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1. Introduction

1.1. Anabelian geometry. In the 1980s, A. Grothendieck suggested a theory of arithmetic
geometry called anabelian geometry ([G]), roughly speaking, which focuses on the following
question: Can we reconstruct the geometric information of a variety group-theoretically from
various versions of its algebraic fundamental group? The varieties which can be completely
determined by their fundamental groups are called “anabelian varieties” by Grothendieck, and
to classify the anabelian varieties in all dimensions over all fields is called “anabelian dream”
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of him. In the particular case of dimension 1, he conjectured that all smooth pointed stable
curves, or hyperbolic curves (defined over certain fields) are anabelian varieties.

1.1.1. Let p be a prime number and #(−) the cardinality of (−). Let
X• = (X,DX)

be a pointed stable curve of type (gX , nX) over a field k of characteristic char(k), where X
denotes the underlying curve which is a semi-stable curve over k, DX denotes the (finite) set of

marked points satisfying [K, Definition 1.1 (iv)], gX denotes the genus of X, and nX
def
= #(DX).

In the present introduction, “curves” means pointed stable curves unless indicated otherwise.

1.1.2. Grothendieck’s anabelian philosophy. Suppose that X• is smooth over k. When k is
an “arithmetic” field (e.g. a number field, a p-adic field, a finite field, etc.), Grothendieck’s
anabelian conjectures for curves (or the Grothendieck conjectures for short), roughly speaking,
are based on the following anabelian philosophy (see [G, p289 (6)] for a precise statement):

Hom-version: The sets of dominant morphisms of smooth pointed stable curves
can be determined group-theoretically from the sets of open continuous homo-
morphisms of their algebraic fundamental groups.

In particular, we have the following two versions:

Isom-version: The sets of isomorphisms of smooth pointed stable curves can be
determined group-theoretically from the sets of isomorphisms of their algebraic
fundamental groups.

Weak Isom-version: The isomorphism class of X• can be determined group-
theoretically from the isomorphism class of its algebraic fundamental group.

Grothendieck’s anabelian philosophy tells us, over arithmetic fields, what geometric behavior
of curves should be anabelian.

1.1.3. Anabelian geometry of curves over arithemetic fields. Grothendieck’s anabelian conjec-
tures over arithmetic fields have been proven in many cases (e.g. see [P], [MNT], [T1] for
surveys). All the proofs of the Grothendieck conjectures for curves over arithmetic fields men-
tioned above require the use of the non-trivial outer Galois representations induced by the
fundamental exact sequences of fundamental groups.

1.1.4. Beyond the arithmetical action. Next, we consider the case where X• is an arbitrary
pointed stable curve, and suppose that k is an algebraically closed field. Let πadm

1 (X•) be
the admissible fundamental group of X• (see 2.2.2). Note that if X• is smooth over k, then
πadm
1 (X•) is naturally isomorphic to the tame fundamental group πt

1(X
•). When char(k) = 0,

since the isomorphism class of πadm
1 (X•) depends only on the type (gX , nX), the anabelian

geometry of curves does not exist in this situation. On the other hand, if char(k) = p, the
situation is quite different from that in characteristic 0. The admissible fundamental group
πadm
1 (X•) is very mysterious and its structure is no longer known. In the remainder of the

introduction, we assume that k is an algebraically closed field of characteristic p.
After M. Raynaud and D. Harbater proved Abhyankar’s conjecture, Harbater asked whether

or not the geometric information of a curve over k can be carried out from its geometric funda-
mental groups ([Ha1], [Ha2]). Since the late 1990s, based on the philosophy concerning “Weak
Isom-version” explained in 1.1.2, some results of Raynaud ([R]), F. Pop-M. Säıdi ([PS]), A.
Tamagawa ([T2], [T4], [T5]), and the author of the present paper ([Y1], [Y2]) showed evidences
for very strong anabelian phenomena for curves over algebraically closed fields of characteristic
p (see [T3] for more about this conjectural world based on Grothendieck’s anabelian philoso-
phy mentioned in 1.1.2). In this situation, the arithmetic fundamental group coincides with the
geometric fundamental group, thus there is a total absence of a Galois action of the base field.
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This kind of anabelian phenomenon is the reason why we do not have an explicit description
of the geometric fundamental group of any pointed stable curve in characteristic p.

The anabelian geometry of curves over algebraically closed fields of characteristic p is very
difficult. At present, in this situation, the Grothendieck conjecture was proved only in the case
of weak Isom-version under the assumption that curves are defined over Fp of type (0, nX), and

that curves are defined over Fp of type (1, 1) if p 6= 2 ([S, Theorem 1.2], [T4, Theorem 0.2],
[T6], [Y1, Theorem 1.2 and Theorem 1.3], [Y4, Theorem 3.8]).
Since Tamagawa discovered that there also exists the anabelian geometry for certain smooth

pointed stable curves over algebraically closed fields of characteristic p, 28 years have passed.
However, the “Weak Isom-version” is still the only anabelian phenomenon that we know in this
situation, and we cannot even imagine what phenomena arose from curves and their funda-
mental groups should be anabelian until the author of the present paper observed a new kind
anabelian phenomenon explained below.

1.2. Motivation.

1.2.1. A new kind of anabelian phenomenon. When we try to formulate a “Hom-version” con-
jecture for curves over algebraically closed fields of characteristic p based on Grothendieck’s
anabelian philosophy mentioned in 1.1.2 (i.e. an analogue of the conjecture posed in [G, p289
(6)]), we see that the set of dominant morphisms between two pointed stable curves are possibly
empty, and that the set of open continuous homomorphisms of their admissible fundamental
groups are not empty in general (e.g. specialization homomorphisms of a non-isotrivial family
of pointed stable curves). Then the relation of two pointed stable curves cannot be determined
by the set of open continuous homomorphisms of their admissible fundamental groups if we
only consider anabelian geometry in the sense of “Hom-version” mentioned in 1.1.2. In fact,
the existence of specialization homomorphisms is the reason that Tamagawa cannot formulate
a “Hom-version” conjecture for tame fundamental groups of smooth pointed stable curves in
general ([T3, Remark 1.34]).

On the other hand, the author observed a new phenomenon that has never been seen be-
fore: It is possible that the sets of deformations of a smooth pointed stable curve can be
reconstructed group-theoretically from open continuous homomorphisms of their admissible
fundamental groups. This observation implies a new kind of anabelian phenomenon that can-
not be explained by using Grothendieck’s original anabelian philosophy mentioned in 1.1.2: The
topological structures of moduli spaces of curves in positive characteristic are encoded in the
sets of open continuous homomorphisms of geometric fundamental groups of curves in positive
characteristic.

This new kind of anabelian phenomenon can be precisely captured by using the so-called
moduli spaces of admissible fundamental groups and the homeomorphism conjecture introduced
in [Y7], [Y8]. Let us briefly explain them in 1.2.2.

1.2.2. Moduli spaces of admissible fundamental groups and the homeomorphism conjecture. Let
Mg,n,Z be the moduli stack over Z parameterizing pointed stable curves of type (g, n) andM g,n

the coarse moduli space ofMg,n,Z×ZFp. In [Y7, Section 3.2], the author introduced a topological
space Πg,n in a group-theoretical way, whose underlying set consists of the isomorphism classes
(as profinite groups) of admissible fundamental groups of curves of type (g, n), and whose
topology is determined by the sets of finite quotients of admissible fundamental groups of
curves of type (g, n). We shall call Πg,n the moduli space of admissible fundamental groups of
type (g, n).

There exists a natural map (as sets) M g,n → Πg,n defined by q 7→ [Πq], where Πq denotes the
admissible fundamental group of the curve corresponding to a geometric point over q, and [Πq]
denotes the isomorphism class of Πq. By introducing the so-called Frobenius equivalence ∼fe
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on M g,n (see [Y4, Definition 3.4]), we have a continuous surjective map ([Y7, Theorem 3.6])

πadm
g,n : Mg,n

def
= M g,n/ ∼fe↠ Πg,n, [q] 7→ [Πq],

where [q] denotes the equivalence class of q, and Mg,n is the quotient topological space whose
topology is induced by the Zariski topology of M g,n. Moreover, we posed the so-called homeo-
morphism conjecture ([Y7, Section 3.3]) which says that πadm

g,n is a homeomorphism.
The homeomorphism conjecture generalizes all the conjectures appeared in the theory of ad-

missible (or tame) anabelian geometry of curves over algebraically closed fields of characteristic
p, and means that the moduli spaces of curves in positive characteristic can be reconstructed
group-theoretically as topological spaces from sets of open continuous homomorphisms of ad-
missible fundamental groups of pointed stable curves in positive characteristic. Moreover, it
sheds some new light on the theory of the anabelian geometry of curves over algebraically closed
fields of characteristic p based on the following new anabelian philosophy:

The anabelian properties of pointed stable curves over algebraically closed fields
of characteristic p are equivalent to the topological properties of the topological
space Πg,n.

The above philosophy supplies a point of view to see what anabelian phenomena that we can
reasonably expect for pointed stable curves over algebraically closed fields of characteristic p.

1.2.3. Towards the homeomorphism conjecture for higher dimensional moduli spaces. The home-
omorphism conjecture has been proved by the author in the case where dim(M g,n) ≤ 1 (e.g.
see [Y7, Theorem 6.7] for the case of g = 0). The main goal of the anabelian geometry of curves
over algebraically closed fields of characteristic p is to prove the homeomorphism conjecture for
higher dimensional moduli spaces. The author believes that it can be proved by the following
steps:

• Step 1 (closed points): prove the homeomorphism conjecture for closed points of Mg,n.
• Step 2 (non-closed points corresponding to smooth curves): prove the homeomorphism

conjecture for non-closed points of Mg,n
def
= Mg,n/ ∼fe⊆Mg,n by using Step 1.

• Step 3 (from smooth to singular): prove the homeomorphism conjecture by using Step
2.

When g = 0, Step 1 has been completed by the author ([Y7, Theorem 6.7]). The Step 2 is
equivalent to the weak Hom-version conjecture and the pointed collection conjecture formulated
in [HYZ, Section 2].

In the present paper, we treat Step 3 and give a precise formulation via the group-theoretical
specialization conjecture explained below. On the other hand, in the remainder of the introduc-
tion, we also treat the case of maximal pro-solvable quotients of admissible fundamental groups
(or pro-solvable admissible fundamental groups for short). Note that the pro-solvable version
is stronger than the original version in general since the pro-solvable admissible fundamental
groups can be reconstructed group-theoretically from admissible fundamental groups.

1.3. Various specializations via fundamental groups.

1.3.1. Let X•
i , i ∈ {1, 2}, be an arbitrary pointed stable curve of type (gX , nX) over ki of char-

acteristic p, ΓX•
i
the dual semi-graph of X•

i (2.2.1), and ΠX•
i
either the admissible fundamental

group of X•
i or the maximal pro-solvable quotient of the admissible fundamental group of X•

i .
We put Homop

pg(ΠX•
1
,ΠX•

2
) the set of open continuous homomorphisms between ΠX•

1
and ΠX•

2
,

and let φ ∈ Homop
pg(ΠX•

1
,ΠX•

2
) be an arbitrary open continuous homomorphism. Note that φ is

a surjection since the types of X•
1 and X•

2 are equal (see [Y7, Lemma 4.3]).
To complete Step 3 mentioned in 1.2.3 (i.e. to prove the homeomorphism conjecture for

arbitrary pointed stable curves by using the homeomorphism conjecture for smooth curves),
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we need to establish a precise group-theoretical correspondence via φ between various “pointed
stable sub-curves” (2.2.3, 2.2.4, 2.2.5) of X•

1 and X•
2 (e.g. pointed stable curves associated to

irreducible components of X•
1 and X•

2 ). Namely, we need the following:

(i) Give a group-theoretical description of various pointed stable sub-curves of
X•

i via the closed subgroups of ΠX•
i
.

(ii) Establish a correspondence between the closed subgroups of ΠX•
1
and ΠX•

2

appeared in (i) via φ.

1.3.2. Combinatorial data, topological data, and geometric data. For (i) mentioned above, we
introduce the following sets

Com(ΓX•
i
), Typ(X•

i ), Geo(ΠX•
i
)

which we call the combinatorial data associated to ΓX•
i
, the topological data associated to X•

i ,
and the geometric data associated to ΠX•

i
, respectively (see Section 2.3 and Definition 2.5 for

precise definitions). Roughly speaking, Com(ΓX•
i
) consists of various sub-semi-graphs of ΓX•

i

(see 2.1.2) which encodes the gluing data of various pointed stable sub-curves of X•
i , Typ(X

•
i )

consists of the topological types of various pointed stable sub-curves of X•
i , and Geo(ΠX•

i
)

consists of the closed subgroups of ΠX•
i
which are isomorphic to the admissible fundamental

groups (or pro-solvable admissible fundamental groups) of various pointed stable sub-curves of
X•

i .
Some special cases of the above data have been studied by Tamagawa when X•

i is smooth over
ki ([T3], [T4]) and by the author when X•

i is an arbitrary pointed stable curve ([Y1], [Y2]).
Moreover, in [Y2], the author proved that the dual semi-graph of a pointed stable curve in
positive characteristic can be reconstructed group-theoretically from its pro-solvable admissible
fundamental groups. As a corollary, we have that Com(ΓX•

i
), Typ(X•

i ) can be determined by
Geo(ΠX•

i
), and that Geo(ΠX•

i
) can be reconstructed group-theoretically from ΠX•

i
(see [Y2,

Theorem 0.3] or Theorem 2.6 and Remark 2.6.1 of the present paper for explanations).

1.3.3. Specializations via fundamental groups. For (ii) mentioned in 1.3.1 (this is the main topic
of the present paper), we have the following conjectures (see 3.1.3 and Proposition 3.9 for more
precise formulations and some other equivalent formulations):

Topological Specialization Conjecture . Suppose that Homop
pg(ΠX•

1
,ΠX•

2
) is not empty.

Then X•
2 is a degeneration (or reduction) of X•

1 as “topological spaces”.

Group-theoretical Specialization Conjecture . Let φ ∈ Homop
pg(ΠX•

1
,ΠX•

2
) be an arbitrary

open continuous homomorphism. Then we have

φ(Geo(ΠX•
1
)) ⊆ Geo(ΠX•

2
).

Proposition 3.6 of the present paper says that the topological specialization conjecture can be
deduced from the group-theoretical specialization conjecture.

New anabelian phenomena. Let us explain the anabelian phenomena concerning the above
conjectures. Let q1, q2 ∈M g,n be arbitrary points such that q2 is contained in V (q1), where V (q1)
denotes the topological closure of q1 in M g,n. Then there exist a complete discrete valuation
ring R and a morphism SpecR → Mg,n → M g,n such that the image of the morphism is
{q1, q2}. Let η and s be a geometric generic point and a geometric closed point over the generic
point and the closed point of SpecR, respectively. Write X • for the pointed stable curve over
R determined by the morphism SpecR → Mg,n, X •

η for the generic fiber, X •
s for the special

fiber, X•
q1

for X•
η

def
= X •

η ×η η, and X
•
q2

for X•
s

def
= X •

s ×s s.
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By the general theories of log geometry and admissible fundamental groups, we obtain a spe-
cialization surjective homomorphism of admissible fundamental groups (=an open continuous
homomorphism of admissible fundamental groups arising from scheme theory, see [SGA1], [V])

spadmR : ΠX•
q1
↠ ΠX•

q2
.

