of X*.

2.2.4. Let I' C I'xe be a sub-semi-graph and L C eCI(F) such that T'\ L .is connected. Let I'p,
be the semi-graph associated to I" and L (2.1.2 (b)), and Node(Xt) C X7 the set of nodes of
Xt corresponding to L. We write nory, : Xp, — Xr for the normalization of X1 at Noder (Xr).
Moreover, we put Dx;. = nor; *(Dx, UNodey (Xr)). We define a pointed stable curve of type
(gpL,an) to be
XI:L = (XFL7DFL>'

Note that the dual semi-graph of X7 is naturally isomorphic to I'r. We shall call X7 the
pointed stable curve of type (gr,,nr,) associated to I'y. By the construction of X7, we see

rr, =1 — #(L), gr, = gr — #(L), nr, = nr + 2#(L).
We denote by
IT ey
the admissible fundamental group (resp. the maximal pro-solvable quotient of the admissible
fundamental group) of X7 if Iy« is the admissible fundamental group (resp. the maximal pro-

solvable quotient of the admissible fundamental group) of X*. Moreover, we have the following
natural outer injections (i.e. up to inner automorphism of ITy.)

HXI:L — Hxlg — IIxe.

2.2.5. Let v € v(I'ys) and ', C I'ye the sub-semi-graph such that v(T',) = {v}. Let e*(T',) be
the set of loops of T, (2.1.1 (b)). Note that in this situation, we have (') = e(T,). Write
X, for the irreducible component corresponding to v and nor, : X, — X, for the normalization

of X,. We put Dz © nor,'((Dx N X,) U (X, N X¥)). Then we have X, = X, and

51p<Fv)
Ds =D . Moreover, we shall call

X(Fv>51p<rv)

et
X< (X,,Dg)

— X
(Co)etpry)

def

the smooth pointed stable curve of type (gv, ) = (9(r,) associated to v. If X,

elP(ry)’ n(Fv)Ehigrv))
is smooth over k, for simplicity, we use the notation X3 to denote XJ = X7 . We denote by

IT

Xg
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the admissible fundamental group (resp. the maximal pro-solvable quotient of the admissible

fundamental group) of )?; if I« is the admissible fundamental group (resp. the maximal pro-
solvable quotient of the admissible fundamental group) of X*®. Suppose that I, is contained in
a sub-semi-graph I' C I'x.. Then we have the following natural outer injections

Iz, — HX; — ng — Ilxe.

Example 2.4. Suppose that the dual semi-graph I"x. is as follows:
€2

I'xe: 61 V2 ey

Then we have

€2

'y, =Txe ey U1

Ty
€3
2

€1 €9

F)?. =TIxe : U1

v (F’Ul >€1p(Fv1>

1 €3

2.3. Geometric data. In this subsection, we introduce various subgroups of Il y. which can
be regarded as group-theoretical descriptions of pointed stable curves defined in 2.2.3, 2.2.4,
and 2.2.5.

2.3.1. Settings. Let X* = (X, Dx) be a pointed stable curve of type (gx,nx) over an alge-
braically closed field k of characteristic p > 0, ['xs the dual semi-graph of X*, and Ily. either
the admissible fundamental group of X*® or the maximal pro-solvable quotient of the admissible
fundamental group of X*°.

Write B for the set of prime numbers. Let Il be a profinite group, and let > C B be either
the set B or a subset such that p € 3. We denote by II* the maximal pro-X quotient of II. In

particular, if ¥ = P (resp. P\ {p}), we use the notation II (resp. II”') to denote IT¥ (resp.
H‘ﬁ\{p})'

2.3.2. We put
X% lim Xy, Dg=  lm Dy, Txe®  lim Ty
Hgﬂi. open HQHEJ(. open Hgl‘[?{. open

We shall call
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the universal admissible covering associated to II%., and r xe the dual semi-graph of X* which
is a simply connected topological space. Note that we have that Aut(X*®/X*®) = II%., and that
['x. admits a natural action of I1%.. We denote by

X - fxo — FXO
the natural surjection.
2.3.3. Let I' C I'ye be a sub-semi-graph (2.1.2 (a)) and L C e®(T") a subset of closed edges of
I' such that I’ \ L is connected. Then we have the semi-graph I' Tpa associated to I" and L (2.1.2

(b)) Let ' C T'xe be a connected component of 7% (T) and T \ L a connected component of
% (I'\ L). We denote by

HAdéf{ GHZ.

A dﬁf{ GHX.

o(T) =T} C 1%,

o(T\L)=T\L} C IT%.

the stabilizer subgroups (or the decomposition subgroups) of [ and T \ L under the action of
IT%. on I'x., respectively. Note that the conjugacy class of Iz (resp. HfL) does not depend on

the choices of T (resp. F/\\L)
Let v € v(I'ye) and © € 75" (v). We denote by Il C IT%. the stabilizer subgroup of ¥ under

the action of T1%. on ['y.. We see
Iz =1z,

T =T, L=e?I,),and 5T\ L.

2.3.4. By the theory of admissible fundamental groups, the following facts are well-known: Il
is isomorphic to H%. and Il is isomorphic to HE. (this is the reason that we do not use the

notation Il I to denote the stabilizer subgroup of I' \ L). In particular, II; is outer isomorphic

to H??- for all v(I'xe). Note that we have the following natural injections
HFL — Hf — H?p

if F/\\L CT. Let e € e(I'ye) and @ € mg'(e). Then Iz ¥ 11 = Z(1)®\#} is isomorphic to an
inertia subgroup associated to the closed point of X corresponding toe.

Moreover, let v € v(I') and e € e(T',) such that € abuts to v, and that I', C I'. Then we have
the following natural injections

Ie = Il = Ig, = T < Ig < Tx..
Note that IT; = Iz if X, is non-singular.
2.3.5.  We denote by Ssg(I"xe) the set of sub-semi-graphs of I'x« and put
def .
Com(I'xe) = {(I', L) | '\ L is connected }regsg(rye),nCec! (1)

where “Ssg” means “sub-semi-graph”, and “Com” means “combinatorial”, and L is possibly
an empty set. Furthermore, we put
def

Ssg(I1x.) = {I}ressgrye) € Geo(Ilx)

where “Geo” means “geometry”. In particular, we denote by

Ver(I1%.) © {Ts}oeurs,) € Geo(ITx),

def
= {H } I',L)eCom(I'xe)>

o def
Edg™ (ITx.) = {Ie}ecenrg,) € Ssg(lIXe),
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c def
Edg®(ITx.) = {le}ece(rg.) S Ssg(llx).

Note that Ssg(IT%.), Geo(IT%.), Ver(I1%.), Edg® (IT%.), and Edg®(IT%.) admit natural actions
of IT%. (i.e. the conjugacy actions). Moreover, we have the following natural bijections

Geo(IT%.) /1T = Com(Txe),
Ssg(I1%.) /5. = Ssg(T'xe),
Ver(I1%.) /1%« = v(T'xs),

~

Edg®(I1%.)/II%. = eP(Txe ),

~

Edg(T1%.) /T%. = (T xe).

2.3.6.  We define combinatorial data, topological data, and geometric data associated to pointed
stable curves and their admissible fundamental groups, respectively, as follows:

Definition 2.5. (a) We shall call Com(I"x«) the combinatorial data associated to X*,

oy def
Typ<X ) = {(gFL7nFL)}(F,L)GCom(FX.)

the topological data associated to X, and Geo(II%.) the geometric data associated to I1%..
(b) Let (I', L) € Com(I'ys) be a combinatorial datum, I'; the semi-graph associated to T’

and L, F/\\L C 7'(I'\ L) a connected component, and I (C 1I%.) € Geo(Ilx.) the stabilizer
subgroup of F/\\L
We shall call IIz a geometry-like subgroup of TI§. associated to 'y (or the geometry-like

subgroup of I13%. associated to I'\ L). In particular, we have the following: If I' = I', and
L = e?(T,) for some v € v(I'xe), we shall call TI; € Ver(I1%.) a vertex-like subgroup of 11%.
associated to v (or the vertex-like subgroup of I1%. associated to v). If I' = {e} for some
e € eP('xs) and L = (), we shall call Iz € Edg®®(II%.) an open-edge-like subgroup of T1%.
associated to e (or the open-edge-like subgroup of I1%. associated to €). If I' = {e} for some
e € el(I'ye) and L = 0, we shall call I; € Edg”(II%.) a closed-edge-like subgroup of I1%.
associated to e (or the closed-edge-like subgroup of I1%. associated to €).

Remark 2.5.1. Let us explain the geometric motivation of Definition 2.5. One of main goals
of the theory of anabelian geometry is to prove that algebraic varieties can be completely deter-
mined group-theoretically from various versions of their algebraic fundamental groups. Then
for a given algebraic variety, before we start to study the anabelian properties of the alge-
braic variety, we need to find the corresponding group-theoretical descriptions of its geometric
informations (i.e. descriptions of its geometric informations by using closed subgroups of its
algebraic fundamental group).
In the case of pointed stable curves, Definition 2.5 means that the conjugacy class

{Jilnf‘\La}aeﬂi.
corresponds to the pointed stable curve of type (gr,,nr,) associated to I'y, defined in 2.2.4.
For the geometric data, we have the following result.

Theorem 2.6. We maintain the notation introduced in Definition 2.5. Suppose ¥ = SB.
Then there exists a group-theoretical algorithm whose input datum is Ilxe., and whose out-

put data are Geo(Ilye), Com(I'ys), and Typ(X?®). In particular, I € Geo(Ilx.) determines

group-theoretically a unique element (I, Ly) € Com(I' xe) and a unique element (g, nn) o

(9@, 0y, ) € Typ(X®).
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Remark 2.6.1. Suppose that X*® is smooth (in this situation, Geo(Ilxs) = {IIx« JUEdg® (I1x.)).
Then Theorem 2.6 was proved by Tamagawa ([T4, Theorem 0.1 and Theorem 5.2]). Moreover,
this result is the most important (and the most difficult) step in his proof of the weak Isom-
version of the Grothendieck conjecture for (tame fundamental groups!) of smooth curves of
genus 0 over an algebraic closure of F,, ([T4, Theorem 0.2]).

Suppose that X* is an arbitrary pointed stable curve. Theorem 2.6 was proved by the author
of the present paper ([Y1, Theorem 1.2}, [Y2, Theorem 0.3]).

2.3.7.  We maintain the notation introduced above. Let (I'y, L,), (I'y, Ly) € Com(I'xs). Then
[y, Ty can be regarded as topological subspaces of I'ys (2.1.2 (a)). Suppose that I', N T is
non-empty, and that

[, NTy Ce?(Txe).

def

. def
Moreover, we write II, = II

T Cll%., I, = H(F/b)\Lb C II%. for the geometry-like subgroups

associated to some I', \ Lo, 'y \ Ly C T xe, respectively. We have the following lemma.

Lemma 2.7. Suppose that 11, N 11, C Hi. 18 not trivial. Then I1, N1, is a closed-edge-like
subgroup of 11%..

Proof. 1f either T', or I', is an edge of I'xe, then the lemma is trivial. Thus, we may assume
that v(I',) and v(T',) are not empty.

Let H C II%. be an arbitrary open subgroup, H, © N I1,, and H,
have the natural injections (see 2.2.2 for (—))

N 1I,. Then we

Hét,ab N Hét,ab Hét,ab SN Hét,ab
a ) b .

Moreover, since Iy N Ty C (T ye), H N HY™ s trivial.

Let J C II,NII, be a non-trivial pro-cyclic subgroup (i.e. a subgroup topologically generalized

by one element) and Jy © 7N H. Then the image of the natural homomorphism

JH N Hét ,ab

is trivial. By applying [HM1, Lemma 1.6], J is contained in a unique closed-edge subgroup Iz, of
[1%. for some €; € e?(I'x+). Write e; for the image of €; of the natural map 7y : ['xe — I'xe.

—_—

We see immediately that [z, C II, N 1I,, that e; connects I, \ L, with I, \ L, and that

e; € TyaNTy C e(Ixe). Write E for the set of edges connecting Fa/\\La with mb- Then
[M2, Proposition 1.2 (i)] implies that II,NII, coincides with the subgroup generated by {lz}. 5.
Moreover, by applying similar arguments to the arguments given in the proof of [HM1, Lemma
1.8], we obtain

M, NI, = I,.