Since X •
s is a reduction of X •

η , the deformation theory of admissible coverings of X • implies
that

spadmR (Geo(ΠX•
q1
)) ⊆ Geo(ΠX•

q2
),

where Geo(ΠX•
qi
), i ∈ {1, 2}, denotes the geometric data associated to ΠX•

qi
. For instance,

let Π1 ∈ Geo(ΠX•
q1
) be a closed subgroup of ΠX•

q1
associated to the pointed stable sub-curve

X̃•
v1

determined by an irreducible component Xv1 of Xη = Xq1 (see 2.2.4 for X̃•
v1
). Then

spadmR (Π1) is a closed subgroup of ΠX•
q2

associated to the pointed stable sub-curve determined

by the degeneration (or reduction) of Xv1 in Xs = Xq2 . This means that we have the following
geometric phenomena:

• The combinatorial data Com(ΓX•
q2
) and the topological data Typ(X•

q2
) can be controlled

by the combinatorial data Com(ΓX•
q1
) and the topological data Typ(X•

q1
) via the “de-

formation” X • of X•
q2

over R arising from scheme theory.
• The geometric data Geo(ΠX•

q2
) ofX•

q2
can be controlled by the geometric data Geo(ΠX•

q1
)

of X•
q1

via an open continuous homomorphism spadmR of admissible fundamental groups
arising from scheme theory.

On the other hand, the topological specialization conjecture and the group-theoretical spe-
cialization conjecture mean that there should exist the following anabelian phenomena:

• The combinatorial data Com(ΓX•
q2
) and the topological data Typ(X•

q2
) can be controlled

by the combinatorial data Com(ΓX•
q1
) and the topological data Typ(X•

q1
) via the “de-

formation” Homop
pg(ΠX•

q1
,ΠX•

q2
) explained in 1.2.1 which is arose from group theory.

• The geometric data Geo(ΠX•
q2
) ofX•

q2
can be controlled by the geometric data Geo(ΠX•

q1
)

of X•
q1

via an arbitrary open continuous homomorphism φ of admissible fundamental
groups which is arose from group theory.

1.3.4. The topological specialization conjecture and the group-theoretical specialization con-
jecture are very difficult. They are highly non-trivial even in the simplest case where X•

i , i ∈
{1, 2}, is smooth over ki, Hom

op
pg(ΠX•

1
,ΠX•

2
) = Isompg(ΠX•

1
,ΠX•

2
) (this condition is equivalent to

Isompg(ΠX•
1
,ΠX•

2
) 6= ∅), and φ ∈ Isompg(ΠX•

1
,ΠX•

2
) is an isomorphism, where Isompg(ΠX•

1
,ΠX•

2
)

denotes the set of isomorphisms of admissible fundamental groups (or the maximal pro-solvable
quotients of admissible fundamental groups). In this special case, the above conjectures were
proved by Tamagawa which are the main results of [T4] (see [T4, Theorem 0.1 and Theorem
5.2]).

If we assume that Homop
pg(ΠX•

1
,ΠX•

2
) = Isompg(ΠX•

1
,ΠX•

2
), and that φ ∈ Isomgp(ΠX•

1
,ΠX•

2
)

is an isomorphism, then the group-theoretical specialization conjecture is equivalent to the
so-called “combinatorial Grothendieck conjecture” which is the main conjecture in the theory
of combinatorial anabelian geometry developed by Y. Hoshi and S. Mochizuki (e.g. [HM1],
[HM2], [M2]) in characteristic 0, and by the author in characteristic p ([Y1], [Y2]). Thus, the
group-theoretical specialization conjecture can be regarded as the ultimate generalization of the
combinatorial Grothendieck conjecture in characteristic p.
On the other hand, the combinatorial Grothendieck conjecture is an “Isom-version” problem,

and the group-theoretical specialization conjecture is a “Hom-version” problem. Similar to
other theory in anabelian geometry, Hom-version problems are so much harder than the Isom-
version problems.
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1.3.5. Main results. Now, we give the main results of the present paper. For the topological
specialization conjecture, we have the following result (see Theorem 4.9 for a more precise
statement):

Theorem 1.1. The topological specialization conjecture holds when gX = 0.

The group-theoretical specialization conjecture are so much harder than the topological spe-
cialization conjecture since we need to treat all open subgroups of admissible fundamental
groups. On the other hand, we may ask the following question:

Problem 1.2. Does the topological specialization conjecture imply the group-theoretical special-
ization conjecture?

By applying Theorem 1.1, we have the following result (see Theorem 5.8 for a more precise
statement):

Theorem 1.3. Suppose that the topological specialization conjecture holds for arbitrary types.
Then the group-theoretical specialization conjecture holds when gX = 0.

1.4. Structure of the present paper. The present paper is organized as follows.
In Section 2, we recall some notation concerning semi-graphs, pointed stable curves, and

admissible fundamental groups. Moreover, we introduce combinatorial data, topological data,
and geometric data.
In Section 3, we introduce the topological and group-theoretical specialization homomor-

phisms of admissible fundamental groups, and formulate the topological specialization conjec-
ture and the group-theoretical specialization conjecture. Moreover, we prove some properties
concerning topological and group-theoretical specialization homomorphisms.

In Section 4, we prove Theorem 1.1.
In Section 5, we prove Theorem 1.3.

1.5. Acknowledgments. The main results of the present paper were obtained in the summer
of 2021. The author would like to thank the referee very much for understanding my research,
for carefully reading the manuscript, and for giving me many comments which substantially
helped improving the quality of the paper. Special thanks are due for identifying a gap in the
construction of the boundary sub-semi-graphs in Section 5. This work was supported by JSPS
KAKENHI Grant Number 20K14283, and by the Research Institute for Mathematical Sciences
(RIMS), an International Joint Usage/Research Center located in Kyoto University.

2. Geometric data associated to pointed stable curves

In this section, we recall some notation concerning pointed stable curves and their admis-
sible fundamental groups. Moreover, we introduce the so-called geometric data associated to
admissible fundamental groups of pointed stable curves.

2.1. Semi-graphs. In this subsection, we recall some notation concerning semi-graphs ([M1,
Section 1]).

2.1.1. (a) Let

G
def
= (v(G), e(G), {ζGe : e→ v(G) ∪ {v(G)}}e∈e(G))

be a semi-graph. Here, v(G), e(G), and {ζGe }e∈e(G) denote the set of vertices of G, the set of
edges of G, and the set of coincidence maps of G, respectively. Note that {v(G)} is a set with
exactly one element.

Let e ∈ e(G) be an edge. Then e
def
= {b1e, b2e} is a set of cardinality 2 for each e ∈ e(G). The

set e(G) consists of closed edges and open edges. If e is a closed edge, then the coincidence
map ζGe is a map from e to the set of vertices to which e abuts. If e is an open edge, then the
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coincidence map ζGe is a map from e to the set which consists of the unique vertex to which e
abuts and the set {v(G)} (i.e. either ζGe (b1e) or ζ

G
e (b2e) is not contained in v(G)).

(b) We shall write eop(G) ⊆ e(G) for the set of open edges of G and ecl(G) ⊆ e(G) for the
set of closed edges of G. Note that we have

e(G) = eop(G) ∪ ecl(G).

Moreover, we denote by elp(G) ⊆ ecl(G) the subset of closed edges such that #(ζGe (e)) = 1
(i.e. a closed edge which abuts to a unique vertex of G), where “lp” means “loop”. For each
e ∈ e(G), we denote by vG(e) ⊆ v(G) the set of vertices of G to which e abuts. For each
v ∈ v(G), we denote by eG(v) ⊆ e(G) the set of edges of G to which v is abutted.

(c) We shall say G connected if G is connected as a topological space whose topology is

induced by the topology of R2, where R denotes the real number field. We denote by rG
def
=

dimQ(H
1(G,Q)) the Betti number of G, where Q denotes the rational number field. Moreover,

we shall call G a tree if rG = 0.
Let v ∈ v(G). We shall say that G is 2-connected at v if G\{v} is either empty or connected.

Moreover, we shall say that G is 2-connected if G is 2-connected at each v ∈ v(G).
(d) We define an one-point compactification Gcpt of G as follows: if eop(G) = ∅, we put

Gcpt = G; otherwise, the set of vertices of Gcpt is the disjoint union v(Gcpt)
def
= v(G) t {v∞},

the set of closed edges of Gcpt is ecl(Gcpt)
def
= eop(G) ∪ ecl(G), the set of open edges of Gcpt is

empty, and every edge e ∈ eop(G) ⊆ ecl(Gcpt) connects v∞ with the vertex that is abutted by
e.

Remark. The motivations of the above notation concerning semi-graphs are the dual semi-
graphs of pointed stable curves (see 2.2.1 below).

Example 2.1. Let us give an example of semi-graph to explain the above notation. We use
the notation “•” and “◦ with a line segment” to denote a vertex and an open edge, respectively.
Let G be a semi-graph as follows:

v1

e1

e2

e3 v2 e4G:

Then we see v(G) = {v1, v2}, ecl(G) = {e1, e2, e3}, eop(G) = {e4}, ζGe1 (e1) = {v1, v2}, ζ
G
e2
(e2) =

{v1, v2}, ζGe3 (e3) = {v1}, and ζGe4 (e4) = {v2, {v(G)}}. Moreover, we have elp(G) = {e3},
vG(e1) = {v1, v2}, vG(e2) = {v1, v2}, vG(e3) = {v1}, vG(e4) = {v2}, eG(v1) = {e1, e2, e3},
and eG(v2) = {e1, e2, e4}.

Moreover, Gcpt is the following:

v1

e1

e2

e3 v2 v∞Gcpt:

2.1.2. (a) Let G′ be a connected semi-graph. We shall say G′ a sub-semi-graph of G if either
G′ = {e} for some e ∈ e(G) or the following conditions hold:
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(i) v(G′) 6= ∅ and v(G′) ⊆ v(G).
(ii) ecl(G′) ⊆ ecl(G) is the subset of closed edges such that vG(e) ⊆ v(G′).
(iii) eop(G′) ⊆ (ecl(G) ∪ eop(G)) \ ecl(G′) is the subset of edges such that
#(vG(e) ∩ v(G′)) = 1.

Note that the definition of G′ implies that G′ can be completely determined by v(G′) if v(G′) 6=
∅.

The condition (ii) implies that, if e ∈ elp(G) is a loop and vG(e) ⊆ v(G′), then e ∈ elp(G′) ⊆
ecl(G′). If G′ = {e} for some e ∈ e(G), we will use e to denote G′. Moreover, there exists
a natural injection G′ ↪→ G, and G′ can be regarded as a topological subspace of G via this
injection.

(b) Suppose that G′ is a sub-semi-graph of G such that v(G′) 6= ∅. Let L ⊆ ecl(G′) be a
subset of closed edges of G′ such that G′ \ L (i.e. removing L from G′) is connected. For any

e
def
= {b1e, b2e} ∈ L, we put ei

def
= {b1ei , b2ei}, i ∈ {1, 2}, and shall call ei the i-edge associated to e.

We shall say that G′
L is the semi-graph associated to G′ and L if the following conditions hold:

(i) v(G′
L)

def
= v(G′).

(ii) eop(G′
L)

def
= eop(G′)∪{e1, e2}e∈L, ζ

G′
L

e (e) = {ζG′
e (b1e), {v(G′

L)}} if e = {b1e, b2e} ∈
eop(G′) and ζG

′
e (b1e) ∈ v(G′), ζ

G′
L

e1 (e1)
def
= {ζG′

e (b1e), {v(G′
L)}} if e1 is the 1-edge

associated to e ∈ L, and ζG
′
L

e2 (e2)
def
= {ζG′

e (b2e), {v(G′
L)}} if e2 is the 2-edge asso-

ciated to e ∈ L.
(iii) ecl(G′

L)
def
= ecl(G′) \ L, and ζG

′
L

e (e)
def
= ζG

′
e (e) if e ∈ ecl(G′) \ L.

Then we have a natural map of semi-graphs

δ(G′,L) : G
′
L → G′

which is defined as follows:

• δ(G′,L)(v) = v for v ∈ v(G′
L).

• δ(G′,L)(e) = e for e ∈ e(G′
L) \ {e1, e2}e∈L.

• δ(G′,L)(e
i) = e, i ∈ {1, 2}, for i-edge associated to e ∈ L.

Moreover, we put δG′
L
: G′

L

δ(G′,L)→ G′ ↪→ G the composition of maps of semi-graphs. Note that
δG′

L
|G′

L\{e1,e2}e∈L
is an injection.

Remark. The motivations of the above notation concerning semi-graphs are the dual semi-
graphs of pointed stable sub-curves (see 2.2.3, 2.2.4, and 2.2.5 below).

Example 2.2. We give some examples of semi-graphs to explain the above notation. We use
the notation “ • ” and “ ◦ ” to denote a vertex and an open edge, respectively.

Let G be a semi-graph, G′ the sub-semi-graph of G such that v(G′) = {v1}, and L
def
= {e1} ⊆

ecl(G′) a subset of edges of G′ and {e11, e21} the set of 1-edge and 2-edge associated to e1. Then
we have the following:

v1

e2

e3

e1 v2 e4G:
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v1

e3

e2

e1G′:

v1

e21

e11

e3

e2

G′
L:

2.2. Pointed stable curves and admissible fundamental groups. In this subsection, we
recall some notation concerning pointed stable curves and their admissible fundamental groups.

2.2.1. Let p be a prime number, and let

X• = (X,DX)

be a pointed stable curve over an algebraically closed field k of characteristic p, where X
denotes the underlying projective semi-stable curve and DX denotes a finite set of marked
points satisfying [K, Definition 1.1 (iv)]. Write gX for the genus of X and nX for the cardinality
#(DX) of DX . We shall call (gX , nX) the topological type (or type for short) of X•.
Recall that the dual semi-graph

ΓX•
def
= (v(ΓX•), e(ΓX•), {ζΓX•

e }e∈e(ΓX• ))

of X• is a semi-graph associated to X• defined as follows (see also [Y6, Section 1B]):

(i) v(ΓX•) is the set of irreducible components of X.
(ii) eop(ΓX•) is the set of marked points DX .
(iii) ecl(ΓX•) is the set of singular points (or nodes) Xsing of X.
(iv) ζΓX•

e (e), e ∈ eop(ΓX•), consists of the set {v(ΓX•)} and the unique irreducible
component containing e.
(v) ζΓX•

e (e), e ∈ ecl(ΓX•), consists of the irreducible components containing e.

Example 2.3. We give an example to explain dual semi-graphs of pointed stable curves. Let
X• be a pointed stable curve over k whose irreducible components are Xv1 and Xv2 , whose
node is xe1 , and whose marked point is xe2 ∈ Xv2 . We use the notation “•” and “◦” to denote
a node and a marked point, respectively. Then X• is as follows:

Xv2

Xv1
xe2

xe1
X•:

We write v1 and v2 for the vertices of ΓX• corresponding to Xv1 and Xv2 , respectively, e1 for
the closed edge corresponding to xe1 , and e2 for the open edge corresponding to xe2 . Moreover,
we use the notation “•” and “◦ with a line segment” to denote a vertex and an open edge,
respectively. Then the dual semi-graph ΓX• of X• is as follows:
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v1
e1 v2 e2ΓX• :

2.2.2. By choosing a base point x ∈ Xsm \ DX of X•, where Xsm denotes the smooth locus
of X, we have the admissible fundamental group (see [Y4, Section 2] or [Y5, Section 1.1 and
Section 1.2] for the definitions of admissible coverings and admissible fundamental groups)

πadm
1 (X•, x)

of X•. In the present paper, since we only focus on the isomorphism class of πadm
1 (X•, x), we

omit the base point x and write πadm
1 (X•) for πadm

1 (X•, x). Moreover, we put πadm
1 (X•)sol the

maximal pro-solvable quotient of πadm
1 (X•). We shall write πét

1 (X), πtop
1 (ΓX•), πét

1 (X)sol, and
πtop
1 (ΓX•)sol for the étale fundamental group of X, the profinite completion of the topological

fundamental group of ΓX• , the maximal pro-solvable quotient of πét
1 (X), and the maximal

pro-solvable quotient of πtop
1 (ΓX•), respectively.

From now on, we denote by

ΠX•

either πadm
1 (X•) or πadm

1 (X•)sol unless indicated otherwise. If ΠX• = πadm
1 (X•), we denote by

Πét
X•

def
= πét

1 (X), Πtop
X•

def
= πtop

1 (ΓX•).

If ΠX• = πadm
1 (X•)sol, we denote by

Πét
X•

def
= πét

1 (X)sol, Πtop
X•

def
= πtop

1 (ΓX•)sol.

Then we have the following natural surjections

ΠX• ↠ Πét
X• ↠ Πtop

X• .

Let H ⊆ ΠX• be an arbitrary open subgroup. We write X•
H for the pointed stable curve of

type (gXH
, nXH

) over k corresponding to H and ΓX•
H
for the dual semi-graph of X•

H . Then we
obtain an admissible covering

f •
H : X•

H → X•

over k induced by the natural injection H ↪→ ΠX• , and obtain a natural morphism of dual
semi-graphs

f sg
H : ΓX•

H
→ ΓX•

induced by f •
H , where “sg” means “semi-graph”. We shall say that f •

H is étale if the underlying
morphism fH : XH → X induced by f •

H is étale.
Moreover, if H is an open normal subgroup, then ΓX•

H
admits an action of ΠX•/H induced

by the natural action of ΠX•/H on X•
H . Note that the quotient of ΓX•

H
by ΠX•/H coincides

with ΓX• , and that H is isomorphic to the admissible fundamental group ΠX•
H
of X•

H . We also

use the notation H ét and Htop to denote Πét
X•

H
and Πtop

X•
H
, respectively.
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2.2.3. We define pointed stable curves associated to various semi-graphs introduced in 2.1.2.
Let Γ ⊆ ΓX• be a sub-semi-graph (2.1.2 (a)). We write XΓ for the semi-stable sub-curve of
X (i.e. a closed subscheme of X which is a semi-stable curve) whose irreducible components
are the irreducible components corresponding to the vertices of v(Γ), and whose nodes are the
nodes corresponding to the edges of ecl(Γ). Moreover, write DXΓ

for the set of closed points
XΓ ∩ {xe}e∈eop(Γ)⊆e(ΓX• ), where xe ∈ X denotes the closed point corresponding to e ∈ e(ΓX•).
We define a pointed stable curve of type (gΓ, nΓ) over k to be

X•
Γ = (XΓ, DXΓ

).

Note that the dual semi-graph of X•
Γ is naturally isomorphic to Γ. We shall call X•

Γ the pointed
stable curve of type (gΓ, nΓ) associated to Γ. We denote by

ΠX•
Γ

the admissible fundamental group (resp. the maximal pro-solvable quotient of the admissible
fundamental group) of X•

Γ if ΠX• is the admissible fundamental group (resp. the maximal
pro-solvable quotient of the admissible fundamental group) of X•.

2.2.4. Let Γ ⊆ ΓX• be a sub-semi-graph and L ⊆ ecl(Γ) such that Γ \ L is connected. Let ΓL

be the semi-graph associated to Γ and L (2.1.2 (b)), and NodeL(XΓ) ⊆ Xsing
Γ the set of nodes of

XΓ corresponding to L. We write norL : XΓL
→ XΓ for the normalization of XΓ at NodeL(XΓ).

Moreover, we put DXΓL

def
= nor−1

L (DXΓ
∪NodeL(XΓ)). We define a pointed stable curve of type

(gΓL
, nΓL

) to be

X•
ΓL

= (XΓL
, DΓL

).

Note that the dual semi-graph of X•
ΓL

is naturally isomorphic to ΓL. We shall call X•
ΓL

the
pointed stable curve of type (gΓL

, nΓL
) associated to ΓL. By the construction of X•

ΓL
, we see

rΓL
= rΓ −#(L), gΓL

= gΓ −#(L), nΓL
= nΓ + 2#(L).

We denote by

ΠX•
ΓL

the admissible fundamental group (resp. the maximal pro-solvable quotient of the admissible
fundamental group) of X•

ΓL
if ΠX• is the admissible fundamental group (resp. the maximal pro-

solvable quotient of the admissible fundamental group) of X•. Moreover, we have the following
natural outer injections (i.e. up to inner automorphism of ΠX•)

ΠX•
ΓL
↪→ ΠX•

Γ
↪→ ΠX• .

2.2.5. Let v ∈ v(ΓX•) and Γv ⊆ ΓX• the sub-semi-graph such that v(Γv) = {v}. Let elp(Γv) be
the set of loops of Γv (2.1.1 (b)). Note that in this situation, we have elp(Γv) = ecl(Γv). Write

Xv for the irreducible component corresponding to v and norv : X̃v → Xv for the normalization

of Xv. We put DX̃v

def
= nor−1

v ((DX ∩ Xv) ∪ (Xv ∩ Xsing)). Then we have X̃v = X(Γv)elp(Γv)
and

DX̃v
= DX(Γv)elp(Γv)

. Moreover, we shall call

X̃•
v

def
= (X̃v, DX̃v

) = X•
(Γv)elp(Γv)

the smooth pointed stable curve of type (gv, nv)
def
= (g(Γv)elp(Γv)

, n(Γv)elp(Γv)
) associated to v. If Xv

is smooth over k, for simplicity, we use the notation X•
v to denote X̃•

v = X•
Γv
. We denote by

ΠX̃•
v
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the admissible fundamental group (resp. the maximal pro-solvable quotient of the admissible

fundamental group) of X̃•
v if ΠX• is the admissible fundamental group (resp. the maximal pro-

solvable quotient of the admissible fundamental group) of X•. Suppose that Γv is contained in
a sub-semi-graph Γ ⊆ ΓX• . Then we have the following natural outer injections

ΠX̃•
v
↪→ ΠX•

Γv
↪→ ΠX•

Γ
↪→ ΠX• .

Example 2.4. Suppose that the dual semi-graph ΓX• is as follows:

v1

e2

e3

e1 v2 e4ΓX• :

Then we have

v1

e3

e2

e1Γv1 = ΓX•
Γv1

:

v1

e3

e2

e11

e21

ΓX̃•
v1

= ΓX•
(Γv1 )

elp(Γv1 )

:

2.3. Geometric data. In this subsection, we introduce various subgroups of ΠX• which can
be regarded as group-theoretical descriptions of pointed stable curves defined in 2.2.3, 2.2.4,
and 2.2.5.

2.3.1. Settings. Let X• = (X,DX) be a pointed stable curve of type (gX , nX) over an alge-
braically closed field k of characteristic p > 0, ΓX• the dual semi-graph of X•, and ΠX• either
the admissible fundamental group of X• or the maximal pro-solvable quotient of the admissible
fundamental group of X•.

Write P for the set of prime numbers. Let Π be a profinite group, and let Σ ⊆ P be either
the set P or a subset such that p 6∈ Σ. We denote by ΠΣ the maximal pro-Σ quotient of Π. In
particular, if Σ = P (resp. P \ {p}), we use the notation Π (resp. Πp′) to denote ΠP (resp.
ΠP\{p}).

2.3.2. We put

X̂
def
= lim←−

H⊆ΠΣ
X• open

XH , DX̂

def
= lim←−

H⊆ΠΣ
X• open

DXH
, Γ̂X•

def
= lim←−

H⊆ΠΣ
X• open

ΓX•
H
.

We shall call

X̂• = (X̂,DX̂)
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the universal admissible covering associated to ΠΣ
X• , and Γ̂X• the dual semi-graph of X̂• which

is a simply connected topological space. Note that we have that Aut(X̂•/X•) = ΠΣ
X• , and that

Γ̂X• admits a natural action of ΠΣ
X• . We denote by

πX : Γ̂X• ↠ ΓX•

the natural surjection.

2.3.3. Let Γ ⊆ ΓX• be a sub-semi-graph (2.1.2 (a)) and L ⊆ ecl(Γ) a subset of closed edges of
Γ such that Γ \ L is connected. Then we have the semi-graph ΓL associated to Γ and L (2.1.2

(b)). Let Γ̂ ⊆ Γ̂X• be a connected component of π−1
X (Γ) and Γ̂ \ L a connected component of

π−1
X (Γ \ L). We denote by

ΠΓ̂

def
= {σ ∈ ΠΣ

X• | σ(Γ̂) = Γ̂} ⊆ ΠΣ
X• ,

ΠΓ̂L

def
= {σ ∈ ΠΣ

X• | σ(Γ̂ \ L) = Γ̂ \ L} ⊆ ΠΣ
X•

the stabilizer subgroups (or the decomposition subgroups) of Γ̂ and Γ̂ \ L under the action of

ΠΣ
X• on Γ̂X• , respectively. Note that the conjugacy class of ΠΓ̂ (resp. ΠΓ̂L

) does not depend on

the choices of Γ̂ (resp. Γ̂ \ L).
Let v ∈ v(ΓX•) and v̂ ∈ π−1

X (v). We denote by Πv̂ ⊆ ΠΣ
X• the stabilizer subgroup of v̂ under

the action of ΠΣ
X• on Γ̂X• . We see

Πv̂ = ΠΓ̂L

if Γ = Γv, L = elp(Γv), and v̂ ∈ Γ̂ \ L.

2.3.4. By the theory of admissible fundamental groups, the following facts are well-known: ΠΓ̂

is isomorphic to ΠΣ
X•

Γ
, and ΠΓ̂L

is isomorphic to ΠΣ
X•

ΓL

(this is the reason that we do not use the

notation Π
Γ̂\L to denote the stabilizer subgroup of Γ̂ \ L). In particular, Πv̂ is outer isomorphic

to ΠΣ
X̃•

v
for all v(ΓX•). Note that we have the following natural injections

ΠΓ̂L
↪→ ΠΓ̂ ↪→ ΠΣ

X•

if Γ̂ \ L ⊆ Γ̂. Let e ∈ e(ΓX•) and ê ∈ π−1
X (e). Then Iê

def
= Πê

∼→ Ẑ(1)Σ\{p} is isomorphic to an
inertia subgroup associated to the closed point of X corresponding to e.

Moreover, let v ∈ v(Γ) and e ∈ e(Γv) such that ê abuts to v̂, and that Γ̂v ⊆ Γ̂. Then we have
the following natural injections

Iê ↪→ Πv̂ ↪→ ΠΓ̂v
↪→ ΠΓ̂L

↪→ ΠΓ̂ ↪→ ΠΣ
X• .

Note that Πv̂
∼→ ΠΓ̂v

if Xv is non-singular.

2.3.5. We denote by Ssg(ΓX•) the set of sub-semi-graphs of ΓX• and put

Com(ΓX•)
def
= {(Γ, L) | Γ \ L is connected}Γ∈Ssg(ΓX• ),L⊆ecl(Γ),

where “Ssg” means “sub-semi-graph”, and “Com” means “combinatorial”, and L is possibly
an empty set. Furthermore, we put

Ssg(ΠΣ
X•)

def
= {ΠΓ̂}Γ∈Ssg(ΓX• ) ⊆ Geo(ΠΣ

X•)
def
= {ΠΓ̂L

}(Γ,L)∈Com(ΓX• ),

where “Geo” means “geometry”. In particular, we denote by

Ver(ΠΣ
X•)

def
= {Πv̂}v̂∈v(Γ

X̂• ) ⊆ Geo(ΠΣ
X•),

Edgop(ΠΣ
X•)

def
= {Iê}ê∈eop(Γ

X̂• ) ⊆ Ssg(ΠΣ
X•),
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Edgcl(ΠΣ
X•)

def
= {Iê}ê∈ecl(Γ

X̂• ) ⊆ Ssg(ΠΣ
X•).

Note that Ssg(ΠΣ
X•), Geo(ΠΣ

X•), Ver(ΠΣ
X•), Edgop(ΠΣ

X•), and Edgcl(ΠΣ
X•) admit natural actions

of ΠΣ
X• (i.e. the conjugacy actions). Moreover, we have the following natural bijections

Geo(ΠΣ
X•)/ΠΣ

X•
∼→ Com(ΓX•),

Ssg(ΠΣ
X•)/ΠΣ

X•
∼→ Ssg(ΓX•),

Ver(ΠΣ
X•)/ΠΣ

X•
∼→ v(ΓX•),

Edgop(ΠΣ
X•)/ΠΣ

X•
∼→ eop(ΓX•),

Edgcl(ΠΣ
X•)/ΠΣ

X•
∼→ ecl(ΓX•).

2.3.6. We define combinatorial data, topological data, and geometric data associated to pointed
stable curves and their admissible fundamental groups, respectively, as follows:

Definition 2.5. (a) We shall call Com(ΓX•) the combinatorial data associated to X•,

Typ(X•)
def
= {(gΓL

, nΓL
)}(Γ,L)∈Com(ΓX• )

the topological data associated to X•, and Geo(ΠΣ
X•) the geometric data associated to ΠΣ

X• .
(b) Let (Γ, L) ∈ Com(ΓX•) be a combinatorial datum, ΓL the semi-graph associated to Γ

and L, Γ̂ \ L ⊆ π−1
X (Γ \L) a connected component, and ΠΓ̂L

(⊆ ΠΣ
X•) ∈ Geo(ΠΣ

X•) the stabilizer

subgroup of Γ̂ \ L.
We shall call ΠΓ̂L

a geometry-like subgroup of ΠΣ
X• associated to ΓL (or the geometry-like

subgroup of ΠΣ
X• associated to Γ̂ \ L). In particular, we have the following: If Γ = Γv and

L = elp(Γv) for some v ∈ v(ΓX•), we shall call Πv̂ ∈ Ver(ΠΣ
X•) a vertex-like subgroup of ΠΣ

X•

associated to v (or the vertex-like subgroup of ΠΣ
X• associated to v̂). If Γ = {e} for some

e ∈ eop(ΓX•) and L = ∅, we shall call Iê ∈ Edgop(ΠΣ
X•) an open-edge-like subgroup of ΠΣ

X•

associated to e (or the open-edge-like subgroup of ΠΣ
X• associated to ê). If Γ = {e} for some

e ∈ ecl(ΓX•) and L = ∅, we shall call Iê ∈ Edgcl(ΠΣ
X•) a closed-edge-like subgroup of ΠΣ

X•

associated to e (or the closed-edge-like subgroup of ΠΣ
X• associated to ê).

Remark 2.5.1. Let us explain the geometric motivation of Definition 2.5. One of main goals
of the theory of anabelian geometry is to prove that algebraic varieties can be completely deter-
mined group-theoretically from various versions of their algebraic fundamental groups. Then
for a given algebraic variety, before we start to study the anabelian properties of the alge-
braic variety, we need to find the corresponding group-theoretical descriptions of its geometric
informations (i.e. descriptions of its geometric informations by using closed subgroups of its
algebraic fundamental group).