This completes the proof of the lemma. l

3. TOPOLOGICAL AND GROUP-THEORETICAL SPECIALIZATIONS

3.1. Specializations and conjectures.

3.1.1. Settings. Let ng,nx,z be the moduli stack parameterizing pointed stable curves of

type (gx,nx) over SpecZ, F, an algebraic closure of the finite field F, of characteristic p > 0,
M M 7 X7 F,, and M For g € M

gx,nx gx,nx, gx,mx gx,mx»

we shall write V(g) for the topological closure of ¢ in M,

the coarse moduli space of My, 5.

Xnx -
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Let i € {1,2}, and let ¢; € M, », be an arbitrary point of M, ,, and k; an algebraically
closed field containing the residue field k(q;) of ¢;. Then the natural morphism Speck; —
M determines a pointed stable curve

gx,mx
X7 = (X, Dx,)

of type (gx,nx) over k;. We denote by I'xs the dual semi-graph of X?, rp . the Betti number
of I'xs, and Ilxs either the admissible fundamental group of X? or the maximal pro-solvable
quotient of the admissible fundamental group of X?. Let Com(F xs), Typ(X?), and Geo(Ilxs)
be the combinatorial data associated to X? (Deﬁnition 2.5 (a)), the topological data associated
to X7 (Definition 2.5 (a)), and the geometric data associated to Ilxs (Definition 2.5 (a)),
respectively.

We denote by

Homgl (L, Tly)
the set of open continuous homomorphisms of profinite groups Il xs and ITx,. Let ¢ € Homp (Tlxs, xy)

be an arbitrary element. Then [Y7, Lemma 4.3] implies that ¢ is a surjection.
Let X be an arbitrary set of prime numbers such that p € . We write pr% . tlxe — I3 Xe)

i € {1,2}, for the natural surjection. Note that the structures of maximal pro-prime-to-p
quotients of admissible fundamental groups of pointed stable curves (e.g. see [Y7, 1.2.4]) imply
that ¢ induces an isomorphism ¢ : H)E(l. = Hzg.

3.1.2.  We maintain the notation introduced in 3.1.1.

Definition 3.1. (a) We shall call that g, is a topological specialization of g if there exists a
point ¢4 € V(q1) such that the following conditions are satisfied:

(i) There exists an isomorphism of dual semi-graphs ¢ : Ly = ['xs, where

'y, denotes the dual semi-graph of a pointed stable curve corresponding to a

gxmnx (note that the isomorphism class
of 'y, does not depend on the choices of geometric points over Speck(q;) —

Mg, ny)- In particular, ¢*8 induces a bijection ¢ : Com(I'y) = Com(I'xs).
(ii) Let (I, Ly) € Com(Ty;) be an arbitrary clement and (T, Ly) % ¢« (T, Ly)) €
Com(I'xg). Then we have (g(pé)%,n(pé)%) = (9(s) 1y (), ) (2.2.4).

geometric point over Speck(qy) — M

We shall call an open continuous homomorphism ¢ € Hom%‘é(ﬂ xp, 11 X2') a topological special-
1zation homomorphism if qo is a topological specialization of ¢;.

On the other hand, since ¢ is contained in V'(¢;), the corresponding degeneration implies
that there exists a natural map spi Com(I'xs) — Com(I'y,). We put

com def | com com ~
SPXexs = ¢ o spl” g, - Com(I'xy) — Com(T'y;) = Com(T'ys).

Note that the restriction map 3p§??}X5|eop(FXf) : eP([xs) — eP(I'xg) is a bijection. The map
spggznx. will be used to define “strong topological specialization homomorphism” (see Definiton
4.1 below).

(b) Let II; € Ver(ILxs) be an arbitrary vertex-like subgroup of IIxs and II; € Ver(Ilx,) an
arbitrary vertex-like subgroup of IIxs. We shall call an open continuous homomorphism ¢ €
HomOP(H xs,lxg) a group-theoretical specialization homomorphism if the following conditions

are satlsﬁed

(i) Iy o ¢(I1;) € Geo(ILxy) (note that IT, & Ver(ILys) in general).

(ii) There exists IT} € Ver(Ilxs) such that II; C ¢(II}).
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(iii) Let (gm,,nm,) € Typ(X?), i € {1,2}, be the topological datum associ-
ated to X? determined group-theoretically by II; (Theorem 2.6). Then we have
(9115 ) = (9115 s, )-

Remark 3.1.1. In the next subsection, we will prove that if ¢ is a group-theoretical special-

ization homomorphism, then ¢ is a topological specialization homomorphism (see Proposition
3.6 below).

3.1.3.  Motivated by the homeomorphism conjecture formulated in [Y7, Section 3.3], we for-
mulate the following conjectures concerning topological and group-theoretical specialization
homomorphisms:

Topological Specialization Conjecture . Let ¢ € Homb(Ilxe, [Ixs) be an arbitrary open
continuous homomorphism. Then ¢ is a topological specialization homomorphism (Definition
8.1 (a)). In particular, gz is a topological specialization of q1 if and only if Hompp (Ixs, Ixs) #

Group-theoretical Specialization Conjecture . Let ¢ € Homgg(l'[ xs, xg) be an arbitrary

open continuous homomorphism. Then ¢ is a group-theoretical specialization homomorphism
(Definition 3.1 (b)).

Remark. We may formulate a more general version of the group-theoretical specialization con-
jecture as follows:
We maintain the notation introduced in 3.1.1. Let II; € Geo(Ilxs) and 115 €

Geo(Ilxs) be arbitrary geometry-like subgroups. Then the following statements
hold:
def

(i) Iy = ¢(I11) € Geo(ILyy).
(1) There exists 11} € Geo(Ilxs) such that 115 C ¢(I1}).
(111) Let (gn,,nn,) € Typ(X?), i € {1,2}, be the topological datum associ-
ated to X? determined group-theoretically by 11; (Theorem 2.6). Then we have
(gﬂl ) nHl) = (gﬂzv nH2>’
Without much difficulty, we can prove that the group-theoretical specialization conjecture im-
plies the above statement.

Remark. Theorem 2.6 says that the topological specialization conjecture and the group-theoretical
specialization conjecture hold for ¢ € Homp% (Ilxs, [Ixys) if ¢ is an isomorphism.

3.1.4. For an arbitrary open continuous homomorphism ¢, by using two group-theoretical
formulas concerning generalized Hasse-Witt invariants (see [Y3, Theorem 1.3], [Y5, Theorem
1.2]), we have the following result (see [Y7, Theorem 4.11] for (a) and [Y7, Theorem 5.30] for

(b)):

Theorem 3.2. Let ¢ € Homgg(ﬂxf,ﬂxg) be an arbitrary open continuous homomorphism.
Then the following statements hold:
(a) The open continuous homomorphism ¢ induces group-theoretically a surjection

¢*15 : Edg® (Ilx;) — Edg*(Ilxy)

between the sets of open-edge-like subgroups of lxs and Ilxs. Moreover, we obtain a bijection

~

¢Sg70p . €0p(FX10) = Edg0p<HX1')/HX1' — GOP(FXE) = Engp(HXQ)/HXE

induced by ¢°I&°P,
(b) Suppose gx =0, #(v(I'xs)) = #(v(Txs)), and #(e”(Txs)) = #(e(Txg)). Then ¢ is a

topological specialization homomorphism and a group-theoretical specialization homomorphism.
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In particular, for any open subgroup Hy C lxs, ¢|m, : Hi def ¢~ Y(Hy) — Hy induces group-

theoretically an isomorphism of dual semi-graphs
sg . ~
¢|H1 . Fx;ll — Fx;lz,
where Uxs i € {1,2}, denotes the dual semi-graph of the pointed stable curve Xg, correspond-
g to H;.

Remark 3.2.1. Theorem 3.2 (b) also holds for pointed stable curves of an arbitrary type under
certain conditions, see [Y7, Theorem 5.26].

By applying Theorem 3.2, we have the following corollary.

Corollary 3.3. (a) Suppose that X?, i € {1,2}, is smooth over k;. Then the topological
specialization conjecture and the group-theoretical specialization conjecture hold.

(b) Suppose (gx,nx) = (0,4). Then the topological specialization conjecture and the group-
theoretical specialization conjecture hold.

Proof. (a) follows immediately from Theorem 3.2 (a) and the definitions of topological and
group-theoretical specialization homomorphisms. Let us prove (b).

Suppose that X7 is smooth over k. Then Theorem 3.2 (a) implies that ¢ is a topological
specialization homomorphism and a group-theoretical specialization homomorphism.

Suppose that X7 is singular. Then [Y7, Lemma 6.3] implies that X3 is also singular. More-
over, the assumption (gx,nx) = (0,4) implies #(v(Txs)) = #(v(Txg)) = 2 and #(e?(T'xs)) =
#(e?(Txs)) = 1. Then (b) follows immediately from Theorem 3.2 (b). O

3.2. Topological and group-theoretical specialization homomorphisms. In this sub-
section, we will prove that the group-theoretical specialization conjecture implies the topolog-
ical specialization conjecture (see Proposition 3.6). Moreover, we prove that the definition of
group-theoretical specialization homomorphisms (i.e. Definition 3.1 (b)) can be simplified (see
Proposition 3.9).

3.2.1. Settings. We maintain the notation introduced in 3.1.1.

3.2.2. Let I'i,, I'yp, @ € {1,2}, be sub-semi-graphs (2.1.2) of I'xs. Then I';,, I';; can be re-

garded as topological subspaces of I'xs (2.1.2). Moreover, let II; , o g, € Geo(Ilxs), My =4

Hfib € Geo(HXi-) be the geometry-like subgroups associated to some fi’a, iy, C in-, respec-
tively. We have the following lemma.

Lemma 3.4. Suppose I'1, NIy, C ed(FXI), o(I11) = y,, and ¢(1l1p) = Ilyy. Moreover,
suppose that II; , N 11, C xs is not trivial. Then Iy, N1y, C Uxs is a closed-edge-like
subgroup of lxs.

Proof. Since I1; , N 1T, C Ixs is not trivial, we have that Iy, N 1ly, C Iy is non-trivial,
and that Lemma 2.7 implies that II; , N 1I;, € Ilxs is a closed-edge-like subgroup of 11 Xe-
Moreover, prﬁxI (I , N 1L ) = Hﬁ’:a N H’l’:b C Hgél. is a closed-edge-like subgroup of Hg;l., where

(—)?" denotes the maximal pro-prime-to-p quotient of (—) (see 2.3.1). Write ¢? : I} /1. = H’)’é
for the isomorphism induced by ¢.

Suppose that either II; , or Il;; is a closed-edge-like subgroup of IIxs. Without loss of
generality, we may assume that II;, is a closed-edge-like subgroup of Ilys. Then we have
L, = 2(1)79/. Since Iy, = ¢(Il;4) € Geo(Ilxs), the structures of maximal pro-prime-to-p
quotients of admissible fundamental groups of pointed stable curves (e.g. see [Y7, 1.2.4]) imply
that Il , is either a closed-edge-like subgroup or an open-edge-like subgroup of Il ;.
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By applying Theorem 3.2, we obtain that ¢ induces a bijection
op(T1P ) op (177’
Edg® (Il ) — Edg® (II%,).
If Tl , is an open-edge-like subgroup of Ilyg, then we have prlp{x. (IIy,) = nga € Edgc’p(Hg;Q.).
2
Moreover, we obtain prj , (I ,.) =117, € Edg®(Il%,). This contradicts the fact that II , is a
1

closed-edge-like subgroup of I1% /1.. Thus, Iy, = ly NIl C Ilxy is a closed-edge-like subgroup
of 11 X3

Suppose that Iy 4, IT; ; are not closed-edge-like subgroups of IIys. To verify the lemma, by
applying Lemma 2.7, it’s sufficient to prove that I'y, N T'y; C e°1(FX2-). If 'y, NIy is empty,
then IIy , N1ly is trivial. Then we may assume that I'y, N I'y; is not empty. By using similar
arguments to the arguments given in the third paragraph, we see that 'y, N Ty, N eP(Ixy) is
empty. On the other hand, since

(& o prf] ) (o N Thy) = ¢ (I, ATE,) = T, NTT, = 21,

the structures of maximal pro-prime-to-p quotients of admissible fundamental groups of pointed
stable curves imply that I'y o N T2 Nv(I'xs) is empty. Thus, we have I'y o N Ty, C eC1(FX2-). We
complete the proof of the lemma.

3.2.3.  We have the following lemma.

Lemma 3.5. Suppose that the condition given in Definition 3.1 (b)-(i) holds. Then ¢ : Ilxs —
Ixs induces group-theoretically a map (neither an injection nor a surjection in general)

¢°'&: Edg®(I1xs) — Edg® (Ilyy)
between the sets of closed-edge-like subgroups of Ilxs and Ilxs. Moreover, we obtain an injection
¢l e?(Txy) = Edg™ (Tlxy ) /TLxy = e (Ixg) = Edg™ (Txg ) /Tlx;
induced by @&,

Proof. Let €, € ed(fxlo) be a closed edge, e; € e?(I'xs) the image of € of the natural map
Tx, fx; — I'xs, and I € EdgCI(H Xf) the closed-edge-like subgroup of Ilxs associated to €.
Suppose ey & eP(I'xs) (see 2.1.1 (b) for eP(I'xs)). Then the singular point of X; correspond-
ing to e is contained in two different irreducible components of X;. Since the condition given
in Definition 3.1 (b)-(i) holds, Lemma 3.4 implies ¢([z,) € Edgd(HXQ-).
Suppose e; € elp(FXlo). Let ¢ be a prime number distinct from p,

Hy = ker(ILyy — I3 ® Fy),

Hy = ¢7 (Hy) = ker(Ilys — 3% @ Fy),

OH, o @lm, : Hi — Hs the open continuous homomorphism induced by ¢, X, , i € {1,2},
the pointed stable curve corresponding to H;, and I'ys the dual semi-graph of X7, . We see
immediately that e'(xs ) is empty. We put

def . cl _ cl
L= Ie1 N H, € Edg (Hl) = {IﬂHl | I € Edg (HXl‘)}

Note that Iz is the normalizer of ]ng in ITys, and that the index I3, : Ing

of the case of e; ¢ e'(I'xs) proved above implies I, o o (Iey,) € Edg®(H,). We put
I-

e

JES

€H

| is £. The lemma
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the normalizer of Ig,, in IIx;. Then we have [, € Edgd(HXZ;) and [Ig, : Iz, ] <. On the other
hand, since I3, ¢ € {1,2}, is the normalizer of Iz, in Ilys, we obtain gb([gl) C Iz,. Moreover,
] = [132 : Iz

en,] = {. This means

since ¢° : H§(1. = Hg(Z. is an isomorphism, we see [[g : [g,

¢(Ilz,) = Iz,. Thus, ¢ induces group-theoretically a map
¢*e : Edg® (Ilxs ) — Edg®(Ilxy)

between the sets of closed-edge-like subgroups of ITxs and ILy;.
Next, we prove the “moreover” part of the lemma. Let
def def

(ng’Cl : eCl(FXIO) = EdgCI(HXI->/HX10 — GCI(FXg) = EdgC1<HX2')/HX2°
be the map induced by ¢*% and e; ; € e?(I'xs), j € {a,b}, a closed edge such that ¢*& (e, ,) =

& ery). Let €1, € ed(fxl-), j € {a,b}, be a closed edge over e ; and I,  the closed-edge-
like subgroup of Ilxs associated to ;. Then prﬁxf (Ia,;) € Edgq(ng) and pr%x; (61 ) €

EdgCl(H%), Jj € {a,b}, are closed-edge-like subgroups of H’;;l. and Hg;z,, respectively. Since
%% (e14) = ¢ (e1y), the conjugacy classes prﬁXQ. (¢(Ie,,)) and prﬁxg (¢(fz,,)) in II%, are
equal. On the other hand, since ¢ : II% /1. = Hgé. is an isomorphism, we obtain that the

conjugacy classes pTH (Ie,,) and er (Ing) in Hg;l. are equal. This means e;, = e;,. We

complete the proof of the lemma. O

3.2.4. Suppose that the condition given in Definition 3.1 (b)-(i) holds. Let v; € v(I'xs) be

an arbitrary vertex of I'ys, U1 € v(le-) a vertex of le. over vy, and Il the vertex-like
subgroup of Ilxs associated to v;. Then there exists a unique pair (I'[v1], L[v1]) € Com(I'xy)

def
(see 2.3.5 for Com(I'xs)) such that ¢(Ilg,) = Uy = N (see 2.3.3 for Hf[lm11)’ where

['(vy) o I'[v1] 1, denotes the semi-graph associated to I'[v;] and L{v,] (2.1.2 (b)). Note that

(T'[v1], L]v1]) depends only on the choice of vy (or the conjugacy class of Il ). We have the
following proposition.

Proposition 3.6. Let ¢ € Homp(Ilxe, Ilxs) be an arbitrary open continuous homomorphism.
Suppose that ¢ is a group-theoretical specialization homomorphism (Definition 3.1 (b)). Then
¢ is a topological specialization homomorphism (Definition 3.1 (a)). In particular, the group-
theoretical specialization conjecture implies the topological specialization conjecture.

Proof. Let v,w € v(I'xs) be arbitrary vertices of I'xs distinct from each other when #(v(I'xs)) >
2 and I',, 'y, € I'xs the sub-semi-graphs associated to v,w (see 2.2.5), respectively. We put

L, def e(T,) and L, f e'?(T,). Moreover, we put

FU déf (F'U)Lv7 Fw déf (FU))Lu!

the semi-graphs associated to I', and L,, I',, and L,,, respectively.

Firstly, to verify that ¢ is a topological specialization homomorphism, we need to prove that
the dual semi-graph I'x, of X3 is isomorphic to the dual semi-graph of a reduction of X7} (i.e.
we prove that the condition given in Definition 3.1 (a)-(i) holds). This means that we need to
check the following conditions (see Theorem 3.2 (a) for ¢*®°P, Lemma 3.5 for ¢*®! and 2.1.2
(b) for dpv, drw, Orw), Orw)):

(i) ¢™P(eP(I'xp) M ore (eP(I'))) = e (I'xg) M drw) (€ (T(v)).

(i) ¢*&(L,) € e?(T'[v]).

(1ii) ¢*&(ope (eP(I™)) N drw (e°P(I'))) = Or(w) (€°P(T'(v))) N dpuy (€P(T'(w))).
(iv) #(e™(Txg) N ope (e (")) = #(e” (FX°) M o) (P (I'(v)))).
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(v) #(Lo) = #(6°(Ly)).

(vi) #(0re (e (™)) M orw (eP(I))) = #(0rw) (e (T'(v))) N Orw) (€2 (I'(w))))-

The conditions (i), (iv) say that the degeneration (as a topological space) of the marked points
of X} contained in X, (2.2.5) are the marked points of X3 contained in Xy, (2.2.3). The
conditions (ii), (v) say that the degeneration (as a topological space) of the singular points of
X7 corresponding to L, are singular points of X3 contained in Xpp,. The conditions (iii), (vi)
says that the degeneration (as a topological space) of the gluing of {XU}UGU(F}(.) (2.2.5) along
the singular points of X7 that gives rise to X7 is the gluing of {Xf(fu)}va(Fx;) (5.2.4) along the
singular points corresponding to {qbsg’Cl(eCl(Fxl-))}UEU(FX;) of X3 that gives rise to X3.

We maintain the notation introduced at the beginning of 3.2.4. Let e € e?(I'”) and Iz C Ilxs
the open edge-like subgroup associated to an edge € € my.(e) such that Iz C IT; (or € abuts
to v). Then by applying Theorem 3.2 (a) for ¢|r, : Il — I57, we see that ¢(Iz) is an open
edge-like subgroup of HI:(;).

Suppose drw(e) € eP(I'xs) N (e?(I'”)). Then the condition (i) follows immediately from
the “moreover” part of Theorem 3.2 (a) and the commutative diagram

Iz —— ¢(I)

Pl
I; — Hﬂ;)

]
HXI' —_— HX20,

where the vertical arrows are natural injections.

Suppose drv(e) € L,. We see that there exists an element o € II x¢ such that 113 #+ o lzo
and Iz C II; N o~ Tlz0. Then the condition (ii) follows immediately from the “moreover” part
of Theorem 3.2 (a) and the commutative diagram

Iz — o(I2)

l l

Iy No e — Mz N ng(a)*lHF/(;)gzﬁ(a)

l !

¢
Iy, — ITys,

where the vertical arrows are natural injections.
Suppose dOr(e) € dpe (€P(T')) N dpw (e?P(T™)) C e?(I'xs). We have I C II; N I for some
@ € my, (w). Then the condition (iii) follows immediately from Lemma 3.5 and the commutative

diagram
L — o(Iz)

l l

I;NIl; —— HF/(;)QH@

! !

Ix, s Ilys,
where the vertical arrows are natural injections.
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On the other hand, the conditions (iv), (v), (vi) follow immediately from the “moreover”
parts of Theorem 3.2 (a) and Lemma 3.5 (i.e. the injectivity of ¢%&°P and ¢*&<!).

Next, to verify ¢ is a topological specialization homomorphism, we need to prove that the
condition given in Definition 3.1 (a)-(ii) holds. Since ¢ is a group-theoretical specialization
homomorphism, Definition 3.1 (a)-(ii) follows immediately from Definition 3.1 (b)-(iii). This
completes the proof of the proposition. O

3.2.5. In the remainder of this subsection, we prove that the condition given in Definition 3.1
(b)-(i) implies the conditions given in Definition 3.1 (b)-(ii), (b)-(iii).
Lemma 3.7. The condition given in Definition 3.1 (b)-(i) implies the condition given in Def-
inition 3.1 (b)-(ii).
Proof. Let i € {1,2}. Suppose that every irreducible component of X! is smooth over k;, that
Fg?; is 2-connected (see 2.1.1 (c) (d)), and that g,, > 1 for all v; € v(I'xs) (see 2.2.5 for g,,).
We put My dof Hgé;.ab, M;(Ozp o Hg?:.)’p " Since Im(IT;, — M x¢) does not depend on the choice
v; € v(in-) over v; € v(['xs), we put M,, o H%’;’ab, v; € v(I'xs). Then we have a surjection
Mz — My?
induced by the natural surjection ITxs — Hg?? (see 2.2.2) whose kernel is equal to
M S Im( P M, — Mys).
vi€v(Tys)
Moreover, [Y3, Corollary 3.5] implies that the natural homomorphism
M,, — MxS, v; € v([xe)

is an injection.

On the other hand, we put Mp,) o H%’a\b). Note that Mp,) depends only on I'(v;).
U1
Moreover, we put
cur def cur-top def cur
M S Im( @ Mrwy) — Mxy), MRa™™ < My /MSE.

v1 G'U(FX;)

By applying similar arguments to the arguments given in the proof of [Y3, Proposition 3.4], we
obtain that the natural homomorphism

MF(vl) — MCI;.r, 1 € U(Fxl-),
is an injection. Since the condition given in Definition 3.1 (b)-(i) holds, the isomorphism
o HI)’(I. = Hgg induces the following commutative diagram

M, —— MT —— Myxs —— M;?.p
1 1 1

R

-t
Mr(w,) — M$§ —— My —— M,

where all of the vertical homomorphisms are isomorphisms. Note that since we assume g,, > 1
for all v € v(I'xy), either M,, € Mr,) (in Mxg) for some v; € v(I'ys) holds or M,, is not

cur

contained in My (in Mxs). Then to verify the lemma, it’s sufficient to prove that the image
My, = Mxs — M;;.r‘mp is trivial for all vy € v(I'xy). Moreover, it is equivalent to prove that
for all v, € v(I'xg), the image M,, ® F; — Mx; @ F; — M;‘;.r'mp ® FF, is trivial for a prime
number ¢ € P\ {p}.
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We put

Nxs o {o € Hom(Mxy, Z/UZ) | a(MXy) =0, a(M,,) = 0 for any vy € v(I'xy)}.