In the case of pointed stable curves, Definition 2.5 means that the conjugacy class

{σ−1ΠΓ̂L
σ}σ∈ΠΣ

X•

corresponds to the pointed stable curve of type (gΓL
, nΓL

) associated to ΓL defined in 2.2.4.

For the geometric data, we have the following result.

Theorem 2.6. We maintain the notation introduced in Definition 2.5. Suppose Σ = P.
Then there exists a group-theoretical algorithm whose input datum is ΠX•, and whose out-
put data are Geo(ΠX•), Com(ΓX•), and Typ(X•). In particular, Π ∈ Geo(ΠX•) determines

group-theoretically a unique element (ΓΠ, LΠ) ∈ Com(ΓX•) and a unique element (gΠ, nΠ)
def
=

(g(ΓΠ)LΠ
, n(ΓΠ)LΠ

) ∈ Typ(X•).
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Remark 2.6.1. Suppose thatX• is smooth (in this situation, Geo(ΠX•) = {ΠX•}∪Edgop(ΠX•)).
Then Theorem 2.6 was proved by Tamagawa ([T4, Theorem 0.1 and Theorem 5.2]). Moreover,
this result is the most important (and the most difficult) step in his proof of the weak Isom-
version of the Grothendieck conjecture for (tame fundamental groups!) of smooth curves of
genus 0 over an algebraic closure of Fp ([T4, Theorem 0.2]).
Suppose that X• is an arbitrary pointed stable curve. Theorem 2.6 was proved by the author

of the present paper ([Y1, Theorem 1.2], [Y2, Theorem 0.3]).

2.3.7. We maintain the notation introduced above. Let (Γa, La), (Γb, Lb) ∈ Com(ΓX•). Then
Γa, Γb can be regarded as topological subspaces of ΓX• (2.1.2 (a)). Suppose that Γa ∩ Γb is
non-empty, and that

Γa ∩ Γb ⊆ ecl(ΓX•).

Moreover, we write Πa
def
= Π ̂(Γa)La

⊆ ΠΣ
X• , Πb

def
= Π ̂(Γb)Lb

⊆ ΠΣ
X• for the geometry-like subgroups

associated to some Γ̂a \ La, Γ̂b \ Lb ⊆ Γ̂X• , respectively. We have the following lemma.

Lemma 2.7. Suppose that Πa ∩ Πb ⊆ ΠΣ
X• is not trivial. Then Πa ∩ Πb is a closed-edge-like

subgroup of ΠΣ
X•.

Proof. If either Γa or Γb is an edge of ΓX• , then the lemma is trivial. Thus, we may assume
that v(Γa) and v(Γb) are not empty.

Let H ⊆ ΠΣ
X• be an arbitrary open subgroup, Ha

def
= H ∩ Πa, and Hb

def
= H ∩ Πb. Then we

have the natural injections (see 2.2.2 for (−)ét)

H ét,ab
a ↪→ H ét,ab, H ét,ab

b ↪→ H ét,ab.

Moreover, since Γa ∩ Γb ⊆ ecl(ΓX•), H ét,ab
a ∩H ét,ab

b is trivial.
Let J ⊆ Πa∩Πb be a non-trivial pro-cyclic subgroup (i.e. a subgroup topologically generalized

by one element) and JH
def
= J ∩H. Then the image of the natural homomorphism

JH → H ét,ab

is trivial. By applying [HM1, Lemma 1.6], J is contained in a unique closed-edge subgroup IêJ of

ΠΣ
X• for some êJ ∈ ecl(Γ̂X•). Write eJ for the image of êJ of the natural map πX : Γ̂X• ↠ ΓX• .

We see immediately that IêJ ⊆ Πa ∩ Πb, that êJ connects Γ̂a \ La with Γ̂b \ Lb, and that

eJ ∈ Γa ∩ Γb ⊆ ecl(ΓX•). Write Ê for the set of edges connecting Γ̂a \ La with Γ̂b \ Lb. Then
[M2, Proposition 1.2 (i)] implies that Πa∩Πb coincides with the subgroup generated by {Iê}ê∈Ê.
Moreover, by applying similar arguments to the arguments given in the proof of [HM1, Lemma
1.8], we obtain

Πa ∩ Πb = IêJ .

This completes the proof of the lemma. □

3. Topological and group-theoretical specializations

3.1. Specializations and conjectures.

3.1.1. Settings. Let MgX ,nX ,Z be the moduli stack parameterizing pointed stable curves of

type (gX , nX) over SpecZ, Fp an algebraic closure of the finite field Fp of characteristic p > 0,

MgX ,nX

def
= MgX ,nX ,Z ×Z Fp, and M gX ,nX

the coarse moduli space ofMgX ,nX
. For q ∈M gX ,nX

,
we shall write V (q) for the topological closure of q in M gX ,nX

.
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Let i ∈ {1, 2}, and let qi ∈ M gX ,nX
be an arbitrary point of M gX ,nX

and ki an algebraically
closed field containing the residue field k(qi) of qi. Then the natural morphism Spec ki →
M gX ,nX

determines a pointed stable curve

X•
i = (Xi, DXi

)

of type (gX , nX) over ki. We denote by ΓX•
i
the dual semi-graph of X•

i , rΓX•
i
the Betti number

of ΓX•
i
, and ΠX•

i
either the admissible fundamental group of X•

i or the maximal pro-solvable
quotient of the admissible fundamental group of X•

i . Let Com(ΓX•
i
), Typ(X•

i ), and Geo(ΠX•
i
)

be the combinatorial data associated to X•
i (Definition 2.5 (a)), the topological data associated

to X•
i (Definition 2.5 (a)), and the geometric data associated to ΠX•

i
(Definition 2.5 (a)),

respectively.
We denote by

Homop
pg(ΠX•

1
,ΠX•

2
)

the set of open continuous homomorphisms of profinite groups ΠX•
1
and ΠX•

2
. Let φ ∈ Homop

pg(ΠX•
1
,ΠX•

2
)

be an arbitrary element. Then [Y7, Lemma 4.3] implies that φ is a surjection.
Let Σ be an arbitrary set of prime numbers such that p 6∈ Σ. We write prΣΠX•

i

: ΠX•
i
↠ ΠΣ

X•
i
,

i ∈ {1, 2}, for the natural surjection. Note that the structures of maximal pro-prime-to-p
quotients of admissible fundamental groups of pointed stable curves (e.g. see [Y7, 1.2.4]) imply

that φ induces an isomorphism φΣ : ΠΣ
X•

1

∼→ ΠΣ
X•

2
.

3.1.2. We maintain the notation introduced in 3.1.1.

Definition 3.1. (a) We shall call that q2 is a topological specialization of q1 if there exists a
point q′2 ∈ V (q1) such that the following conditions are satisfied:

(i) There exists an isomorphism of dual semi-graphs ψsg : Γq′2

∼→ ΓX•
2
, where

Γq′2
denotes the dual semi-graph of a pointed stable curve corresponding to a

geometric point over Spec k(q′2) → M gX ,nX
(note that the isomorphism class

of Γq′2
does not depend on the choices of geometric points over Spec k(q′2) →

M gX ,nX
). In particular, ψsg induces a bijection ψcom : Com(Γq′2

)
∼→ Com(ΓX•

2
).

(ii) Let (Γ′
2, L

′
2) ∈ Com(Γq′2

) be an arbitrary element and (Γ2, L2)
def
= ψcom((Γ′

2, L
′
2)) ∈

Com(ΓX•
2
). Then we have (g(Γ′

2)L′
2

, n(Γ′
2)L′

2

) = (g(Γ2)L2
, n(Γ2)L2

) (2.2.4).

We shall call an open continuous homomorphism φ ∈ Homop
pg(ΠX•

1
,ΠX•

2
) a topological special-

ization homomorphism if q2 is a topological specialization of q1.
On the other hand, since q′2 is contained in V (q1), the corresponding degeneration implies

that there exists a natural map spcomq1,q′2
: Com(ΓX•

1
)→ Com(Γq′2

). We put

spcomX•
1 ,X

•
2

def
= ψcom ◦ spcomq1,q′2

: Com(ΓX•
1
)→ Com(Γq′2

)
∼→ Com(ΓX•

2
).

Note that the restriction map spcomX•
1 ,X

•
2
|eop(ΓX•

1
) : e

op(ΓX•
1
) → eop(ΓX•

2
) is a bijection. The map

spcomX•
1 ,X

•
2
will be used to define “strong topological specialization homomorphism” (see Definiton

4.1 below).
(b) Let Π1 ∈ Ver(ΠX•

1
) be an arbitrary vertex-like subgroup of ΠX•

1
and Π′

2 ∈ Ver(ΠX•
2
) an

arbitrary vertex-like subgroup of ΠX•
2
. We shall call an open continuous homomorphism φ ∈

Homop
pg(ΠX•

1
,ΠX•

2
) a group-theoretical specialization homomorphism if the following conditions

are satisfied:

(i) Π2
def
= φ(Π1) ∈ Geo(ΠX•

2
) (note that Π2 6∈ Ver(ΠX•

1
) in general).

(ii) There exists Π′
1 ∈ Ver(ΠX•

1
) such that Π′

2 ⊆ φ(Π′
1).
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(iii) Let (gΠi
, nΠi

) ∈ Typ(X•
i ), i ∈ {1, 2}, be the topological datum associ-

ated to X•
i determined group-theoretically by Πi (Theorem 2.6). Then we have

(gΠ1 , nΠ1) = (gΠ2 , nΠ2).

Remark 3.1.1. In the next subsection, we will prove that if φ is a group-theoretical special-
ization homomorphism, then φ is a topological specialization homomorphism (see Proposition
3.6 below).

3.1.3. Motivated by the homeomorphism conjecture formulated in [Y7, Section 3.3], we for-
mulate the following conjectures concerning topological and group-theoretical specialization
homomorphisms:

Topological Specialization Conjecture . Let φ ∈ Homop
pg(ΠX•

1
,ΠX•

2
) be an arbitrary open

continuous homomorphism. Then φ is a topological specialization homomorphism (Definition
3.1 (a)). In particular, q2 is a topological specialization of q1 if and only if Homop

pg(ΠX•
1
,ΠX•

2
) 6=

∅.

Group-theoretical Specialization Conjecture . Let φ ∈ Homop
pg(ΠX•

1
,ΠX•

2
) be an arbitrary

open continuous homomorphism. Then φ is a group-theoretical specialization homomorphism
(Definition 3.1 (b)).

Remark. We may formulate a more general version of the group-theoretical specialization con-
jecture as follows:

We maintain the notation introduced in 3.1.1. Let Π1 ∈ Geo(ΠX•
1
) and Π′

2 ∈
Geo(ΠX•

2
) be arbitrary geometry-like subgroups. Then the following statements

hold:
(i) Π2

def
= φ(Π1) ∈ Geo(ΠX•

2
).

(ii) There exists Π′
1 ∈ Geo(ΠX•

1
) such that Π′

2 ⊆ φ(Π′
1).

(iii) Let (gΠi
, nΠi

) ∈ Typ(X•
i ), i ∈ {1, 2}, be the topological datum associ-

ated to X•
i determined group-theoretically by Πi (Theorem 2.6). Then we have

(gΠ1 , nΠ1) = (gΠ2 , nΠ2).

Without much difficulty, we can prove that the group-theoretical specialization conjecture im-
plies the above statement.

Remark. Theorem 2.6 says that the topological specialization conjecture and the group-theoretical
specialization conjecture hold for φ ∈ Homop

pg(ΠX•
1
,ΠX•

2
) if φ is an isomorphism.

3.1.4. For an arbitrary open continuous homomorphism φ, by using two group-theoretical
formulas concerning generalized Hasse-Witt invariants (see [Y3, Theorem 1.3], [Y5, Theorem
1.2]), we have the following result (see [Y7, Theorem 4.11] for (a) and [Y7, Theorem 5.30] for
(b)):

Theorem 3.2. Let φ ∈ Homop
pg(ΠX•

1
,ΠX•

2
) be an arbitrary open continuous homomorphism.

Then the following statements hold:
(a) The open continuous homomorphism φ induces group-theoretically a surjection

φedg,op : Edgop(ΠX•
1
) ↠ Edgop(ΠX•

2
)

between the sets of open-edge-like subgroups of ΠX•
1
and ΠX•

2
. Moreover, we obtain a bijection

φsg,op : eop(ΓX•
1
) = Edgop(ΠX•

1
)/ΠX•

1

∼→ eop(ΓX•
2
) = Edgop(ΠX•

2
)/ΠX•

2

induced by φedg,op.
(b) Suppose gX = 0, #(v(ΓX•

1
)) = #(v(ΓX•

2
)), and #(ecl(ΓX•

1
)) = #(ecl(ΓX•

2
)). Then φ is a

topological specialization homomorphism and a group-theoretical specialization homomorphism.
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In particular, for any open subgroup H2 ⊆ ΠX•
2
, φ|H1 : H1

def
= φ−1(H2) → H2 induces group-

theoretically an isomorphism of dual semi-graphs

φ|sgH1
: ΓX•

H1

∼→ ΓX•
H2
,

where ΓX•
Hi
, i ∈ {1, 2}, denotes the dual semi-graph of the pointed stable curve X•

Hi
correspond-

ing to Hi.

Remark 3.2.1. Theorem 3.2 (b) also holds for pointed stable curves of an arbitrary type under
certain conditions, see [Y7, Theorem 5.26].

By applying Theorem 3.2, we have the following corollary.

Corollary 3.3. (a) Suppose that X•
i , i ∈ {1, 2}, is smooth over ki. Then the topological

specialization conjecture and the group-theoretical specialization conjecture hold.
(b) Suppose (gX , nX) = (0, 4). Then the topological specialization conjecture and the group-

theoretical specialization conjecture hold.

Proof. (a) follows immediately from Theorem 3.2 (a) and the definitions of topological and
group-theoretical specialization homomorphisms. Let us prove (b).

Suppose that X•
1 is smooth over k1. Then Theorem 3.2 (a) implies that φ is a topological

specialization homomorphism and a group-theoretical specialization homomorphism.
Suppose that X•

1 is singular. Then [Y7, Lemma 6.3] implies that X•
2 is also singular. More-

over, the assumption (gX , nX) = (0, 4) implies #(v(ΓX•
1
)) = #(v(ΓX•

2
)) = 2 and #(ecl(ΓX•

1
)) =

#(ecl(ΓX•
2
)) = 1. Then (b) follows immediately from Theorem 3.2 (b). □

3.2. Topological and group-theoretical specialization homomorphisms. In this sub-
section, we will prove that the group-theoretical specialization conjecture implies the topolog-
ical specialization conjecture (see Proposition 3.6). Moreover, we prove that the definition of
group-theoretical specialization homomorphisms (i.e. Definition 3.1 (b)) can be simplified (see
Proposition 3.9).

3.2.1. Settings. We maintain the notation introduced in 3.1.1.

3.2.2. Let Γi,a, Γi,b, i ∈ {1, 2}, be sub-semi-graphs (2.1.2) of ΓX•
i
. Then Γi,a, Γi,b can be re-

garded as topological subspaces of ΓX•
i
(2.1.2). Moreover, let Πi,a

def
= ΠΓ̂i,a

∈ Geo(ΠX•
i
), Πi,b

def
=

ΠΓ̂i,b
∈ Geo(ΠX•

i
) be the geometry-like subgroups associated to some Γ̂i,a, Γ̂i,b ⊆ Γ̂X•

i
, respec-

tively. We have the following lemma.