Note that al(M.,,) = 0 for any v, € v(I'xy) does not imply a(Myy) = 0 since I'(v;) is not a tree
(2.1.1 (c)) in general. Moreover, the definition of Nxs implies that o € Nx, factors through
not only M;;r'wp ® F, but also M)t?f ® F,.

We calculate dimg,(Nxg). Let vy, v € v(I'xs). By applying the left-hand side of the above
commutative diagram, we have v; = v] if and only if I'(v;) = ['(v}). In particular, we obtain
#w([xs)) = #({F(Ul)}vlev(pr)>. Moreover, by applying Lemma 3.4 and Lemma 3.5, we have

that I'(v;) and I'(vy) are connected with a closed edge e; of I'xg if and only if v; and v} are
connected with a closed edge e; of I’ x¢ such that gbsg’d(el) = ey. We put

BEulx)\ | o),

vlev(f‘xf)

s & e Tag) \ (65 Tx) U | o)),

vi€v(l'xe)
Then by the Euler-Poincaré formula for semi-graphs, we obtain

diIIlFZ (Mcur top (29 ]Fg) > dlIIlIE‘Z (NX-)

#(0°8 (e (Txy))) + #(Ea) — #{L(01) borevrye)) — #(V2) +1
> (0 (e (T'xp))) — #{UL(01) borevr ) + 1
= #(e"(Txp)) — #(v(Txp)) + 1 = dimg, (MY @ Fp).

On the other hand, the right-hand side of the above commutative diagram implies

dimg, (My? © Fp) = dimg, (Myy ™" © F).

This means M;}‘;.r'mp ® Fy = Homg, (Nxs,F;). Thus, M,, @ Fy — Mxs @ Fy - M;}‘;.r_wp ® F, is
trivial for all v € v(I'xs). We complete the proof of the lemma if F;?; , 1 € {1,2}, is 2-connected,
gv; > 1 for any v; € v(I'xs), and every irreducible component of X7 is non-singular.

Next, we prove the lemma in the general case. By [Y7, Lemma 5.4], there exist a prime

number ¢/ >> 0 distinct from p and a characteristic subgroup Hy C 11 X3 such that the following
conditions hold:

e The irreducible components of X, are smooth over k;.

o Ilxs/H, = Ilx;/H, is a finite ¢'-group, where H; et o~ (Hy).

e Write I’ Xt , 1 € {1,2}, for the dual semi-graph of the pointed stable curve corresponding
to H;. Then Fg?f is 2-connected.

® gy, > 1,0 € {1, 2} for all vy, € U(FX- ).

Let IIg, be an arbitrary vertex-like subgroup of IIx, and Hg, o II;, N Hy. Then Hj, is a

vertex-like subgroup of Hs. By applying the lemma for H,, Hy, and ¢|y, : Hy — Hs proved
above, we obtain that Hg, is contained in Iz — N N Hy for some v; € U(FX-) Moreover, we
have that v, is a vertex of I@ Note that I3, is the stabilizer of v,. Then Il, is contained
in the stabilizer of T'(v;) (since (o_IHF( 50) N1,
closed-edge-like subgroup of Ilys). Thus, we obtain Ilg, C Tl=—

o € llxg \Hr( 5, Is either trivial or a

o . This completes the proof of

the lemma. O
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Lemma 3.8. The condition given in Definition 3.1 (b)-(i) implies the condition given in Def-
inition 3.1 (b)-(iii).
Proof. Let vy € v(I'xs) and (I'[v1], L[v1]) € Com(I'xs) the pair determined by v; introduced at

the beginning of 3.2.4. Let ¢*®' : ¢?(T'xs) < e?(I'xs) be the map obtained in Lemma 3.5. We
have the following claim:
Claim: ¢**!(e'(v1)) = L[vy] (see 2.1.1 (b) for '(v;)).
We prove the claim. Let e; € e?(I'xs) (resp. ex € e?(I'xs)) and € € 7y (e1) C
ed(fxlo) (resp. € € Ty (e2) C ed(fx;)) a closed edge over e; (resp. es3). Then
the claim follows immediately from the following: e; € e'P(v1) (resp. ey € L[v])
if and only if Ig, = Ilg NIlg for some g, Igr C Ilye (resp. [, = H@/QH@H
for some H/(\)/, Hr/(v\)" C Ilxs) such that the conjugacy classes of Ilg, Iz in
IIxs are equal (resp. the conjugacy classes of 11— o) ’Hr( 5" in HX- are equal),
where 91,07 € 7! (v1) C U(FXI-) (resp F[Ul] \ L[vl] [1)1] \ L[vl] are connected
components of 7y (I'[v] \ L{vi]) C FXQ-).
We put
By % {ey € e(Txs) | 2 € T(v1,4) NT (1)
for some vy q,v15 € v(I'xs) such that vy, # vip} C ed(FXg),

where I'(v1,,) NT'(v1) denotes the intersection as topological subspaces of I'xs (2.1.2 (a)). Note
that the above claim implies

Y #L)) +#(Es) = #(¢*( (Txp)) = #(e(Txp))-

vlev(l"Xlo)

Let IT5,, v1 € v(I'xs), be an arbitrary vertex-like subgroup of Ilxs and Iz, an open-edge-like
subgroup (resp. a closed-edge-like subgroup) of Il xs such that I, C Ilg,. Then Theorem 3.2 (a)
(resp. Lemma 3.5) implies that ¢(I3,) is an open-edge-like subgroup (resp. a closed-edge-like
subgroup) of Ilx, contained in a geometry-like subgroup H ~ of Ilxs. Moreover, we have

Ny, < Nr(y) for all vy € v(I'xs). On the other hand, since nX = nyx, = nx,, we have
Do me = nx + 28 (Oxg)) =, + Y (L) +2#(E) = Y nrg)-
v1€v(FX{) vlev(I’Xf) Ulev(FX;)
This implies n,, = nr(,) for all v; € v(I'xs). Then to verify the lemma, it’s sufficient to prove
Ju, = gr(w) for all v; € v(I'xs).
We put I5, C I, the normal closed subgroup generated by (see 2.1.1 (b) for €' X1 (v;))
{Ie, | & € ml(er), er €€ ¥ (1)}

Then since n,, = nr(,,), the surjection Iz — H mduced by ¢ implies

I'(v1)

]. / 1 /
9o = 5 - vanlesy (15, /T5)*) 2 5 - xanksy (6(015,)/0(F)*") = g

By the Euler-Poincaré formula for semi-graphs, we obtain
> gut e = > g +#(eN(Tx)) — #(w(Txy)) + 1.
vlev(FXf) vlev(I‘Xf)
On the other hand, by Lemma 3.7 and the Euler-Poincaré formula for semi-graphs, we have

= Y gt Y #EL)) +#E) — #{TO) ey + ]

vlev(FX;) v1€v(FXf)
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= D gre) + #(@FN(N (Txp)) — #(0(Txp)) + 1

U1€U(FX;)

- Z gr(v) +TFx1°'

vi€v(l'xe)

Since gx = gx, = gx,, we obtain

Z v, = Z gr(vy)-

vicv(l'xe) viev(lxe)
This implies g,, = gr(v,) for all v; € v(I'xs). We complete the proof of the lemma. 0
Thus, Lemma 3.7 and Lemma 3.8 imply the following:

Proposition 3.9. Let ¢ € Hom}(Ilxe,Ilxs) be an arbitrary open continuous homomorphism.
Suppose ¢(I1y) € Geo(Ilxs) for all 11} € Ver(Ilxs). Then ¢ is a group-theoretical specialization
homomorphism.

4. TOPOLOGICAL SPECIALIZATION CONJECTURE FOR CURVES OF gx = 0

In this section, we will prove the topological specialization conjecture for pointed stable
curves of genus 0 (see Theorem 4.9 for a precise statement).

4.0.1. Settings. We maintain the notation introduced in 3.1.1. Suppose that gx = 0, and that
IIxe, 7 € {1,2}, is the maximal pro-solvable quotient of the admissible fundamental group of
X?. Moreover, we fix the following notation.

Let E; C e°P(I'xs) be a subset of open edges of I'ys such that #(E;) < nx—3 and ¢**°P(E;) =
E,, where ¢°®°P is the bijection of the sets of open edges induced by ¢ (see Theorem 3.2 (a)).

We put E; & Ty (E;) C eOP(fX;) (see 2.3.2 for 7x,) and
Ig, C 1lxe.

the closed normal subgroup generated by { Iz, }. ... Moreover, Theorem 3.2 (a) implies ¢(/g, ) =
In,.

On the other hand, we write Dy, C Dy, for the subset of marked points corresponding to
E;. Since gx = 0 and #(Dg,) < nx — 3, by contracting certain (—1)-curves and (—2)-curves,

the pointed semi-stable curve (X;, Dy, \ Dg,) over k; determines a pointed stable curve
Xp, = (Xg,, Dx,,.)
of type (0,#(Dx, \ Dg,)) over k;. Note that we have a natural (contracting) morphism
fo,  X* = X5
We shall denote by fg, : X — Xp, the morphism of underlying curves induced by fz. . Write

FX?«:Z. for the dual semi-graph of Xz . Then f7 induces a map f;gi P Pxs — I’X]-Ei of dual

semi-graphs.
We denote by
IMxe

By
the maximal pro-solvable quotient of the admissible fundamental group of X7, . Then we have
a natural isomorphism II Xs /IEg, | Xs - Moreover, ¢ induces an open continuous homomor-
phism
OF : Mxy — Ilxy
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which fits into the following commutative diagram:

]
HXI' —_— HX2-

| l

HX{/IEl ng;El ﬂ) 1_1)(1232 gHX20/]E2

If E; = {e;} for some e; € e®®(I'xs), we also use the notation X2, lxe , I'xe , f2, f2, and ¢,

to denote X3, Ixs , I'xs , fi, [5, and ¢, respectively.

4.0.2. We introduce a strong version of topological specialization homomorphisms as follows:

Definition 4.1. Let ¢*#°P : ¢°?(I'xs) = €°?(I'xs) be the bijection induced by ¢ (Theorem 3.2
(a)). We shall call ¢ a strong topological specialization homomorphism if the following conditions
are satisfied:

e ¢ is a topological specialization homomorphism (Definition 3.1 (a)).
o PEP = spUye e (I'ye) for some spe’ys © Com(I'x;) — Com(I'xy) (see Definition 3.1

(a) for spsixs).

The following corollary follows immediately from Corollary 3.3 (b):

Corollary 4.2. Suppose (gx,nx) = (0,4). Then ¢ is a strong topological specialization homo-
morphism.

4.0.3. Further settings. We maintain the notation introduced in 4.0.1. Suppose nx > 5. Let
e; € eP(I'xs), i € {1,2}, be an open edge such that ¢®°P(e;) = ey. Write ; o x., € Dy,
for the marked point of X corresponding to ¢;. The assumption ny > 5 implies that X is

a pointed stable curve of type (0,nx — 1) over k;. Note that one of the following conditions
holds:

o #(u(Txs)) = #(u(Txs)).
o #(v(I'xe)) = #(v(l'xe)) + 1.
On the other hand, let W2, i € {1,2}, be an arbitrary pointed stable curve over k; of type

(0,nw), Iys the maximal pro-solvable quotient of the admissible fundamental group of W,

and ¢y : Hye — Iy an arbitrary open continuous homomorphism. Moreover, we assume the
following condition holds:

e ¢y is a strong topological specialization homomorphism if ny < ny — 1.

4.0.4. Firstly, we have the following lemma:

Lemma 4.3. We maintain the settings introduced in 4.0.3. Moreover, we suppose that #(v(I'xs)) =
#(v(Ixe ) + 1 holds. Then we have #(v(I'xy)) = #(v(I'xe ) + 1.

Proof. Suppose #(v(I'xy)) = #(v(I'xs )). We will construct a contradiction. Since we suppose
#(v(l'xy)) = #(v(I'xe ) + 1, there exists an irreducible component Xj,; of X; such that one
of the following situations holds:

(1) Xl,l N DX1 = {$1} and #(Xl,l N Xilng) : 2.