Lemma 3.4. Suppose Γ1,a ∩ Γ1,b ⊆ ecl(ΓX•
1
), φ(Π1,a) = Π2,a, and φ(Π1,b) = Π2,b. Moreover,

suppose that Π1,a ∩ Π1,b ⊆ ΠX•
1
is not trivial. Then Π2,a ∩ Π2,b ⊆ ΠX•

2
is a closed-edge-like

subgroup of ΠX•
2
.

Proof. Since Π1,a ∩ Π1,b ⊆ ΠX•
1
is not trivial, we have that Π2,a ∩ Π2,b ⊆ ΠX•

2
is non-trivial,

and that Lemma 2.7 implies that Π1,a ∩ Π1,b ⊆ ΠX•
1
is a closed-edge-like subgroup of ΠX•

1
.

Moreover, prp
′

ΠX•
1

(Π1,a ∩Π1,b) = Πp′

1,a ∩Πp′

1,b ⊆ Πp′

X•
1
is a closed-edge-like subgroup of Πp′

X•
1
, where

(−)p′ denotes the maximal pro-prime-to-p quotient of (−) (see 2.3.1). Write φp′ : Πp′

X•
1

∼→ Πp′

X•
2

for the isomorphism induced by φ.
Suppose that either Π1,a or Π1,b is a closed-edge-like subgroup of ΠX•

1
. Without loss of

generality, we may assume that Π1,a is a closed-edge-like subgroup of ΠX•
1
. Then we have

Π1,a
∼= Ẑ(1)p′ . Since Π2,a = φ(Π1,a) ∈ Geo(ΠX•

2
), the structures of maximal pro-prime-to-p

quotients of admissible fundamental groups of pointed stable curves (e.g. see [Y7, 1.2.4]) imply
that Π2,a is either a closed-edge-like subgroup or an open-edge-like subgroup of ΠX•

2
.
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By applying Theorem 3.2, we obtain that φp′ induces a bijection

Edgop(Πp′

X•
1
)

∼→ Edgop(Πp′

X•
2
).

If Π2,a is an open-edge-like subgroup of ΠX•
2
, then we have prp

′

ΠX•
2

(Π2,a) = Πp′

2,a ∈ Edgop(Πp′

X•
2
).

Moreover, we obtain prp
′

ΠX•
1

(Π1,a) = Πp′

1,a ∈ Edgop(Πp′

X•
1
). This contradicts the fact that Πp′

1,a is a

closed-edge-like subgroup of Πp′

X•
1
. Thus, Π2,a = Π2,a∩Π2,b ⊆ ΠX•

2
is a closed-edge-like subgroup

of ΠX•
2
.

Suppose that Π1,a, Π1,b are not closed-edge-like subgroups of ΠX•
1
. To verify the lemma, by

applying Lemma 2.7, it’s sufficient to prove that Γ2,a ∩ Γ2,b ⊆ ecl(ΓX•
2
). If Γ2,a ∩ Γ2,b is empty,

then Π2,a ∩Π2,b is trivial. Then we may assume that Γ2,a ∩ Γ2,b is not empty. By using similar
arguments to the arguments given in the third paragraph, we see that Γ2,a ∩ Γ2,b ∩ eop(ΓX•

2
) is

empty. On the other hand, since

(φp′ ◦ prp
′

ΠX•
1

)(Π1,a ∩ Π1,b) = φp′(Πp′

1,a ∩ Πp′

1,b) = Πp′

2,a ∩ Πp′

2,b
∼= Ẑ(1)p′ ,

the structures of maximal pro-prime-to-p quotients of admissible fundamental groups of pointed
stable curves imply that Γ2,a∩Γ2,b∩ v(ΓX•

2
) is empty. Thus, we have Γ2,a∩Γ2,b ⊆ ecl(ΓX•

2
). We

complete the proof of the lemma. □

3.2.3. We have the following lemma.

Lemma 3.5. Suppose that the condition given in Definition 3.1 (b)-(i) holds. Then φ : ΠX•
1
→

ΠX•
2
induces group-theoretically a map (neither an injection nor a surjection in general)

φedg,cl : Edgcl(ΠX•
1
)→ Edgcl(ΠX•

2
)

between the sets of closed-edge-like subgroups of ΠX•
1
and ΠX•

2
. Moreover, we obtain an injection

φsg,cl : ecl(ΓX•
1
) = Edgcl(ΠX•

1
)/ΠX•

1
↪→ ecl(ΓX•

2
) = Edgcl(ΠX•

2
)/ΠX•

2

induced by φedg,cl.

Proof. Let ê1 ∈ ecl(Γ̂X•
1
) be a closed edge, e1 ∈ ecl(ΓX•

1
) the image of ê1 of the natural map

πX1 : Γ̂X•
1
↠ ΓX•

1
, and Iê1 ∈ Edgcl(ΠX•

1
) the closed-edge-like subgroup of ΠX•

1
associated to ê1.

Suppose e1 6∈ elp(ΓX•
1
) (see 2.1.1 (b) for elp(ΓX•

1
)). Then the singular point of X1 correspond-

ing to e1 is contained in two different irreducible components of X1. Since the condition given
in Definition 3.1 (b)-(i) holds, Lemma 3.4 implies φ(Iê1) ∈ Edgcl(ΠX•

2
).

Suppose e1 ∈ elp(ΓX•
1
). Let ` be a prime number distinct from p,

H2
def
= ker(ΠX•

2
↠ Πab

X•
2
⊗ Fℓ),

H1
def
= φ−1(H2) = ker(ΠX•

1
↠ Πab

X•
1
⊗ Fℓ),

φH1

def
= φ|H1 : H1 → H2 the open continuous homomorphism induced by φ, X•

Hi
, i ∈ {1, 2},

the pointed stable curve corresponding to Hi, and ΓX•
Hi

the dual semi-graph of X•
Hi
. We see

immediately that elp(ΓX•
Hi
) is empty. We put

IêH1

def
= Iê1 ∩H1 ∈ Edgcl(H1) = {I ∩H1 | I ∈ Edgcl(ΠX•

1
)}.

Note that Iê1 is the normalizer of IêH1
in ΠX•

1
, and that the index [Iê1 : IêH1

] is `. The lemma

of the case of e1 6∈ elp(ΓX•
1
) proved above implies IêH2

def
= φH1(IêH1

) ∈ Edgcl(H2). We put

Iê2
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the normalizer of IêH2
in ΠX•

2
. Then we have Iê2 ∈ Edgcl(ΠX•

2
) and [Iê2 : IêH2

] ≤ `. On the other
hand, since Iêi , i ∈ {1, 2}, is the normalizer of IêHi

in ΠX•
i
, we obtain φ(Iê1) ⊆ Iê2 . Moreover,

since φℓ : Πℓ
X•

1

∼→ Πℓ
X•

2
is an isomorphism, we see [Iê1 : IêH1

] = [Iê2 : IêH2
] = `. This means

φ(Iê1) = Iê2 . Thus, φ induces group-theoretically a map

φedg,cl : Edgcl(ΠX•
1
)→ Edgcl(ΠX•

2
)

between the sets of closed-edge-like subgroups of ΠX•
1
and ΠX•

2
.

Next, we prove the “moreover” part of the lemma. Let

φsg,cl : ecl(ΓX•
1
)
def
= Edgcl(ΠX•

1
)/ΠX•

1
→ ecl(ΓX•

2
)
def
= Edgcl(ΠX•

2
)/ΠX•

2

be the map induced by φedg,cl and e1,j ∈ ecl(ΓX•
1
), j ∈ {a, b}, a closed edge such that φsg,cl(e1,a) =

φsg,cl(e1,b). Let ê1,j ∈ ecl(Γ̂X•
1
), j ∈ {a, b}, be a closed edge over e1,j and Iê1,j the closed-edge-

like subgroup of ΠX•
1
associated to ê1,j. Then prp

′

ΠX•
1

(Iê1,j) ∈ Edgcl(Πp′

X•
1
) and prp

′

ΠX•
2

(φ(Iê1,j)) ∈

Edgcl(Πp′

X•
2
), j ∈ {a, b}, are closed-edge-like subgroups of Πp′

X•
1
and Πp′

X•
2
, respectively. Since

φsg,cl(e1,a) = φsg,cl(e1,b), the conjugacy classes prp
′

ΠX•
2

(φ(Iê1,a)) and prp
′

ΠX•
2

(φ(Iê1,b)) in Πp′

X•
2
are

equal. On the other hand, since φp′ : Πp′

X•
1

∼→ Πp′

X•
2
is an isomorphism, we obtain that the

conjugacy classes prp
′

ΠX•
1

(Iê1,a) and prp
′

ΠX•
1

(Iê1,b) in Πp′

X•
1
are equal. This means e1,a = e1,b. We

complete the proof of the lemma. □

3.2.4. Suppose that the condition given in Definition 3.1 (b)-(i) holds. Let v1 ∈ v(ΓX•
1
) be

an arbitrary vertex of ΓX•
1
, v̂1 ∈ v(Γ̂X•

1
) a vertex of Γ̂X•

1
over v1, and Πv̂1 the vertex-like

subgroup of ΠX•
1
associated to v̂1. Then there exists a unique pair (Γ[v1], L[v1]) ∈ Com(ΓX•

2
)

(see 2.3.5 for Com(ΓX•
2
)) such that φ(Πv̂1) = Π

Γ̂(v1)

def
= Π ̂Γ[v1]L[v1]

(see 2.3.3 for Π ̂Γ[v1]L[v1]
), where

Γ(v1)
def
= Γ[v1]L[v1] denotes the semi-graph associated to Γ[v1] and L[v1] (2.1.2 (b)). Note that

(Γ[v1], L[v1]) depends only on the choice of v1 (or the conjugacy class of Πv̂1). We have the
following proposition.

Proposition 3.6. Let φ ∈ Homop
pg(ΠX•

1
,ΠX•

2
) be an arbitrary open continuous homomorphism.

Suppose that φ is a group-theoretical specialization homomorphism (Definition 3.1 (b)). Then
φ is a topological specialization homomorphism (Definition 3.1 (a)). In particular, the group-
theoretical specialization conjecture implies the topological specialization conjecture.

Proof. Let v, w ∈ v(ΓX•
1
) be arbitrary vertices of ΓX•

1
distinct from each other when #(v(ΓX•

1
)) ≥

2 and Γv,Γw ⊆ ΓX•
1
the sub-semi-graphs associated to v, w (see 2.2.5), respectively. We put

Lv
def
= elp(Γv) and Lw

def
= elp(Γw). Moreover, we put

Γv def
= (Γv)Lv , Γ

w def
= (Γw)Lw

the semi-graphs associated to Γv and Lv, Γw and Lw, respectively.
Firstly, to verify that φ is a topological specialization homomorphism, we need to prove that

the dual semi-graph ΓX•
2
of X•

2 is isomorphic to the dual semi-graph of a reduction of X•
1 (i.e.

we prove that the condition given in Definition 3.1 (a)-(i) holds). This means that we need to
check the following conditions (see Theorem 3.2 (a) for φsg,op, Lemma 3.5 for φsg,cl, and 2.1.2
(b) for δΓv , δΓw , δΓ(v), δΓ(w)):

(i) φsg,op(eop(ΓX•
1
) ∩ δΓv(eop(Γv))) = eop(ΓX•

2
) ∩ δΓ(v)(eop(Γ(v)).

(ii) φsg,cl(Lv) ⊆ ecl(Γ[v]).
(iii) φsg,cl(δΓv(eop(Γv)) ∩ δΓw(eop(Γw))) = δΓ(v)(e

op(Γ(v))) ∩ δΓ(w)(e
op(Γ(w))).

(iv) #(eop(ΓX•
1
) ∩ δΓv(eop(Γv))) = #(eop(ΓX•

2
) ∩ δΓ(v)(eop(Γ(v)))).
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(v) #(Lv) = #(φsg,cl(Lv)).
(vi) #(δΓv(eop(Γv)) ∩ δΓw(eop(Γw))) = #(δΓ(v)(e

op(Γ(v))) ∩ δΓ(w)(e
op(Γ(w)))).

The conditions (i), (iv) say that the degeneration (as a topological space) of the marked points
of X•

1 contained in Xv (2.2.5) are the marked points of X•
2 contained in XΓ[v] (2.2.3). The

conditions (ii), (v) say that the degeneration (as a topological space) of the singular points of
X•

1 corresponding to Lv are singular points of X•
2 contained in XΓ[v]. The conditions (iii), (vi)

says that the degeneration (as a topological space) of the gluing of {X̃v}v∈v(ΓX•
1
) (2.2.5) along

the singular points of X•
1 that gives rise to X•

1 is the gluing of {X•
Γ(v)}v∈v(ΓX•

1
) (2.2.4) along the

singular points corresponding to {φsg,cl(ecl(ΓX•
1
))}v∈v(ΓX•

1
) of X

•
2 that gives rise to X•

2 .

We maintain the notation introduced at the beginning of 3.2.4. Let e ∈ eop(Γv) and Iê ⊆ ΠX•
1

the open edge-like subgroup associated to an edge ê ∈ π−1
X1
(e) such that Iê ⊆ Πv̂ (or ê abuts

to v̂). Then by applying Theorem 3.2 (a) for φ|Πv̂
: Πv̂ → Π

Γ̂(v)
, we see that φ(Iê) is an open

edge-like subgroup of Π
Γ̂(v)

.

Suppose δΓv(e) ∈ eop(ΓX•
1
) ∩ δΓv(eop(Γv)). Then the condition (i) follows immediately from

the “moreover” part of Theorem 3.2 (a) and the commutative diagram

Iê −−−→ φ(Iê)y y
Πv̂

ϕ|Πv̂−−−→ Π
Γ̂(v)y y

ΠX•
1

ϕ−−−→ ΠX•
2
,

where the vertical arrows are natural injections.
Suppose δΓv(e) ∈ Lv. We see that there exists an element σ ∈ ΠX•

1
such that Πv̂ 6= σ−1Πv̂σ

and Iê ⊆ Πv̂ ∩ σ−1Πv̂σ. Then the condition (ii) follows immediately from the “moreover” part
of Theorem 3.2 (a) and the commutative diagram

Iê −−−→ φ(Iê)y y
Πv̂ ∩ σ−1Πv̂σ −−−→ Π

Γ̂(v)
∩ φ(σ)−1Π

Γ̂(v)
φ(σ)y y

ΠX•
1

ϕ−−−→ ΠX•
2
,

where the vertical arrows are natural injections.
Suppose δΓv(e) ∈ δΓv(eop(Γv)) ∩ δΓw(eop(Γw)) ⊆ ecl(ΓX•

1
). We have Iê ⊆ Πv̂ ∩ Πŵ for some

ŵ ∈ π−1
X1
(w). Then the condition (iii) follows immediately from Lemma 3.5 and the commutative

diagram
Iê −−−→ φ(Iê)y y

Πv̂ ∩ Πŵ −−−→ Π
Γ̂(v)
∩ Π

Γ̂(w)y y
ΠX•

1

ϕ−−−→ ΠX•
2
,

where the vertical arrows are natural injections.
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On the other hand, the conditions (iv), (v), (vi) follow immediately from the “moreover”
parts of Theorem 3.2 (a) and Lemma 3.5 (i.e. the injectivity of φsg,op and φsg,cl).
Next, to verify φ is a topological specialization homomorphism, we need to prove that the

condition given in Definition 3.1 (a)-(ii) holds. Since φ is a group-theoretical specialization
homomorphism, Definition 3.1 (a)-(ii) follows immediately from Definition 3.1 (b)-(iii). This
completes the proof of the proposition. □
3.2.5. In the remainder of this subsection, we prove that the condition given in Definition 3.1
(b)-(i) implies the conditions given in Definition 3.1 (b)-(ii), (b)-(iii).