(11) X171 N DX1 = {1‘1,0,1} and #(Xl,l N X?ng) = 1, Where aq 7é xI.
On the other hand, let X5, be the irreducible component of X, such that x5 € X5, N Dx,.
Since we assume #(v(I'xg)) = #(v(I'xs ), we have

#(Xo1 N X51) + #(Xo1 N Dy,) > 4.
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Case (i). We assume that (i) holds. Then we see immediately that there exist marked points
Sa,bg,co € Dy, \ {za} of X3 distinct from each other satisfying the following condition:

e For m € {sy,by, 2}, put C,, as follows:
(x) If m is contained in Xy, then C,, = X5;. Otherwise, let C,, be the connected
component of X5 \ Xy containing m.
(xx) Let my, mg € {s2, b2, c2} be elements distinct from each other. Then C,,, # Cy,
if le 7£ X2,1 and Cm2 # X2,1~

Let ey,, €, €0, € eP(I'xs) be the open edges corresponding to 3, ba, ¢z, respectively. We put

e, = (578P) " (ey,) € eP(Txs), €5, = (6%°P) " (ey,) € €P(Txs), and e, & (9BP) ! (e,,) €

eP(Txs).

We put E; & eP(Lxe) \ {ei; €s,,€p,,€c, - Note that since we assume that ¢. is a strong
topological specialization homomorphism (4.0.3), by the above constructions, we obtain that
€s15Ebys Ec; aTe Mot contained in the same connected component of I' Xp \ {v11}, where v, €
v(['xs) denotes the vertex corresponding to X;;. This means that Xp, is singular with two
irreducible components. Moreover, we see immediately that Xp, is non-singular. On the other
hand, by applying [Y7, Lemma 6.3] for ¢p : ngl — HXEQ’ we obtain that Xpg, is singular.
This contradicts our construction of X3, . Then we obtain the lemma under the assumption of
(i).

Case (ii). We assume that (ii) holds. Let e,, € e®(I'xs) be the open edge corresponding to ay,

€as o ¢*®P(eq,) € eP(I'xg), and az € Dy, the marked point corresponding to e,,. Moreover,
we see immediately that there exist marked points be,co € Dx, \ {x2, a2} of X3 distinct from
each other satisfying the following condition:
e For m € {ag, by, 2}, put C,, as follows:
(x) If m is contained in Xy, then C,, = X5;. Otherwise, let C,, be the connected
component of X5 \ Xy containing m.
(xx) Let my, mo € {ag, b, o} be elements distinct from each other. Then C,,, # Cy,
if le # XQJ and Cm2 # Xg’l.
def

We put e, & (¢%8P)"1(ey,) € eP(Cxs), e, = (¢®°P) (es,) € e®(Ixs). Note that since
#(X11NX5"8) = 1, the marked points by, ¢; corresponding to ey, , e, , respectively, are contained
in Xl \ Xl,l-

We put E; et e?(Lxe)\{€i, €q;, ;, €c; }- By the above constructions, we see immediately that
Xp, is singular with two irreducible components, and that Xg, is non-singular. On the other
hand, by applying [Y7, Lemma 6.3] for ¢ : 11 xp, HX?;2’ we obtain that Xp, is singular.
This contradicts our construction of Xz, . Then we obtain the lemma under the assumption of
(ii). This completes the proof of the lemma. O

4.0.5.  We maintain the settings introduced in 4.0.3. Let v; € v(I'xe), i € {1,2}, be the vertex
of I'xs such that the corresponding irreducible component X, contains x; (see 4.0.3 for x;). Note
that f.,(X,,) is either a marked point or a node of X? if #(v(I'xs)) = #(v(I'xe )) +1 (see 4.0.1
for f, and X? ), and that f.,(X,,) is an irreducible component of X2 if #(v(I"xs )) = #(w(lxe)).
We define X, to be an irreducible component of X, as follows: l
e The irreducible component of X, containing f,(X,,) if #(v(I'xs)) = #(v(xe ) + 1
and f,(X,,) € Dx,, - Z
e The irreducible component fe,(X,) of Xe, if #(v(I'xs)) = #(v(I'xe ).
Moreover, if #(v(I'xs)) = #(v(Cxs )) + 1 and f,,(X,,) € X3¢, we define X,; and X2 to be
the irreducible components of X, as follows: l Z
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e The irreducible components of X, such that f, (X,,) € X1 N X2 .

We shall write ve,, v ,v2 € v(I'xs ) for the vertices of I'xs corresponding to X, s Xt , Xz

» Ve,
respectively, and X7 , X® , X7, for the smooth pointed stable curves over k; associated to

Ve,, VL 02 Tespectively (2.2.5).

Note that the type of X? is (0,nx —1). The assumption of 4.0.3 concerning W} says that
¢e : lx ., — Ilx, is a strong topological specialization homomorphism. Then there exists a
1 2
map

com

sPXe xe, : Com(I'xe ) = Com(I'x, )
such that sp“’m o leor (e ) = PP,
Let (FUEI,elp( ) = @) (Coz €Ty ) = 0), (D ,e®(Ty2 ) = 0) € Com(I'xs ) be com-

binatorial data associated to X? (see 2.2.5 for I, , Lo F”21)' Then we put (T, ) def

com def com def com
SpX' X, ((F'Uel ) Q))7 (F%7 @) - SpX' X, ((Fvél ) Q)))a (F%, ) = SpX' X8, ((szl ) Q))) € Com(Fng)'
Moreover we shall denote by

XEQ (szaDXr ) 1:% = (XF%7DXF%)a Xlzg - (XI%;DXF%)

the pointed stable curves over ky associated to 'y, T's, T'3, respectively (2.2.3). Then we have
the following lemmas.

Lemma 4.4. We maintain the settings introduced in 4.0.3 and the notation introduced at the
beginning of 4.0.5. Moreover, we suppose that #(v(I'x;)) = #(v(I'xs ) and #(v(I'xs)) =
#(v(I'xs ) hold. Then X, is an irreducible component of Xr,.

Proof. Suppose #(v(I'xs)) =1 (i.e. X7 is non-singular). Then the lemma is trivial. To verify
the lemma, we suppose #(v(I'xs)) > 2 (i.e. X7 is singular). Moreover, suppose that X, is
not an irreducible component of Xp,. We will construct a contradiction.

Since #(v(I'xy)) = #(v(I'xe ), one of the following holds:

(1) #(X,, N X378) =1 (ie. #(mo(X5\ X,,)) = 1). Then in this situation, we
have #(X,, N Dx,) > 3.
(2) #(X,, N X57™8) > 2 (ie. #(mo(Xa \ X)) > 2). Then in this situation, we
have
#(’NU(X2 \ Xv2)) + #(DXz N XU2) > 4.
Thus, there exists a connected component Cy € my( Xz \ X,,) such that X, is contained in the
topological closure f.,(Cs) of fe,(C2) in X,,. Let ay € Dx, N Cy be a marked point of X3.
On the other hand, let by, co € Dx, \ ((Dx, N C2) U {z2}) be marked points distinct from
each other such that the following conditions are satisfied:
o If #(my(Xo\ X,,)) =1, then by, c5 are contained in X,, N Dy, .
o If #(mo(X2\Xy,)) = 2 (this implies #(Dx,NX,,) > 2), then we have that by € Dx,NX,,,
and that ¢y is a marked point contained in the connected component of (X5 \ X,,)
distinct from Cs.
o If #(mo(X2\ Xy,)) > 3, then by, co are contained in two different connected components
of mo(X2 \ X,,) distinct from Cs.
We denote by eq,, €, €., € e?(I'xg) the open edges of I'ys corresponding to a, by, ¢z, respec-
tively. Moreover, we put

Car E (05) ewy), €5 = (0°BP) Hen), o E (0BP) Y ep,) € e®(Dxe).

We write a1, by, c; € Dy, for the marked points of X7 corresponding to e,,, €, €., , respectively.
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We put £; % eop (Cxe)\{€i, €, €5 €c; }- Note that X3, is a pointed stable curve of type (0, 4)
over k;. Then we obtain an open continuous homomorphism ¢g : 11 Xy, IT Xp, - Moreover, the
above constructions imply that X3, is smooth over ko. On the other hand, since we assume that
@e = 11 Xs = IT Xe, is a strong topological specialization homomorphism (4.0.3), this implies that
X3, is singular, that the irreducible components containing fg, (1) and fg, (a1), respectively,
are equal, and that the irreducible components containing fg, (b1) and fg, (¢1), respectively, are
equal. This contradicts [Y7, Lemma 6.3]. Then we complete the proof of the lemma. U

Lemma 4.5. We maintain the settings introduced in 4.0.3 and the notation introduced at the
beginning of 4.0.5. Moreover, we suppose that #(v(I'xy)) = #(v(I'xe ), that #(v(I'xy)) =
#(v(l'xe ) + 1, and that fe,(Xy,) is a marked point of XZ,. Then X,,, is an irreducible
component of Xr,.

Proof. Suppose #(v(I'xs)) = 1 (i.e. X7 is non-singular). Then the lemma is trivial. To verify
the lemma, we suppose #(v(I'xs)) > 2 (i.e. X7 is singular). Moreover, suppose that X, is
not an irreducible component of Xp,. We will construct a contradiction.

Since f,(X.,) is a marked point of X?,, we have #(Dx, N X,,) = 2. Then we have Dx, N

X, o {w2,a2}. Moreover, we see that there exists a connected component Ce, € (X, \ Xy,,)

such that Xt, is contained in C,,. Let by € Dx, \ {72,as} be a marked point of X3 such that
fe,(b2) is contained in C.,.

On the other hand, let ¢y € Dy, \ {2, as, by} be a marked point of X3 such that the following
conditions are satisfied:

o If #(mo(Xe, \ X, )) = 1 (this implies #(Dx, N X,,,) > 2), then f,(cz) is contained in
Dx,, N X,,,. Note that we have {f.,(az), fe,(c2)} € Dx,, N X,

o If #(mo(Xe, \ Xy, )) > 2, then fe,(cz) is contained in a connected component of X, \ X,,,
which is distinct from C.,.

We denote by e, €,, €., € eP(T X2') the open edges of ['xs corresponding to ag, b, ca, re-
spectively. Moreover, we put

def SE.0D\ — def SE.0D\ — def SE.0D\ — o
€a; — (¢ & p) l(eaz)v €p, — (¢ & p) 1<€b2)7 €y = (¢ & p) 1(662) ce p(FXf)'

Write aq, b1, ¢1 € Dy, for the marked points of X7 corresponding to e,,, es,, €, , respectively.

We put £; < eP(Pxe) \{€i; €q;, €;, €, }. Then we obtain an open continuous homomorphism
o - 11 xp II Xp, - The above constructions imply that X7, is a singular pointed stable curve
of type (0,4) over ky. Moreover, we see that Xp, has two irreducible components, that the
irreducible components containing fg,(x2) and fg,(as), respectively, are equal, and that the
irreducible components containing fg, (b2) and fg,(cs), respectively, are equal.

On the other hand, since ¢, : II xe, — IT xe, 1s a strong topological specialization homomor-
phism (4.0.3), we see that X3, is singular. Moreover, the above constructions imply that the
irreducible components containing fg, (x1) and fg, (b1), respectively, are equal, and that the
irreducible components containing fg, (a;) and fg, (¢;), respectively, are equal.

By applying Corollary 3.3 (b), we obtain that the irreducible components of Xz, containing
fe,(72) and fg,(by), respectively, are equal. This contradicts our construction of Xz . We
complete the proof of the lemma. O

Lemma 4.6. We maintain the settings introduced in 4.0.3 and the notation introduced at the
beginning of 4.0.5. Moreover, we suppose that #(v(I'xs)) = #(U(erol)), that #(v(I'xs)) =
#(v(l'xe ) + 1, and that fe,(X,) is a node of Xe,. Then fe,(Xu,) is contained in Xr,.
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Proof. Suppose #(v(I'xs)) = 1 (i.e. X} is non-singular). Then the lemma is trivial. To verify
the lemma, we suppose #(v(I'xs)) > 2 (i.e. X7 is singular). Moreover, suppose that f,(X.,)
is a node which is not contained in Xp,. We will construct a contradiction.

Since fe,(X,,) is a node of X.,, we have #(mo(Xe, \ fe,(Xu,))) = 2. Then there exists a
connected component C,, € mo(Xe, \ fey(Xy,)) such that Xr, is contained in C,,. Moreover,
since fe,(X,,) is not contained in Xr,, there exists a unique connected component Z € mo(Xs '\
(Xu, U f,1(X1,))) such that f.,(Z) C C.,, and that Z N X,, # 0.

Let ag € (Dx, \{z2})NZ, by € (Dx, \ {z2})N(f(C.,)\ Z), and ¢y € (Dx, \ {z2}) a marked
point which is not contained in f7,'(Ce,). We denote by eq,, €p,, €, € €”’(I'xs) the open edges
of I'xs corresponding to ag, by, c2, respectively. Moreover, we put

def SE.0D\ — def SE.0DY — def SE.0DY\ — o
€a; = (¢ & p) 1(€a2)? €hy = (¢ & p) 1(652)7 €ey = (¢ & p) 1(662) ce p(FXf)

Write aq,b1,c1 € Dy, for the marked points corresponding to e, , e, , €., , respectively.

We put £; < e?(Lxe) \{€i; €q;, €;, €, }. Then we obtain an open continuous homomorphism
o - 11 xp IT Xp, - The above constructions imply that X7, is a singular pointed stable curve
of type (0,4) over ky. Moreover, we see that Xp, has two irreducible components, that the
irreducible components containing fg,(z2) and fg,(cs), respectively, are equal, and that the
irreducible components containing fg,(a2) and fg,(bs), respectively, are equal.

On the other hand, since ¢, : II xe, — IT xe, 1s a strong topological specialization homomor-
phism (4.0.3), we see that X3, is singular. Moreover, the above constructions imply that the
irreducible components containing fg, (x1) and fg, (b1), respectively, are equal, and that the
irreducible components containing fg, (a;) and fg, (c1), respectively, are equal.

By applying Corollary 3.3 (b), we obtain that the irreducible components of Xg, containing
fe,(22) and fg,(by), respectively, are equal. This contradicts our construction of X3 . We
complete the proof of the lemma. O

Lemma 4.7. We maintain the settings introduced in 4.0.3 and the notation introduced at
the beginning of 4.0.5. Moreover, we suppose that #(v(I'xs)) = #(v(I'xe )) + 1 holds, and that
fer(71) € Dx, is a marked point of X2, . Then the following statements hold: (i) fe,(v2) € Dx,,
is a marked point of X2, . (ii) X, s an irreducible component of Xr.,.

Proof. (i) Suppose that fe,(z2) is not a marked point of X2 . We will construct a contradiction.
Note that Lemma 4.3 implies that f,(z2) is a node of X,.

Since f, (z1) € Dx,, is a marked point of X¢ , there exists a unique marked point a; € Dx, \
{x1} such that a; is contained in X,,. We write e,, € e°?(I'ys) for the open edge corresponding

to ay, €eq, o $*°P(e,, ), and ay € Dy, for the marked point of X3 corresponding to e,,. Then we
see immediately that asy is contained in a connected component Cy € (X5 \ X,,). Moreover,
we note that #(Dx, N Cy) > 2. Then we take by € (Dx, N Cy) \ {az}. On the other hand,
let ¢y € Dx, \ {z2,a2,b2} be a marked point of X3 such that ¢, is contained in a connected
component of X \ X,, distinct from Cy. We denote by ey,,e., € e®(I'xs) the open edges of
I'xs corresponding to by, ca, respectively. Moreover, we put

def _ def _
€y = (¢sg,op) 1(6b2)7 €cy = ( sg’op) 1(662> S eop(FXf)'

Write by, c; € Dy, for the marked points corresponding to e, and e.,, respectively.

We put E; & eP(Cxe) \{€i; €q;, €;, €, }- Then we obtain an open continuous homomorphism
o : 11 Xy II Xp, - The above constructions imply that Xz, is a singular pointed stable curve
of type (0,4) over ky. Moreover, we see that Xp, has two irreducible components, that the

irreducible components containing fg,(x2) and fg,(cs), respectively, are equal, and that the
irreducible components containing fg,(az) and fg,(bs), respectively, are equal.
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On the other hand, since ¢, : II xe, = IT xe, 1s a strong topological specialization homomor-

phism (4.0.3), we see that X3, is singular, that the irreducible components containing fg, (1)
and fg, (a1), respectively, are equal, and that the irreducible components containing fg, (b1) and
fr,(c1), respectively, are equal. By applying Corollary 3.3 (b), we obtain that the irreducible
components of Xp, containing fg,(x2) and fg,(az), respectively, are equal. This contradicts
our construction of X3, . We complete the proof of (i).

(ii) Suppose that X,, is not an irreducible component of Xr,. We will construct a contra-
diction. Since f.,(x1) (resp. fe,(x2)) is a marked point, there exists a unique marked point
a; € Dx, \{z1} (resp. by € Dx, \ {x2}) such that a; is contained in X, (resp. by is contained
in X,,).

We denote by e,, € eP(I'xs), e, € eP(I'xs) the open edges of I'xs and I'xs corresponding
to ay, ba, respectively. Moreover, we put

a, 95 (ea,) € €P(Txy), en, < (6°%%) er,) € eP(Txy).
Write ay € Dy, and by € Dy, for the marked points corresponding to e,, and ey, , respectively.
Note that since we assume that X, 18 n0t an irreducible component of Xr,, we have a; # b,
and as # by. Furthermore, we have that b; € X,,, and that there exists a connected component
Ch of X\ X,, such that b is contained in C;. We take ¢; € (Dx, N Cy) \ {b1} a marked
point of X7 and write e., € e°’(I'xs) for the open edge of I'xs corresponding to ¢;. We put

€cy o ¢ °P(e., ) and write co € Dy, for the marked point corresponding to e, .

We put E; & eP(Cxe) \{€i; €q;, €;, €, }- Then we obtain an open continuous homomorphism
op : 11 Xy II xp, - Moreover, the above constructions imply that X7, is a singular pointed
stable curve of type (0,4) over ky such that Xp, has two irreducible components, that the
irreducible components containing fg,(z2) and fg, (by), respectively, are equal, and that the
irreducible components containing fg,(az) and fg,(cs), respectively, are equal.

On the other hand, the above constructions imply that X3, is a singular pointed stable curve
of type (0,4) over k; such that the irreducible components containing fg, (1) and fg, (a1),
respectively are equal, and that the irreducible components containing fg, (b1) and fg, (c1),
respectively, are equal.

By applying Corollary 3.3 (b), we obtain that the irreducible components of Xz, containing
fe,(72) and fg,(az) are equal. This contradicts our construction of X7, . We complete the

proof of (ii). O

Lemma 4.8. We maintain the settings introduced in 4.0.3 and the notation introduced at the
beginning of 4.0.5. Moreover, we suppose that #(v(I'xs)) = #(U(Fxgl)) + 1 holds, and that
fe,(x1) is a node of X.,. Then the following statements hold: (i) fe,(x2) is a node of Xe,. (ii)
fes(22) is contained in Xry M Xpz.

Proof. (i) Suppose that f,(z2) is not a node of X,,. We will construct a contradiction. Note
that Lemma 4.3 implies that f.,(72) is a marked point of X2 . Then there exists a unique

marked point a; € Dy, \ {#2} such that a, is contained in X,,. We write e,, € e®®(I'yy) for

the open edge corresponding to as, €4, o (¢%8°P)~1(e,,), and a; € Dy, for the marked point of

X? corresponding to e,,. Then a; is contained in a connected component C; € m(X; \ Xy,)-
Moreover, we note that #(Dx, N Cy) > 2. We take by € (Dx, N C1) \ {a1}. On the other
hand, since #(m(X1 \ X,,)) = 2, there exists a marked point ¢; € Dy, \ {1, a1,b1} such that
¢1 is contained in the unique connected component of X; \ X,, distinct from C;. We denote
by ey, €., € e?(I'xs) the open edges of I'ys corresponding to by, c1, respectively. Moreover, we
put

e, def ¢sg,op(€b1)’ Ce, def ¢sg,op(ecl) € eop(FXQ‘).
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Write by, co € Dy, for the marked points corresponding to e, and e.,, respectively.

We put E; o eP(Cxe) \{€i; €q;, €;, €, }- Then we obtain an open continuous homomorphism
o : 11 xp IT Xt - The above constructions imply that X3, is a singular pointed stable curve
of type (0,4) over ko such that the irreducible components containing fg,(z2) and fg,(as),
respectively, are equal, and that the irreducible components containing fg,(b2) and fg,(cs),
respectively, are equal.

On the other hand, the above constructions imply that X3 is a singular pointed stable
curve over kp such that the irreducible components containing fg, (1) and fg, (¢1), respectively,
are equal, and that the irreducible components containing fg, (a1) and fg, (by), respectively,
are equal. By applying Corollary 3.3 (b), we obtain that the irreducible components of X,
containing fg,(x2) and fg,(c2), respectively, are equal. This contradicts our construction of
X3,. We complete the proof of (i).

(ii) Suppose that the node fe,(72) is not contained in Xpi N Xpz. We will construct a
contradiction. Since f,(z2) is anode and is not contained in XpiMNXpz, either X,, ﬂfegl(XF%) =
0 or X,,N f,'(Xrz) = 0 holds. Without loss of generality, we may assume X, N f,*(Xrz) = 0.
Then we have #(mo(Xs \ (Xu, U f5,'(Xr3))) > 2. Moreover, let

Cy,C3 € mo(Xo \ (X U £, (X13)))

be connected components such that CI N X,, # 0, CIN [ (Xry) =0, and CcIn [ (Xrs) =0,
and that f'(Xpy) C Cz2.

Let ay € Dx,NCy, by € Dx, NC3, and ¢y € Dy, \ (C3 UC3U{z}) be marked points of X3.
Note that ay, by, ¢y are distinct from x,. We denote by eq,, €y, €., € e?(I'xs) the open edges of
['xs corresponding to ag, by, c2, respectively. Moreover, we put

def - def - def -
o E (65) Hew), e E (6%F) (en,), e B () ew) € P (Txy).

Write aq, 01,1 € Dy, for the marked points corresponding to e,,, ey, , €., , respectively.

We put E; & eP(Cxs) \{€i; €q;, €;, €, }- Then we obtain an open continuous homomorphism
o - 11 xp = IT Xp, - The above constructions imply that X7, is a singular pointed stable curve
of type (0,4) over ks such that the irreducible components containing fg,(z2) and fg,(as),
respectively, are equal, and that the irreducible components containing fg,(b2) and fg,(cs),
respectively, are equal.

On the other hand, since ¢, : 11 xs — II Xe, is a strong topological specialization homomor-
phism (4.0.3), X, is a singular pointed stable curve over k; of type (0, 4) such that one of the
following cases holds:

e The irreducible components containing fg, (1) and fg, (c1), respectively, are equal, and
that the irreducible components containing fg, (a1) and fg, (by), respectively, are equal.
e The irreducible components containing fg, (z1) and fg, (b1), respectively, are equal, and
that the irreducible components containing fg, (a1) and fg, (1), respectively, are equal.
By applying Corollary 3.3 (b), we obtain that one of the following cases holds:
e The irreducible components of Xp, containing fg,(z2) and fg,(ca), respectively, are

equal.

e The irreducible components of Xp, containing fg,(z2) and fg,(by), respectively, are
equal.

This contradicts our construction of X3, . We complete the proof of (ii). U

4.0.6. The main result of the present section is the following:

Theorem 4.9. We maintain the notation introduced in 3.1.1. Suppose that gx = 0, and that
Ixe, i € {1,2}, is either the admissible fundamental group of X7 or the maximal pro-solvable
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quotient of the admissible fundamental group of X?. Let ¢ : llxs — llxs be an arbitrary open
continuous homomorphism. Then ¢ is a strong topological specialization homomorphism. In
particular, the topological specialization conjecture holds.

Proof. Since the maximal pro-solvable quotient of the admissible fundamental groups can be re-
constructed group-theoretically from the admissible fundamental groups, to verify the theorem,
we may assume that ITys is the maximal pro-solvable quotient of the admissible fundamental
group of X?.