Lemma 3.7. The condition given in Definition 3.1 (b)-(i) implies the condition given in Def-
inition 3.1 (b)-(ii).

Proof. Let i ∈ {1, 2}. Suppose that every irreducible component of X•
i is smooth over ki, that

Γcpt
X•

i
is 2-connected (see 2.1.1 (c) (d)), and that gvi ≥ 1 for all vi ∈ v(ΓX•

i
) (see 2.2.5 for gvi).

We put MX•
i

def
= Πp′,ab

X•
i
, M top

X•
i

def
= Πtop,p′,ab

X•
i

. Since Im(Πv̂i →MX•
i
) does not depend on the choice

v̂i ∈ v(Γ̂X•
i
) over vi ∈ v(ΓX•

i
), we put Mvi

def
= Πp′,ab

v̂i
, vi ∈ v(ΓX•

i
). Then we have a surjection

MX•
i
↠M top

X•
i

induced by the natural surjection ΠX•
i
↠ Πtop

X•
i
(see 2.2.2) whose kernel is equal to

Mver
X•

i

def
= Im(

⊕
vi∈v(ΓX•

i
)

Mvi →MX•
i
).

Moreover, [Y3, Corollary 3.5] implies that the natural homomorphism

Mvi →Mver
X•

i
, vi ∈ v(ΓX•

i
)

is an injection.

On the other hand, we put MΓ(v1)
def
= Πp′,ab

Γ̂(v1)
. Note that MΓ(v1) depends only on Γ(v1).

Moreover, we put

M cur
X•

2

def
= Im(

⊕
v1∈v(ΓX•

1
)

MΓ(v1) →MX•
2
), M cur-top

X•
2

def
= MX•

2
/M cur

X•
2
.

By applying similar arguments to the arguments given in the proof of [Y3, Proposition 3.4], we
obtain that the natural homomorphism

MΓ(v1) →M cur
X•

2
, v1 ∈ v(ΓX•

1
),

is an injection. Since the condition given in Definition 3.1 (b)-(i) holds, the isomorphism

φp′ : Πp′

X•
1

∼→ Πp′

X•
2
induces the following commutative diagram

Mv1 −−−→ Mver
X•

1
−−−→ MX•

1
−−−→ M top

X•
1y y ϕp′,ab

y y
MΓ(v1) −−−→ M cur

X•
2
−−−→ MX•

2
−−−→ M cur-top

X•
2

,

where all of the vertical homomorphisms are isomorphisms. Note that since we assume gv2 ≥ 1
for all v2 ∈ v(ΓX•

2
), either Mv2 ⊆ MΓ(v1) (in MX•

2
) for some v1 ∈ v(ΓX•

1
) holds or Mv2 is not

contained in M cur
X•

2
(in MX•

2
). Then to verify the lemma, it’s sufficient to prove that the image

Mv2 ↪→ MX•
2
↠ M cur-top

X•
2

is trivial for all v2 ∈ v(ΓX•
2
). Moreover, it is equivalent to prove that

for all v2 ∈ v(ΓX•
2
), the image Mv2 ⊗ Fℓ ↪→ MX•

2
⊗ Fℓ ↠ M cur-top

X•
2

⊗ Fℓ is trivial for a prime

number ` ∈ P \ {p}.
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We put

NX•
2

def
= {α ∈ Hom(MX•

2
,Z/`Z) | α(M cur

X•
2
) = 0, α(Mv2) = 0 for any v2 ∈ v(ΓX•

2
)}.

Note that α(Mv2) = 0 for any v2 ∈ v(ΓX•
2
) does not imply α(M cur

X•
2
) = 0 since Γ(v1) is not a tree

(2.1.1 (c)) in general. Moreover, the definition of NX•
2
implies that α ∈ NX•

2
factors through

not only M cur-top
X2

⊗ Fℓ but also M
top
X2
⊗ Fℓ.

We calculate dimFℓ
(NX•

2
). Let v1, v

′
1 ∈ v(ΓX•

1
). By applying the left-hand side of the above

commutative diagram, we have v1 = v′1 if and only if Γ(v1) = Γ(v′1). In particular, we obtain
#(v(ΓX•

1
)) = #({Γ(v1)}v1∈v(ΓX•

1
)). Moreover, by applying Lemma 3.4 and Lemma 3.5, we have

that Γ(v1) and Γ(v′1) are connected with a closed edge e2 of ΓX•
2
if and only if v1 and v′1 are

connected with a closed edge e1 of ΓX•
1
such that φsg,cl(e1) = e2. We put

V2
def
= v(ΓX•

2
) \

⋃
v1∈v(ΓX•

1
)

v(Γ(v1)),

E2
def
= ecl(ΓX•

2
) \ (φsg,cl(ecl(ΓX•

1
)) ∪

⋃
v1∈v(ΓX•

1
)

ecl(Γ(v1))).

Then by the Euler-Poincaré formula for semi-graphs, we obtain

dimFℓ
(M cur-top

X•
2

⊗ Fℓ) ≥ dimFℓ
(NX•

2
)

= #(φsg,cl(ecl(ΓX•
1
))) + #(E2)−#({Γ(v1)}v1∈v(ΓX•

1
))−#(V2) + 1

≥ #(φsg,cl(ecl(ΓX•
1
)))−#({Γ(v1)}v1∈v(ΓX•

1
)) + 1

= #(ecl(ΓX•
1
))−#(v(ΓX•

1
)) + 1 = dimFℓ

(M top
X•

1
⊗ Fℓ).

On the other hand, the right-hand side of the above commutative diagram implies

dimFℓ
(M top

X•
1
⊗ Fℓ) = dimFℓ

(M cur-top
X•

2
⊗ Fℓ).

This means M cur-top
X•

2
⊗ Fℓ

∼= HomFℓ
(NX•

2
,Fℓ). Thus, Mv2 ⊗ Fℓ ↪→ MX•

2
⊗ Fℓ ↠ M cur-top

X•
2

⊗ Fℓ is

trivial for all v2 ∈ v(ΓX•
2
). We complete the proof of the lemma if Γcpt

X•
i
, i ∈ {1, 2}, is 2-connected,

gvi ≥ 1 for any vi ∈ v(ΓX•
i
), and every irreducible component of X•

i is non-singular.
Next, we prove the lemma in the general case. By [Y7, Lemma 5.4], there exist a prime

number `′ >> 0 distinct from p and a characteristic subgroup H2 ⊆ ΠX•
2
such that the following

conditions hold:

• The irreducible components of X•
Hi

are smooth over ki.

• ΠX•
1
/H1
∼= ΠX•

2
/H2 is a finite `′-group, where H1

def
= φ−1(H2).

• Write ΓX•
Hi
, i ∈ {1, 2}, for the dual semi-graph of the pointed stable curve corresponding

to Hi. Then Γcpt
X•

Hi

is 2-connected.

• gvHi
≥ 1, i ∈ {1, 2}, for all vHi

∈ v(ΓX•
Hi
).

Let Πv̂2 be an arbitrary vertex-like subgroup of ΠX•
2
and Hv̂2

def
= Πv̂2 ∩ H2. Then Hv̂2 is a

vertex-like subgroup of H2. By applying the lemma for H1, H2, and φ|H1 : H1 → H2 proved
above, we obtain that Hv̂2 is contained in Π

Γ̂(v1)
∩ H2 for some v1 ∈ v(ΓX•

1
). Moreover, we

have that v̂2 is a vertex of Γ̂(v1). Note that Πv̂2 is the stabilizer of v̂2. Then Πv̂2 is contained

in the stabilizer of Γ̂(v1) (since (σ−1Π
Γ̂(v1)

σ) ∩ Π
Γ̂(v1)

, σ ∈ ΠX•
2
\ Π

Γ̂(v1)
, is either trivial or a

closed-edge-like subgroup of ΠX•
2
). Thus, we obtain Πv̂2 ⊆ Π

Γ̂(v1)
. This completes the proof of

the lemma. □
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Lemma 3.8. The condition given in Definition 3.1 (b)-(i) implies the condition given in Def-
inition 3.1 (b)-(iii).

Proof. Let v1 ∈ v(ΓX•
1
) and (Γ[v1], L[v1]) ∈ Com(ΓX•

2
) the pair determined by v1 introduced at

the beginning of 3.2.4. Let φsg,cl : ecl(ΓX•
1
) ↪→ ecl(ΓX•

2
) be the map obtained in Lemma 3.5. We

have the following claim:

Claim: φsg,cl(elp(v1)) = L[v1] (see 2.1.1 (b) for elp(v1)).
We prove the claim. Let e1 ∈ ecl(ΓX•

1
) (resp. e2 ∈ ecl(ΓX•

2
)) and ê1 ∈ π−1

X1
(e1) ⊆

ecl(Γ̂X•
1
) (resp. ê2 ∈ π−1

X2
(e2) ⊆ ecl(Γ̂X•

2
)) a closed edge over e1 (resp. e2). Then

the claim follows immediately from the following: e1 ∈ elp(v1) (resp. e2 ∈ L[v1])
if and only if Iê1 = Πv̂′1

∩Πv̂′′1
for some Πv̂′1

,Πv̂′′1
⊆ ΠX•

1
(resp. Iê2 = Π

Γ̂(v1)
′∩Π

Γ̂(v1)
′′

for some Π
Γ̂(v1)

′ ,Π
Γ̂(v1)

′′ ⊆ ΠX•
2
) such that the conjugacy classes of Πv̂′1

,Πv̂′′1
in

ΠX•
1
are equal (resp. the conjugacy classes of Π

Γ̂(v1)
′ ,Π

Γ̂(v1)
′′ in ΠX•

2
are equal),

where v̂′1, v̂
′′
1 ∈ π−1

X1
(v1) ⊆ v(Γ̂X•

1
) (resp. ̂Γ[v1] \ L[v1]

′
, ̂Γ[v1] \ L[v1]

′′
are connected

components of π−1
X2
(Γ[v1] \ L[v1]) ⊆ Γ̂X•

2
).

We put

E2
def
= {e2 ∈ ecl(ΓX•

2
) | e2 ∈ Γ(v1,a) ∩ Γ(v1,b)

for some v1,a, v1,b ∈ v(ΓX•
1
) such that v1,a 6= v1,b} ⊆ ecl(ΓX•

2
),

where Γ(v1,a)∩Γ(v1,b) denotes the intersection as topological subspaces of ΓX•
2
(2.1.2 (a)). Note

that the above claim implies∑
v1∈v(ΓX•

1
)

#(L[v1]) + #(E2) = #(φsg,cl(ecl(ΓX•
1
))) = #(ecl(ΓX•

1
)).

Let Πv̂1 , v1 ∈ v(ΓX•
1
), be an arbitrary vertex-like subgroup of ΠX•

1
and Iê1 an open-edge-like

subgroup (resp. a closed-edge-like subgroup) of ΠX•
1
such that Iê1 ⊆ Πv̂1 . Then Theorem 3.2 (a)

(resp. Lemma 3.5) implies that φ(Iê1) is an open-edge-like subgroup (resp. a closed-edge-like
subgroup) of ΠX•

2
contained in a geometry-like subgroup Π

Γ̂(v1)
of ΠX•

2
. Moreover, we have

nv1 ≤ nΓ(v1) for all v1 ∈ v(ΓX•
1
). On the other hand, since nX = nX1 = nX2 , we have∑

v1∈v(ΓX•
1
)

nv1 = nX1 + 2#(ecl(ΓX•
1
)) = nX2 +

∑
v1∈v(ΓX•

1
)

2#(L[v1]) + 2#(E2) =
∑

v1∈v(ΓX•
1
)

nΓ(v1).

This implies nv1 = nΓ(v1) for all v1 ∈ v(ΓX•
1
). Then to verify the lemma, it’s sufficient to prove

gv1 = gΓ(v1) for all v1 ∈ v(ΓX•
1
).

We put Iv̂1 ⊆ Πv̂1 the normal closed subgroup generated by (see 2.1.1 (b) for e
ΓX•

1 (v1))

{Iê1 | ê1 ∈ π−1
X1
(e1), e1 ∈ e

ΓX•
1 (v1)}.

Then since nv1 = nΓ(v1), the surjection Πv̂1 ↠ Π
Γ̂(v1)

induced by φ implies

gv1 =
1

2
· rankẐp′ ((Πv̂1/Iv̂1)

p′,ab) ≥ 1

2
· rankẐp′ ((φ(Πv̂1)/φ(Iv̂1))

p′,ab) = gΓ(v1).

By the Euler-Poincaré formula for semi-graphs, we obtain

gX1 =
∑

v1∈v(ΓX•
1
)

gv1 + rΓX•
1
=

∑
v1∈v(ΓX•

1
)

gv1 +#(ecl(ΓX•
1
))−#(v(ΓX•

1
)) + 1.

On the other hand, by Lemma 3.7 and the Euler-Poincaré formula for semi-graphs, we have

gX2 =
∑

v1∈v(ΓX•
1
)

gΓ(v1) +
∑

v1∈v(ΓX•
1
)

#(L[v1]) + #(E2)−#({Γ(v1)}v1∈v(ΓX•
1
)) + 1
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=
∑

v1∈v(ΓX•
1
)

gΓ(v1) +#(φsg,cl(ecl(ΓX•
1
)))−#(v(ΓX•

1
)) + 1

=
∑

v1∈v(ΓX•
1
)

gΓ(v1) + rΓX•
1
.

Since gX = gX1 = gX2 , we obtain ∑
v1∈v(ΓX•

1
)

gv1 =
∑

v1∈v(ΓX•
1
)

gΓ(v1).

This implies gv1 = gΓ(v1) for all v1 ∈ v(ΓX•
1
). We complete the proof of the lemma. □

Thus, Lemma 3.7 and Lemma 3.8 imply the following:

Proposition 3.9. Let φ ∈ Homop
pg(ΠX•

1
,ΠX•

2
) be an arbitrary open continuous homomorphism.

Suppose φ(Π1) ∈ Geo(ΠX•
2
) for all Π1 ∈ Ver(ΠX•

1
). Then φ is a group-theoretical specialization

homomorphism.

4. Topological specialization conjecture for curves of gX = 0

In this section, we will prove the topological specialization conjecture for pointed stable
curves of genus 0 (see Theorem 4.9 for a precise statement).

4.0.1. Settings. We maintain the notation introduced in 3.1.1. Suppose that gX = 0, and that
ΠX•

i
, i ∈ {1, 2}, is the maximal pro-solvable quotient of the admissible fundamental group of

X•
i . Moreover, we fix the following notation.
Let Ei ⊆ eop(ΓX•

i
) be a subset of open edges of ΓX•

i
such that #(Ei) ≤ nX−3 and φsg,op(E1) =

E2, where φ
sg,op is the bijection of the sets of open edges induced by φ (see Theorem 3.2 (a)).