Suppose that ny = 3. Then X?, ¢ € {1,2}, is a smooth pointed stable curve over k;. The
theorem follows immediately from Corollary 3.3 (a). Suppose that nx = 4. Then the theorem
follows immediately from Corollary 3.3 (b).

Next, suppose that the theorem holds for 3 < nxy < n — 1. We will prove the theorem
holds for nx = n. We maintain the settings introduced in 4.0.3 and the notation introduced
at the beginning of 4.0.5. Since the theorem holds for nx < mn — 1, to verify the theorem holds
for nx = n (i.e. the underlying topological space of X3 is a degeneration of the underlying
topological space of X), it’s sufficient to prove that the following statements hold:

(i) If #(v(I'xy)) = #(v(I'xe ) and #(v(I'xg)) = #(v(I'xs))), then X,,, is an irreducible
component of Xr,.

(i) If #(v(I'x;)) = #(v(l'xe))), #(v(l'xg)) = #(v(I'xe))) + 1, and [, (Xo,) is a marked
point of X, then X,  is an irreducible component of Xr,.

(iii) If #(v(I'x)) = #(v(T'xe ), #(v(I'xg)) = #(v(T'xe, ) +1, and fe, (X.,) is a node of Xe,,
then f.,(X,,) is contained in Xr,.

(iv) If #(v(I'xy)) = #((I'xs ) + 1 and fe,(z1) € Dx, is a marked point of X¢, then
fes(22) € Dx,, is a marked point of X2, and X, is an irreducible component of Xr,.

(v) If #(v(I'x;)) = #(v(I'xs ) + 1 and fe, (21) is a node of X, then fe,(22) is a node of
Xe,, and f,(z9) is contained in X1 N Xps.

Suppose #(v(I'xs)) = #(v(I'xg ). Since X, is a degeneration of X, (as topological spaces),
X, is a degeneration of X if f.,(xs) is contained in Xr, which is equivalent to (i), (ii), (iii)
listed above.

Suppose #(v(I'xy)) = #(v(I'xe ) + 1. It fe,(z1) € Dx,, is a marked point of X7 (ie.
fe; + X1 — X,, is a blow-up along a smooth closed point of X,,), since X, is a degeneration
of X., (as topological spaces), X is a degeneration of X if f., : Xo — X,, is a blow-up along
a smooth closed point of X, contained in Xr, which is equivalent to (iv).

Suppose #(v(I'xs)) = #(v(I'xe ))+1. If fe, (21) is a singular point of X7, (Le. fe, : X1 — X,
is a blow-up along a singular point of X,,), since X, is a degeneration of X., (as topological
spaces), X, is a degeneration of X if f., : X5 — X, is a blow-up along a singular point of X,
contained in Xpi N Xpz which is equivalent to (v).

The statements (i), (ii), (iii), (iv), (v) follow from Lemma 4.4, Lemma 4.5, Lemma 4.6,
Lemma 4.7, and Lemma 4.8, respectively. We complete the proof of the theorem. 0

5. GROUP-THEORETICAL SPECIALIZATION CONJECTURE FOR gx = 0 UNDER ASSUMPTIONS

In this section, we will prove that the group-theoretical specialization conjecture holds for
gx = 0 if we assume that the topological specialization conjecture holds for arbitrary types
in the sense of the fourth condition given in 5.2.1. The main result of the present section is
Theorem 5.8.

5.1. Boundary data.
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5.1.1. Let W* be a pointed stable curve of type (0,n) over an algebraically closed field k of
characteristic p > 0 and [y« the dual semi-graph of W*. Note that since 'y« is a tree, we
have Ssg(I'we) = Com(I'ye) (2.3.5).

Definition 5.1. Let B € Com(I'yys) be a combinatorial datum associated to W*. We shall
call B a boundary combinatorial datum (or, a boundary sub-semi-graph (2.1.2)) of Iy if the
following conditions are satisfied:

e v(B) #£ 0.

e I'yy. \ B is connected or empty (note that we have Ssg(I'we) = Com(I'y)).
Let W5 be the pointed stable curve associated to B (2.2.4). We see that B is a boundary
combinatorial datum if and only if W \ Wpg is connected or empty.

If v(Twe) \ v(B) # 0 and B is a boundary combinatorial datum, there exists a unique

boundary combinatorial datum B¢ € Com(I'y.) such that v(B¢) = v(T'ye.) \ v(B) (i.e. B¢ is
the sub-semi-graph determined by v(I'w+) \ v(B)), where “c” means “complement”.

[P

Example 5.2. Let us give an example to explain the above notation. We use the notation “e
and “o with a line segment” to denote a vertex and an open edge, respectively. Let I'yye be a
semi-graph as follows:

€1 4

€6
FW' . U1 €3 IUQ €5 U3

€2 €7

Let B be a sub-semi-graph as follows:

€1

B: U1 €3

€2

Then B is boundary, and B¢ is the following;:

€6
Be: 063 IUQ €5 Vs

€7

On the other hand, we also give an example of sub-semi-graphs which is not a boundary
sub-semi-graph.

€4

B’ €3 €5
(%)
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The following lemma will be used in the next subsection.

Lemma 5.3. Let B € Ssg(I'ye) be a boundary sub-semi-graph such that v(Tye) \ v(B) # 0,
and w € v(B°) the vertex such that w and B are connected with a closed edge of T'we. Write
Wg5, W2 for the pointed stable curves over k associated to B, w, respectively. Then there exist
a pointed stable curve Z°* of type (gz,nz) over k and an abelian Galois admissible covering
f*:Z° — W* with Galois group Z/{Z for some prime number ¢ # p such that the following
conditions are satisfied:

e gz =0.
o Write f% : I'ze — T'we for the natural map of dual semi-graphs induced by f°®. Let
u € (f8)"Hw) and T € Ssg(I'z+) a connected component of (f*8)~1(B). We denote by

Za, Zr

the pointed stable curves of types (0,n,), (0,nr) over k associated to u, I', respectively.
Then we have

nr << Ny,.

This means that for any positive natural number m, n, — np > m for a suitable choice

of L.
Proof. Since W* is a pointed stable curve of genus 0, we have
#(Wy N Dyy) + #(Wy N WE8) > 3,

Note that W, N Wg # 0 implies that # (W, N W*"8) > 1. Now, we construct two marked
points x1,xy € Dy, of W* as follows.

Suppose # (W, N Dy) > 2. We take x1, 29 € W, N Dy, marked points of W* distinct from
each other.

Suppose #(W,, N Dy) = 1. Then we have #(mo(W \ Wy,)) > 2. Moreover, there exists a
connected component C' € mo(W \ W,,) such that C N Wy = (). We take z; the marked point
contained in W, N Dy, and take x5 a marked point contained in C'.

Suppose #(W,, N Dy) = 0. Then we have #(mo(W \ W,,)) > 3. Moreover, there exist two
connected components C1,Cy € mo(W \ W,,) distinct from each other such that C; N Wy = 0
and Co N Wg = 0. We take x, xo marked points contained in C}, Cs, respectively.

Let ¢ >> 0 be a prime number prime to p, and let f* : Z®* — W* be a Galois admissible
covering with Galois group Z/¢Z such that f* is totally ramified over x;,z5 and is étale over
Dw \{x1,z2}. Then we see immediately that f* is the desired Galois admissible covering. This
completes the proof of the lemma. O

5.2. Main result.

5.2.1. Settings. We maintain the notation introduced in 3.1.1. Moreover, we assume that the
following holds:
[ ] gX = O
o Ilxs, 7 € {1,2}, is the maximal pro-solvable quotient of the admissible fundamental
group of X
L4 QZ5 S Homgg(ﬂxf,ﬂxg).
def

o Let H1 S GGO(HXI) and Hg = ¢(H1> Q HX20 If H2 € GGO(HXE), then ¢|H1 . H1 — HQ
is a topological specialization homomorphism for all open subgroups Hy C Iy, where

Hy < (¢|n,) " (Hz) C I,
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5.2.2.  We maintain the notation introduced in 5.2.1. Let I'y € Ssg(I'xs) be a boundary sub-
semi-graph. Note that, in this situation, this means that X; \ Xr, is connected or empty, where
X1, € X; denotes the semi-stable curve corresponding I'y (2.2.3).

By applying Theorem 4.9, we obtain that ¢ : ITxs — Ilys is a strong topological specialization
homomorphism. Namely, ¢% = spia’ye|con(r ) holds for some spe'ys : Com(I'xy) —
Com(I'xs) (Definition 4.1). We put

(D2,0) = spiy, (01, 0)).

Then Theorem 4.9 implies that I'y C I'xs is a boundary sub-semi-graph. On the other hand,
write B, C e?(I'xs) for the set of open edges of I'xs on which I'; is abutted, Er, C e*?(I'xs)
for the set of open edges of I" X3 on which I'y is abutted. Note that we have

¢**P(Er,) = Er,.
Let T; C in" i € {1,2}, be a connected component of W;(il(Fi), and Iz C ITys the geometry-

like subgroup associated to fl (2.3.3). Moreover, we put

Bdg® (Ilz) = {Iz C 1y | & € myl(er), e € Br,} C Edg™(Ilxs).

Then we have the following lemma:

Lemma 5.4. We maintain the notation introduced above. Then 1z is generated by {L | I €
Edg® (Il;)}.

Proof. This lemma follows immediately from the facts that gx is equal to 0, and that I'; is a
boundary sub-semi-graph. 0

5.2.3.  We maintain the setting and notation introduced in 5.2.1 and 5.2.2. Before we start
to prove the group-theoretical specialization conjecture under the settings 5.2.1, we will prove
firstly the following:

(¥) : There exists a connected component I'y C fXQ- of myi(I's) such that

o(llg,) = I, .
By Lemma 5.4, (%) is equivalent to the following statement:

(#%) : Let I, , € EdgoEpFl (Ilg,), j € {a,b}. Theorem 3.2 (a) implies ¢(/z, ;) = I,
for some €, ; € e®P(I'xs). Suppose that I, C Ilg, = (or equivalently, €;; € I's ;)
for some connected component I'y; of 75! (I's). Then we have g, =1, ,.

Let Hy C Ilxy be an arbitrary open subgroup and H, o ¢ H(Hy) C Ixs. Write X3,

i € {1,2}, for the pointed stable curve of type (gg,ny) over k; corresponding to H; (note
that Theorem 3.2 (a) implies that the types of X}, and X}, are equal), ff : X7 — X7 the
admissible covering determined by the natural injection H; < Ilxes, I'xe for the dual semi-

graph of X7, and f;gi T Xy ['xs the natural map of dual semi-graphs induced by fz.. We
maintain the notation introduced in (**). Moreover, for j € {a, b}, we denote by
et .j, Uy, €Hsjr U'Hyj
the images of ey, fl, €2, fgd‘ under the natural maps of semi-graphs fo — FX;II and
Ixy =T Xg, respectively. Note that we have
emaremp € €P(Lm), ema € € Tma)s €mp € €Ty
Moreover, we shall write Xle , XEHM , Xsz,b for the pointed stable curves of types (gr PRICVS ),

(9T pty.0> M1y 0)s (GTpy s Py, ), cOrresponding to Iy, Ui, oy i, b, Tespectively. In particular, if
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Hy is an open normal subgroup of Ilxs, we have (gry, ., nry, ) = (9ry, ,» ry, ,)- Then we put

def .
(gru,»r,) = (90, 0 Mgy 0) = (9ry, s N0y, ,) When Hy is an open normal subgroup of Ilxs.

We see that, to verify (xx), it’s sufficient to prove the following statement:
(%) : T'iya = Ty p for arbitrary open subgroup Hy C Ilxg.
In 5.2.4 below, we will prove the statement (x) under the settings 5.2.1 (see Proposition 5.6
below).
If v(Txe) \ v(I;) # 0, write T'¢ for the unique boundary sub-semi-graph of I'xs such that
v(l§) = UZ(FX;) \ v(I';). Moreover, we denote by Xp. the pointed stable curve of tgfpe (0, mr¢)
over k;. On the other hand, since I'xy is a tree, there exists a unique vertex

wy € v(Iy) Cov(l'xy)

such that wy and I'y are connected with a closed edge of " xs. We denote by X3 the smooth
pointed stable curve of type (0,n,,) over ko corresponding to ws.

By applying Lemma 5.3, there exists an open normal subgroup P C Ilys such that TTxs /Py =
Z/U'Z for some ' # p, and that the Galois admissible covering fp : X3, — X3 corresponding

to the natural injection P — llxs satisfies the conditions listed in the conclusion of Lemma

5.3. Let P, & ¢~ (P,), and let X} be the pointed stable curve of type (gp,,np,) over k.

Theorem 3.2 (a) implies that (gp,, np,) = (9p,, np,) and gp, = gp, = 0, where (gp,, np,) denotes
the type of Xp,. Moreover, we note that ¢|p, : Pi — P, is a strong topological specialization
homomorphism (Definition 4.1 and Theorem 4.9). To verify (%), it’s sufficient to prove the
following;:

w0 = I'm, p for arbitrary open subgroup Hy C P.
Then by replacing X?, Ilxs, i € {1,2}, and ¢ by X}, P, and ¢|p,, in the remainder of this
subsection, we may assume (see 2.2.3 for nr,, nr,)

My >> nr2<: npl).

5.2.4.  We maintain the settings and the notation introduced in 5.2.1 and 5.2.3.

Lemma 5.5. Let Hy C Ilxy be an open normal subgroup of Uxs and H, et ¢ H(Hy) C Hxs.

Let wy, € (fi) ' (ws) C U(FX;IQ) be a vertex over wy and X3, - the smooth (since gx = 0)
pointed stable curve of type (ngz,anQ) associated to Wy, Suppose Gy, >> gy, for all wp,.
Then we have 'y, o = I, -

Proof. To verify the lemma, we suppose 'y, o # I'n, 5. We will construct a contradiction.

Let ¢ be the minimal odd prime number distinct from p (i.e. £ is equal to either 3 or 5). Let
21 € H; be an open normal subgroup of H; such that the following conditions are satisfied
(the existence of ()1 follows immediately from the structure of maximal prime-to-p quotients of
admissible fundamental groups):

® Hl/Ql = Z/KZ
e Write X¢, for the pointed stable curve over k; corresponding to )1 and
hy: X3, — Xp,
for the Galois admissible covering determined by )y — H; satisfying the following
conditions:
(i) #mo((hy (Xa, \ Xryy,)) = (#m0(Xm, \ Xry,) (e, by is a trivial covering
over Xp, \ Xry ).
(ii) hy is étale over Dx, \ {ZTey, ., Tey, ,} and is totally ramified over z.,, ,
j € {a, b}, where x,, . denotes the marked point corresponding to eg, ;. Note
that in this situation, hl_l(Xle) is connected.
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We put Q- aof ¢(Q1) C Ilxs. Moreover, we denote by X9, the pointed stable curve over
corresponding to ()2 and
hy = X5, = Xi,
the Galois admissible covering determined by @ — Hy. We see Hy/Qo = Z/VZ.
Write I'x,, , i € {1,2}, for the dual semi-graph of X¢, . Write I'g, C I'xg for the sub-semi-
graph such that the underlying curve of the corresponding pointed stable curve X7 o, is equal

to hfl(Xle ). By the construction of h$ and the choice of ¢, we have

grg, = E(gFHl - 1) + (f - 1) +1<< Guwp, >
where gr,, denotes the genus of Xt o0
On the other hand, since we assume that ¢|g, : Q1 — @2 is a topological specialization
homomorphism (i.e. the settings 5.2.1), there is a map of combinatorial data (i.e. the map of
dual semi-graphs induced by a degeneration or reduction)

SPO 0y Com(FXél) — Com(FXéQ).
We put (I',, 0) < 5P, (T, 0)). Then we have the following claim.
Claim: h3*(I'g,) C FXZIQ contains Ty, and Ty, p, where hif : FXZQQ — FXEIQ
denotes the map of dual semi-graphs induced by hy. In particular, hy(Tg,)
contains wy, for some wy, € (fir,) " (w2) € v(Txs ).
Let us prove the claim. Since I' Xg, can be regarded as the dual semi-graph of

a reduction of X and spgyg, is induced by the reduction map, the action of

ZJlZ on I' xg, (determined by the action of Z/¢Z on X¢, induced by the Galois
admissible covering h?) induces uniquely an action of Z/¢Z on T Xg, -

Note that we do not know whether or not the action of Z/¢Z on I X8, defined
above coincides with the action Z/¢Z on T’ xe, induced by the Galois admissible
covering h$. In the remainder of the proof of the claim, we only consider the
action of Z/¢{Z on T xe, induced by the action of Z/¢Z on I' xe, defined above.

Let G C I'xg be an arbitrary sub-semi-graph such that v(G) Nv(ly,) =
(). By the construction of X4,, we see that the decomposition subgroup of

G under the action of Z/¢Z is trivial, and the the decomposition subgroup
of I'g, under the action of Z/(Z is Z/lZ. Then we have the decomposition
subgroup of spiyr, (G) under the action of Z/(Z is trivial, and the decomposition
subgroup of I'q, = spgio,(I'g,) under the action of Z/¢Z is Z/{Z. Since the
decomposition group of eq, ;, 7 € {a, b}, under the action of Z/(Z is Z/{Z, where
eg,,; 1s defined in 5.2.3 by replacing Hy by ()2, we see that eg, j, j € {a,b}, is
contained in e®(I'g,). Thus, h3*(T'g,) C 'y, contains 'y, ;, j € {a,b}, since
h3'(€Qa4) = €ryj € € (Lt g)-

On the other hand, since hy*(Tg,) is connected and I'p,, is distinct from
Ly, then hif(Lg,) contains wy, for some wy, € (fif,) " (w2) C v(lxy, ). We
complete the proof of the claim.

We return to prove the lemma. By the claim, we obtain
grq, = Jro, z Gw, >

where gr, denotes the genus of the pointed stable curve XEQ2 corresponding to I'g,. We obtain
a contradiction. This completes the proof of the lemma. O

Proposition 5.6. The statement (x) mentioned in 5.2.3 holds. In particular, the statement
(%) mentioned in 5.2.3 holds.
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Proof. Suppose that (x) does not hold. Then there exists an open subgroup @ C ILys such
that

FQQ,a 7é FQz,b'

Thus, for any open subgroup P» C @), we have I'p, , # I'p, ;. Let us construct a contradiction.
Let £ >> #(Ilxs /Q1) = #(Ilx3/Q2) be a prime number prime to p and K, C Ilys an open
normal subgroup such that the following conditions are satisfied (the existence of K, follows
immediately from the structure of maximal prime-to-p quotients of admissible fundamental
groups):
® HX2-/K2 = Z/EZ
o Write ff, : X%, — X3 for the Galois admissible covering over ky corresponding to
Ky < llxs. Then ff. is totally ramified over

(Xuz N Dxz) U ((Xup N X5™) \ (X, N X5M))
and is étale over (Xr, N X3™®) U (Xr, N Dx,). Note that in this situation, f§, induces

a trivial covering over X7, .

We put Ky = ¢~ '(K3). Write fr, : X§ — X7 for the Galois admissible covering over k;
corresponding to K; < Ilxs. Since ¢ is a strong topological specialization homomorphism
(Theorem 4.9), we see that

(gFKl ) nFKl) = (gFKQ,av nFKQ,a) = (gFKQ,bv nFKQ,b>‘

On the other hand, since we assume n,,, >> nr,, we obtain that

ug, =2 Yiya = 9Ty = 9Tk, WKy € (f}sé)iww?) C U(FXI'(2>'

We put Hy © Ky N Qy and H, © ¢~ (Hy). Write f3, : X3 — Xp, i € {1,2}, for the Galois

admissible covering over k; corresponding to H; — HX;. The choice of ¢ >> #(HX; Q1) =
#(Ilxs/Q2) and the fact gu,, >> gry, , = gr,, = gry, imply
up, >> Yruya = 9wy Guwn, == 9Ty, -
Note that we do not know whether or not gr,, , = gry,, = grj,, holds in general. Thus, by
Lemma 5.5, we obtain
Urya = Thype
This contradicts the fact I'y, o 7# I'm,» since Hy is contained in ()2. We complete the proof of

the proposition. [l

Corollary 5.7. We maintain the notation introduced in 3.1.1. Suppose that the following hold:
e gx =0.
o IIx:, i € {1,2}, is the maximal pro-solvable quotient of the admissible fundamental
group of X?.
o gb S Homgg(fo,HXQ-).
o Let 1y € Geo(Ilxs) and Ty & ¢(I1y) C Txs. If 11y € Geo(Ilxs), then @|u, : Hy — Hy
is a topological specialization homomorphism (Definition 3.1 (a)) for all open subgroups
HQ g Hg, where H1 déf (¢|H1)71(H2) Q Hl.
Let 'y be a boundary sub-semi-graph I'y € Ssg(I'xs) (Definition 5.1), T, a connected component
of W)_{}(IH) C fX;, and Il € Geo(Ilxy) the geometry-like subgroup associated to T). Then we
have

qb(Hfl) € Geo(llxy)
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Proof. Proposition 5.6 implies that there exist a sub-semi-graph I'y € Ssg(I'xs) and a connected
component I'y € Tx, (D2) such that Iz = ¢(Ilz ) € Geo(Ilxy), where Il is the geometry-like
subgroup associated to fg. This complete the proof of the corollary. 0

5.2.5. The main theorem of the present section is the following:

Theorem 5.8. We maintain the notation introduced in 3.1.1. Moreover, we assume that the
following holds:
e gx = 0.
o [Iys, 1 € {1,2}, is the maximal pro-solvable quotient of the admissible fundamental
group of X;.
L4 Cb S Homgg(HXI,HXQ-).
o Let I, € Geo(Ilxs) and Ty = ¢(I1,) C Tlys. If Iy € Geo(Tlys), then @|u, : Hy — Ho
is a topological specialization homomorphism (Definition 3.1 (a)) for all open subgroups
Hy C 11y, where Hy < (¢)m,) " (Hs) C 114
Then ¢ is a group-theoretical specialization homomorphism (i.e. the group-theoretical special-
ization congecture holds (3.1.3)).

Proof. Suppose #(v(I'xs)) = 1. Then the theorem is trivial. To verify the theorem, we assume
#(v(Txp)) = 2.

Let v; € v(I'ys) be an arbitrary vertex of I'xs, 01 € 71';(} (v1) C fxl-, and Ilg, € Ver(ILys) the
vertex-like subgroup associated to v;. To verify the theorem, by Proposition 3.9, it’s sufficient
to prove ¢(Il5,) € Geo(Ilyxy). Let I' be a tree-like semi-graph. We shall denote by (see 2.2.5 for
r,).

vB(T) & {veo)|T, is a boundary sub-semi-graph of I'}.
Suppose v; € UB(FXI). Then the theorem follows immediately from Corollary 5.7. Then
we may assume v; & v°(I'xs). Let wy € v®(T'xs). Then I'y o I, € Ssg(I'xs) is a boundary
sub-semi-graph such that v; € v(I';). Let fl be the connected component of w;(}(Fl) C leo

containing v; and Il € Geo(Ilxs) the geometry-like subgroup associated to fl. Note that we
have
Il;, C Hfl.

Corollary 5.7 implies that there exist a sub-semi-graph I'y € Ssg(I'xs) and a connected com-
ponent Iy € T (I'2) such that Iz, = ¢(Illz,) € Geo(Ilxy), where Il is the geometry-like
subgroup associated to I's.

Suppose v; € v2(I'}). Then by applying Corollary 5.7 for ¢ I Iz, — Tl (our assumptions

say that ¢|y, : Hy — Hs is a topological specialization homomorphism for all open subgroups

Hy C Il , where H, o (¢l )~'(Hz) C Iy ), we obtain ¢(Ilg,) € Geo(Ils ) € Geo(Ilxy).

Suppose v; € vB(T'1). Note that it is easy to see that there exists a sub-semi-graph I'" € Ssg(T’ x2)
such that I',, is a boundary sub-semi-graph of I (e.g. I',,). Then by replacing I'xs, ¢ by T'y,
¢|Hf1, respectively, and by repeating the arguments to the arguments given above, we obtain

¢(Il5,) € Geo(ILys). This completes the proof of the theorem. O
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