We put Êi
def
= π−1

Xi
(Ei) ⊆ eop(Γ̂X•

i
) (see 2.3.2 for πXi

) and

IEi
⊆ ΠX•

i

the closed normal subgroup generated by {Iêi}êi∈Êi
. Moreover, Theorem 3.2 (a) implies φ(IE1) =

IE2 .
On the other hand, we write DEi

⊆ DXi
for the subset of marked points corresponding to

Ei. Since gX = 0 and #(DEi
) ≤ nX − 3, by contracting certain (−1)-curves and (−2)-curves,

the pointed semi-stable curve (Xi, DXi
\DEi

) over ki determines a pointed stable curve

X•
Ei

= (XEi
, DXEi

)

of type (0,#(DXi
\DEi

)) over ki. Note that we have a natural (contracting) morphism

f •
Ei

: X• → X•
Ei
.

We shall denote by fEi
: X → XEi

the morphism of underlying curves induced by f •
Ei
. Write

ΓX•
Ei

for the dual semi-graph of X•
Ei
. Then f •

Ei
induces a map f sg

Ei
: ΓX•

i
→ ΓX•

Ei
of dual

semi-graphs.
We denote by

ΠX•
Ei

the maximal pro-solvable quotient of the admissible fundamental group of X•
Ei
. Then we have

a natural isomorphism ΠX•
i
/IEi

∼→ ΠX•
Ei
. Moreover, φ induces an open continuous homomor-

phism

φE : ΠX•
E1
→ ΠX•

E2
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which fits into the following commutative diagram:

ΠX•
1

ϕ−−−→ ΠX•
2y y

ΠX•
1
/IE1

∼= ΠX•
E1

ϕE−−−→ ΠX•
E2

∼= ΠX•
2
/IE2 .

If Ei = {ei} for some ei ∈ eop(ΓX•
i
), we also use the notation X•

ei
, ΠX•

ei
, ΓX•

ei
, f •

ei
, f sg

ei
, and φe

to denote X•
Ei
, ΠX•

Ei
, ΓX•

Ei
, f •

Ei
, f sg

Ei
, and φE, respectively.

4.0.2. We introduce a strong version of topological specialization homomorphisms as follows:

Definition 4.1. Let φsg,op : eop(ΓX•
1
)

∼→ eop(ΓX•
2
) be the bijection induced by φ (Theorem 3.2

(a)). We shall call φ a strong topological specialization homomorphism if the following conditions
are satisfied:

• φ is a topological specialization homomorphism (Definition 3.1 (a)).
• φsg,op = spcomX•

1 ,X
•
2
|eop(ΓX•

1
) for some spcomX•

1 ,X
•
2
: Com(ΓX•

1
) → Com(ΓX•

2
) (see Definition 3.1

(a) for spcomX•
1 ,X

•
2
).

The following corollary follows immediately from Corollary 3.3 (b):

Corollary 4.2. Suppose (gX , nX) = (0, 4). Then φ is a strong topological specialization homo-
morphism.

4.0.3. Further settings. We maintain the notation introduced in 4.0.1. Suppose nX ≥ 5. Let

ei ∈ eop(ΓX•
i
), i ∈ {1, 2}, be an open edge such that φsg,op(e1) = e2. Write xi

def
= xei ∈ DXi

for the marked point of X•
i corresponding to ei. The assumption nX ≥ 5 implies that X•

ei
is

a pointed stable curve of type (0, nX − 1) over ki. Note that one of the following conditions
holds:

• #(v(ΓX•
i
)) = #(v(ΓX•

ei
)).

• #(v(ΓX•
i
)) = #(v(ΓX•

ei
)) + 1.

On the other hand, let W •
i , i ∈ {1, 2}, be an arbitrary pointed stable curve over ki of type

(0, nW ), ΠW •
i
the maximal pro-solvable quotient of the admissible fundamental group of W •

i ,
and φW : ΠW •

1
→ ΠW •

2
an arbitrary open continuous homomorphism. Moreover, we assume the

following condition holds:

• φW is a strong topological specialization homomorphism if nW ≤ nX − 1.

4.0.4. Firstly, we have the following lemma:

Lemma 4.3. We maintain the settings introduced in 4.0.3. Moreover, we suppose that #(v(ΓX•
1
)) =

#(v(ΓX•
e1
)) + 1 holds. Then we have #(v(ΓX•

2
)) = #(v(ΓX•

e2
)) + 1.

Proof. Suppose #(v(ΓX•
2
)) = #(v(ΓX•

e2
)). We will construct a contradiction. Since we suppose

#(v(ΓX•
1
)) = #(v(ΓX•

e1
)) + 1, there exists an irreducible component X1,1 of X1 such that one

of the following situations holds:

(i) X1,1 ∩DX1 = {x1} and #(X1,1 ∩Xsing
1 ) = 2.

(ii) X1,1 ∩DX1 = {x1, a1} and #(X1,1 ∩Xsing
1 ) = 1, where a1 6= x1.

On the other hand, let X2,1 be the irreducible component of X2 such that x2 ∈ X2,1 ∩ DX2 .
Since we assume #(v(ΓX•

2
)) = #(v(ΓX•

e2
)), we have

#(X2,1 ∩Xsing
2 ) + #(X2,1 ∩DX2) ≥ 4.
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Case (i). We assume that (i) holds. Then we see immediately that there exist marked points
s2, b2, c2 ∈ DX2 \ {x2} of X•

2 distinct from each other satisfying the following condition:

• For m ∈ {s2, b2, c2}, put Cm as follows:
(∗) If m is contained in X2,1, then Cm = X2,1. Otherwise, let Cm be the connected

component of X2 \X2,1 containing m.
(∗∗) Let m1,m2 ∈ {s2, b2, c2} be elements distinct from each other. Then Cm1 6= Cm2

if Cm1 6= X2,1 and Cm2 6= X2,1.

Let es2 , eb2 , ec2 ∈ eop(ΓX•
1
) be the open edges corresponding to s2, b2, c2, respectively. We put

es1
def
= (φsg,op)−1(es2) ∈ eop(ΓX•

1
), eb1

def
= (φsg,op)−1(eb2) ∈ eop(ΓX•

1
), and ec1

def
= (φsg,op)−1(ec2) ∈

eop(ΓX•
1
).

We put Ei
def
= eop(ΓX•

i
) \ {ei, esi , ebi , eci}. Note that since we assume that φe is a strong

topological specialization homomorphism (4.0.3), by the above constructions, we obtain that
es1 , eb1 , ec1 are not contained in the same connected component of ΓX•

1
\ {v1,1}, where v1,1 ∈

v(ΓX•
1
) denotes the vertex corresponding to X1,1. This means that XE1 is singular with two

irreducible components. Moreover, we see immediately that XE2 is non-singular. On the other
hand, by applying [Y7, Lemma 6.3] for φE : ΠX•

E1
→ ΠX•

E2
, we obtain that XE2 is singular.

This contradicts our construction of X•
E2
. Then we obtain the lemma under the assumption of

(i).

Case (ii). We assume that (ii) holds. Let ea1 ∈ eop(ΓX•
1
) be the open edge corresponding to a1,

ea2
def
= φsg,op(ea1) ∈ eop(ΓX•

2
), and a2 ∈ DX2 the marked point corresponding to ea2 . Moreover,

we see immediately that there exist marked points b2, c2 ∈ DX2 \ {x2, a2} of X•
2 distinct from

each other satisfying the following condition:

• For m ∈ {a2, b2, c2}, put Cm as follows:
(∗) If m is contained in X2,1, then Cm = X2,1. Otherwise, let Cm be the connected

component of X2 \X2,1 containing m.
(∗∗) Let m1,m2 ∈ {a2, b2, c2} be elements distinct from each other. Then Cm1 6= Cm2

if Cm1 6= X2,1 and Cm2 6= X2,1.

We put eb1
def
= (φsg,op)−1(eb2) ∈ eop(ΓX•

1
), ec1

def
= (φsg,op)−1(ec2) ∈ eop(ΓX•

1
). Note that since

#(X1,1∩Xsing) = 1, the marked points b1, c1 corresponding to eb1 , ec1 , respectively, are contained
in X1 \X1,1.

We put Ei
def
= eop(ΓX•

i
)\{ei, eai , ebi , eci}. By the above constructions, we see immediately that

XE1 is singular with two irreducible components, and that XE2 is non-singular. On the other
hand, by applying [Y7, Lemma 6.3] for φE : ΠX•

E1
→ ΠX•

E2
, we obtain that XE2 is singular.

This contradicts our construction of X•
E2
. Then we obtain the lemma under the assumption of

(ii). This completes the proof of the lemma. □

4.0.5. We maintain the settings introduced in 4.0.3. Let vi ∈ v(ΓX•
i
), i ∈ {1, 2}, be the vertex

of ΓX•
i
such that the corresponding irreducible component Xvi contains xi (see 4.0.3 for xi). Note

that fei(Xvi) is either a marked point or a node of X•
ei
if #(v(ΓX•

i
)) = #(v(ΓX•

ei
))+1 (see 4.0.1

for fei andX
•
ei
), and that fei(Xvi) is an irreducible component of X•

ei
if #(v(ΓX•

i
)) = #(v(ΓX•

ei
)).

We define Xvei
to be an irreducible component of Xei as follows:

• The irreducible component of Xei containing fei(Xvi) if #(v(ΓX•
i
)) = #(v(ΓX•

ei
)) + 1

and fei(Xvi) ∈ DXei
.

• The irreducible component fei(Xvi) of Xei if #(v(ΓX•
i
)) = #(v(ΓX•

ei
)).

Moreover, if #(v(ΓX•
i
)) = #(v(ΓX•

ei
)) + 1 and fei(Xvi) ∈ Xsing

ei
, we define Xv1ei

and Xv2ei
to be

the irreducible components of Xei as follows:



TOPOLOGICAL AND GROUP-THEORETICAL SPECIALIZATIONS 29

• The irreducible components of Xei such that fei(Xvi) ∈ Xv1ei
∩Xv2ei

.

We shall write vei , v
1
ei
, v2ei ∈ v(ΓX•

ei
) for the vertices of ΓX•

ei
corresponding to Xvei

, Xv1ei
, Xv2ei

,

respectively, and X•
vei
, X•

v1ei
, X•

v2ei
for the smooth pointed stable curves over ki associated to

vei , v
1
ei
, v2ei , respectively (2.2.5).

Note that the type of X•
e1

is (0, nX − 1). The assumption of 4.0.3 concerning W •
i says that

φe : ΠXe•1
→ ΠXe•2

is a strong topological specialization homomorphism. Then there exists a
map

spcomX•
e1

,X•
e2

: Com(ΓX•
e1
)→ Com(ΓX•

e2
)

such that spcomX•
e1

,X•
e2
|eop(ΓX•

e1
) = φsg,op

e .

Let (Γve1
, elp(Γve1

) = ∅), (Γv1e1
, elp(Γv1e1

) = ∅), (Γv2e1
, elp(Γv2e1

) = ∅) ∈ Com(ΓX•
e1
) be com-

binatorial data associated to X•
e1

(see 2.2.5 for Γve1
, Γv1e1

, Γv2e1
). Then we put (Γ2, ∅)

def
=

spcomX•
e1

,X•
e2
((Γve1

, ∅)), (Γ1
2, ∅)

def
= spcomX•

e1
,X•

e2
((Γv1e1

, ∅)), (Γ2
2, ∅)

def
= spcomX•

e1
,X•

e2
((Γv2e1

, ∅)) ∈ Com(ΓX•
e2
).

Moreover, we shall denote by

X•
Γ2

= (XΓ2 , DXΓ2
), X•

Γ1
2
= (XΓ1

2
, DX

Γ1
2

), X•
Γ2
2
= (XΓ2

2
, DX

Γ2
2

)

the pointed stable curves over k2 associated to Γ2, Γ
1
2, Γ

2
2, respectively (2.2.3). Then we have

the following lemmas.

Lemma 4.4. We maintain the settings introduced in 4.0.3 and the notation introduced at the
beginning of 4.0.5. Moreover, we suppose that #(v(ΓX•

1
)) = #(v(ΓX•

e1
)) and #(v(ΓX•

2
)) =

#(v(ΓX•
e2
)) hold. Then Xve2

is an irreducible component of XΓ2.

Proof. Suppose #(v(ΓX•
1
)) = 1 (i.e. X•

1 is non-singular). Then the lemma is trivial. To verify
the lemma, we suppose #(v(ΓX•

1
)) ≥ 2 (i.e. X•

1 is singular). Moreover, suppose that Xve2
is

not an irreducible component of XΓ2 . We will construct a contradiction.
Since #(v(ΓX•

2
)) = #(v(ΓX•

e2
)), one of the following holds:

(1) #(Xv2 ∩ X
sing
2 ) = 1 (i.e. #(π0(X2 \ Xv2)) = 1). Then in this situation, we

have #(Xv2 ∩DX2) ≥ 3.

(2) #(Xv2 ∩ X
sing
2 ) ≥ 2 (i.e. #(π0(X2 \ Xv2)) ≥ 2). Then in this situation, we

have

#(π0(X2 \Xv2)) + #(DX2 ∩Xv2) ≥ 4.

Thus, there exists a connected component C2 ∈ π0(X2 \Xv2) such that XΓ2 is contained in the

topological closure fe2(C2) of fe2(C2) in Xe2 . Let a2 ∈ DX2 ∩ C2 be a marked point of X•
2 .

On the other hand, let b2, c2 ∈ DX2 \ ((DX2 ∩ C2) ∪ {x2}) be marked points distinct from
each other such that the following conditions are satisfied:

• If #(π0(X2 \Xv2)) = 1, then b2, c2 are contained in Xv2 ∩DX2 .
• If #(π0(X2\Xv2)) = 2 (this implies #(DX2∩Xv2) ≥ 2), then we have that b2 ∈ DX2∩Xv2 ,
and that c2 is a marked point contained in the connected component of π0(X2 \ Xv2)
distinct from C2.
• If #(π0(X2 \Xv2)) ≥ 3, then b2, c2 are contained in two different connected components
of π0(X2 \Xv2) distinct from C2.

We denote by ea2 , eb2 , ec2 ∈ eop(ΓX•
2
) the open edges of ΓX•

2
corresponding to a2, b2, c2, respec-

tively. Moreover, we put

ea1
def
= (φsg,op)−1(ea2), eb1

def
= (φsg,op)−1(eb2), ec1

def
= (φsg,op)−1(ec2) ∈ eop(ΓX•

1
).

We write a1, b1, c1 ∈ DX1 for the marked points of X•
1 corresponding to ea1 , eb1 , ec1 , respectively.
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We put Ei
def
= eop(ΓX•

i
)\{ei, eai , ebi , eci}. Note that X•

Ei
is a pointed stable curve of type (0, 4)

over ki. Then we obtain an open continuous homomorphism φE : ΠX•
E1
→ ΠX•

E2
. Moreover, the

above constructions imply that X•
E2

is smooth over k2. On the other hand, since we assume that
φe : ΠX•

e1
→ ΠX•

e2
is a strong topological specialization homomorphism (4.0.3), this implies that

X•
E1

is singular, that the irreducible components containing fE1(x1) and fE1(a1), respectively,
are equal, and that the irreducible components containing fE1(b1) and fE1(c1), respectively, are
equal. This contradicts [Y7, Lemma 6.3]. Then we complete the proof of the lemma. □

Lemma 4.5. We maintain the settings introduced in 4.0.3 and the notation introduced at the
beginning of 4.0.5. Moreover, we suppose that #(v(ΓX•

1
)) = #(v(ΓX•

e1
)), that #(v(ΓX•

2
)) =

#(v(ΓX•
e2
)) + 1, and that fe2(Xv2) is a marked point of X•

e2
. Then Xve2

is an irreducible
component of XΓ2.

Proof. Suppose #(v(ΓX•
1
)) = 1 (i.e. X•

1 is non-singular). Then the lemma is trivial. To verify
the lemma, we suppose #(v(ΓX•

1
)) ≥ 2 (i.e. X•

1 is singular). Moreover, suppose that Xve2
is

not an irreducible component of XΓ2 . We will construct a contradiction.
Since fe2(Xv2) is a marked point of X•

e2
, we have #(DX2 ∩ Xv2) = 2. Then we have DX2 ∩

Xv2
def
= {x2, a2}. Moreover, we see that there exists a connected component Ce2 ∈ π0(Xe2 \Xve2

)

such that XΓ2 is contained in Ce2 . Let b2 ∈ DX2 \ {x2, a2} be a marked point of X•
2 such that

fe2(b2) is contained in Ce2 .
On the other hand, let c2 ∈ DX2 \{x2, a2, b2} be a marked point of X•

2 such that the following
conditions are satisfied:

• If #(π0(Xe2 \Xve2
)) = 1 (this implies #(DXe2

∩Xve2
) ≥ 2), then fe2(c2) is contained in

DXe2
∩Xve2

. Note that we have {fe2(a2), fe2(c2)} ⊆ DXe2
∩Xve2

.
• If #(π0(Xe2\Xve2

)) ≥ 2, then fe2(c2) is contained in a connected component of Xe2\Xve2
which is distinct from Ce2 .

We denote by ea2 , eb2 , ec2 ∈ eop(ΓX•
2
) the open edges of ΓX•

2
corresponding to a2, b2, c2, re-

spectively. Moreover, we put

ea1
def
= (φsg,op)−1(ea2), eb1

def
= (φsg,op)−1(eb2), ec1

def
= (φsg,op)−1(ec2) ∈ eop(ΓX•

1
).

Write a1, b1, c1 ∈ DX1 for the marked points of X•
1 corresponding to ea1 , eb1 , ec1 , respectively.

We put Ei
def
= eop(ΓX•

i
)\{ei, eai , ebi , eci}. Then we obtain an open continuous homomorphism

φE : ΠX•
E1
→ ΠX•

E2
. The above constructions imply that X•

E2
is a singular pointed stable curve

of type (0, 4) over k2. Moreover, we see that XE2 has two irreducible components, that the
irreducible components containing fE2(x2) and fE2(a2), respectively, are equal, and that the
irreducible components containing fE2(b2) and fE2(c2), respectively, are equal.
On the other hand, since φe : ΠX•

e1
→ ΠX•

e2
is a strong topological specialization homomor-

phism (4.0.3), we see that X•
E1

is singular. Moreover, the above constructions imply that the
irreducible components containing fE1(x1) and fE1(b1), respectively, are equal, and that the
irreducible components containing fE1(a1) and fE1(c1), respectively, are equal.
By applying Corollary 3.3 (b), we obtain that the irreducible components of XE2 containing

fE2(x2) and fE2(b2), respectively, are equal. This contradicts our construction of X•
E2
. We

complete the proof of the lemma. □

Lemma 4.6. We maintain the settings introduced in 4.0.3 and the notation introduced at the
beginning of 4.0.5. Moreover, we suppose that #(v(ΓX•

1
)) = #(v(ΓX•

e1
)), that #(v(ΓX•

2
)) =

#(v(ΓX•
e2
)) + 1, and that fe2(Xv2) is a node of Xe2. Then fe2(Xv2) is contained in XΓ2.
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Proof. Suppose #(v(ΓX•
1
)) = 1 (i.e. X•

1 is non-singular). Then the lemma is trivial. To verify
the lemma, we suppose #(v(ΓX•

1
)) ≥ 2 (i.e. X•

1 is singular). Moreover, suppose that fe2(Xv2)
is a node which is not contained in XΓ2 . We will construct a contradiction.

Since fe2(Xv2) is a node of Xe2 , we have #(π0(Xe2 \ fe2(Xv2))) = 2. Then there exists a
connected component Ce2 ∈ π0(Xe2 \ fe2(Xv2)) such that XΓ2 is contained in Ce2 . Moreover,
since fe2(Xv2) is not contained in XΓ2 , there exists a unique connected component Z ∈ π0(X2 \
(Xv2 ∪ f−1

e2
(XΓ2))) such that fe2(Z) ⊆ Ce2 , and that Z ∩Xv2 6= ∅.

Let a2 ∈ (DX2 \{x2})∩Z, b2 ∈ (DX2 \{x2})∩ (f−1(Ce2)\Z), and c2 ∈ (DX2 \{x2}) a marked
point which is not contained in f−1

e2
(Ce2). We denote by ea2 , eb2 , ec2 ∈ eop(ΓX•

2
) the open edges

of ΓX•
2
corresponding to a2, b2, c2, respectively. Moreover, we put

ea1
def
= (φsg,op)−1(ea2), eb1

def
= (φsg,op)−1(eb2), ec1

def
= (φsg,op)−1(ec2) ∈ eop(ΓX•

1
).

Write a1, b1, c1 ∈ DX1 for the marked points corresponding to ea1 , eb1 , ec1 , respectively.

We put Ei
def
= eop(ΓX•

i
)\{ei, eai , ebi , eci}. Then we obtain an open continuous homomorphism

φE : ΠX•
E1
→ ΠX•

E2
. The above constructions imply that X•

E2
is a singular pointed stable curve

of type (0, 4) over k2. Moreover, we see that XE2 has two irreducible components, that the
irreducible components containing fE2(x2) and fE2(c2), respectively, are equal, and that the
irreducible components containing fE2(a2) and fE2(b2), respectively, are equal.

On the other hand, since φe : ΠX•
e1
→ ΠX•

e2
is a strong topological specialization homomor-

phism (4.0.3), we see that X•
E1

is singular. Moreover, the above constructions imply that the
irreducible components containing fE1(x1) and fE1(b1), respectively, are equal, and that the
irreducible components containing fE1(a1) and fE1(c1), respectively, are equal.
By applying Corollary 3.3 (b), we obtain that the irreducible components of XE2 containing

fE2(x2) and fE2(b2), respectively, are equal. This contradicts our construction of X•
E2
. We

complete the proof of the lemma. □

Lemma 4.7. We maintain the settings introduced in 4.0.3 and the notation introduced at
the beginning of 4.0.5. Moreover, we suppose that #(v(ΓX•

1
)) = #(v(ΓX•

e1
)) + 1 holds, and that

fe1(x1) ∈ DXe1
is a marked point of X•

e1
. Then the following statements hold: (i) fe2(x2) ∈ DXe2

is a marked point of X•
e2
. (ii) Xve2

is an irreducible component of XΓ2.

Proof. (i) Suppose that fe2(x2) is not a marked point of X•
e2
. We will construct a contradiction.

Note that Lemma 4.3 implies that fe2(x2) is a node of Xe2 .
Since fe1(x1) ∈ DXe1

is a marked point of X•
e1
, there exists a unique marked point a1 ∈ DX1 \

{x1} such that a1 is contained in Xv1 . We write ea1 ∈ eop(ΓX•
1
) for the open edge corresponding

to a1, ea2
def
= φsg,op(ea1), and a2 ∈ DX2 for the marked point of X•

2 corresponding to ea2 . Then we
see immediately that a2 is contained in a connected component C2 ∈ π0(X2 \Xv2). Moreover,
we note that #(DX2 ∩ C2) ≥ 2. Then we take b2 ∈ (DX2 ∩ C2) \ {a2}. On the other hand,
let c2 ∈ DX2 \ {x2, a2, b2} be a marked point of X•

2 such that c2 is contained in a connected
component of X2 \ Xv2 distinct from C2. We denote by eb2 , ec2 ∈ eop(ΓX•

2
) the open edges of

ΓX•
2
corresponding to b2, c2, respectively. Moreover, we put

eb1
def
= (φsg,op)−1(eb2), ec1

def
= (φsg,op)−1(ec2) ∈ eop(ΓX•

1
).

Write b1, c1 ∈ DX1 for the marked points corresponding to eb1 and ec1 , respectively.

We put Ei
def
= eop(ΓX•

i
)\{ei, eai , ebi , eci}. Then we obtain an open continuous homomorphism

φE : ΠX•
E1
→ ΠX•

E2
. The above constructions imply that X•

E2
is a singular pointed stable curve

of type (0, 4) over k2. Moreover, we see that XE2 has two irreducible components, that the
irreducible components containing fE2(x2) and fE2(c2), respectively, are equal, and that the
irreducible components containing fE2(a2) and fE2(b2), respectively, are equal.
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On the other hand, since φe : ΠX•
e1
→ ΠX•

e2
is a strong topological specialization homomor-

phism (4.0.3), we see that X•
E1

is singular, that the irreducible components containing fE1(x1)
and fE1(a1), respectively, are equal, and that the irreducible components containing fE1(b1) and
fE1(c1), respectively, are equal. By applying Corollary 3.3 (b), we obtain that the irreducible
components of XE2 containing fE2(x2) and fE2(a2), respectively, are equal. This contradicts
our construction of X•

E2
. We complete the proof of (i).

(ii) Suppose that Xve2
is not an irreducible component of XΓ2 . We will construct a contra-

diction. Since fe1(x1) (resp. fe2(x2)) is a marked point, there exists a unique marked point
a1 ∈ DX1 \ {x1} (resp. b2 ∈ DX2 \ {x2}) such that a1 is contained in Xv1 (resp. b2 is contained
in Xv2).

We denote by ea1 ∈ eop(ΓX•
1
), eb2 ∈ eop(ΓX•

2
) the open edges of ΓX•

1
and ΓX•

2
corresponding

to a1, b2, respectively. Moreover, we put

ea2
def
= φsg,op(ea1) ∈ eop(ΓX•

2
), eb1

def
= (φsg,op)−1(eb2) ∈ eop(ΓX•

1
).

Write a2 ∈ DX2 and b1 ∈ DX1 for the marked points corresponding to ea2 and eb1 , respectively.
Note that since we assume that Xve2

is not an irreducible component of XΓ2 , we have a1 6= b1
and a2 6= b2. Furthermore, we have that b1 6∈ Xv1 , and that there exists a connected component
C1 of X1 \ Xv1 such that b1 is contained in C1. We take c1 ∈ (DX1 ∩ C1) \ {b1} a marked
point of X•

1 and write ec1 ∈ eop(ΓX•
1
) for the open edge of ΓX•

1
corresponding to c1. We put

ec2
def
= φsg,op(ec1) and write c2 ∈ DX2 for the marked point corresponding to ec2 .

We put Ei
def
= eop(ΓX•

i
)\{ei, eai , ebi , eci}. Then we obtain an open continuous homomorphism

φE : ΠX•
E1
→ ΠX•

E2
. Moreover, the above constructions imply that X•

E2
is a singular pointed

stable curve of type (0, 4) over k2 such that XE2 has two irreducible components, that the
irreducible components containing fE2(x2) and fE1(b2), respectively, are equal, and that the
irreducible components containing fE2(a2) and fE2(c2), respectively, are equal.
On the other hand, the above constructions imply that X•

E1
is a singular pointed stable curve

of type (0, 4) over k1 such that the irreducible components containing fE1(x1) and fE1(a1),
respectively are equal, and that the irreducible components containing fE1(b1) and fE1(c1),
respectively, are equal.

By applying Corollary 3.3 (b), we obtain that the irreducible components of XE2 containing
fE2(x2) and fE2(a2) are equal. This contradicts our construction of X•

E2
. We complete the

proof of (ii). □

Lemma 4.8. We maintain the settings introduced in 4.0.3 and the notation introduced at the
beginning of 4.0.5. Moreover, we suppose that #(v(ΓX•

1
)) = #(v(ΓX•

e1
)) + 1 holds, and that

fe1(x1) is a node of Xe1. Then the following statements hold: (i) fe2(x2) is a node of Xe2. (ii)
fe2(x2) is contained in XΓ1

2
∩XΓ2

2
.

Proof. (i) Suppose that fe2(x2) is not a node of Xe2 . We will construct a contradiction. Note
that Lemma 4.3 implies that fe2(x2) is a marked point of X•

e2
. Then there exists a unique

marked point a2 ∈ DX2 \ {x2} such that a2 is contained in Xv2 . We write ea2 ∈ eop(ΓX•
2
) for

the open edge corresponding to a2, ea1
def
= (φsg,op)−1(ea2), and a1 ∈ DX1 for the marked point of

X•
1 corresponding to ea1 . Then a1 is contained in a connected component C1 ∈ π0(X1 \Xv1).

Moreover, we note that #(DX1 ∩ C1) ≥ 2. We take b1 ∈ (DX1 ∩ C1) \ {a1}. On the other
hand, since #(π0(X1 \Xv1)) = 2, there exists a marked point c1 ∈ DX1 \ {x1, a1, b1} such that
c1 is contained in the unique connected component of X1 \ Xv1 distinct from C1. We denote
by eb1 , ec1 ∈ eop(ΓX•

1
) the open edges of ΓX•

1
corresponding to b1, c1, respectively. Moreover, we

put

eb2
def
= φsg,op(eb1), ec2

def
= φsg,op(ec1) ∈ eop(ΓX•

2
).
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Write b2, c2 ∈ DX2 for the marked points corresponding to eb2 and ec2 , respectively.

We put Ei
def
= eop(ΓX•

i
)\{ei, eai , ebi , eci}. Then we obtain an open continuous homomorphism

φE : ΠX•
E1
→ ΠX•

E2
. The above constructions imply that X•

E2
is a singular pointed stable curve

of type (0, 4) over k2 such that the irreducible components containing fE2(x2) and fE2(a2),
respectively, are equal, and that the irreducible components containing fE2(b2) and fE2(c2),
respectively, are equal.

On the other hand, the above constructions imply that X•
E1

is a singular pointed stable
curve over k1 such that the irreducible components containing fE1(x1) and fE1(c1), respectively,
are equal, and that the irreducible components containing fE1(a1) and fE1(b1), respectively,
are equal. By applying Corollary 3.3 (b), we obtain that the irreducible components of XE2

containing fE2(x2) and fE2(c2), respectively, are equal. This contradicts our construction of
X•

E2
. We complete the proof of (i).

(ii) Suppose that the node fe2(x2) is not contained in XΓ1
2
∩ XΓ2

2
. We will construct a

contradiction. Since fe2(x2) is a node and is not contained in XΓ1
2
∩XΓ2

2
, either Xv2∩f−1

e2
(XΓ1

2
) =

∅ or Xv2 ∩ f−1
e2

(XΓ2
2
) = ∅ holds. Without loss of generality, we may assume Xv2 ∩ f−1

e2
(XΓ2

2
) = ∅.

Then we have #(π0(X2 \ (Xv2 ∪ f−1
e2

(XΓ2
2
))) ≥ 2. Moreover, let

C1
2 , C

2
2 ∈ π0(X2 \ (Xv2 ∪ f−1

e2
(XΓ2

2
)))

be connected components such that C1
2 ∩Xv2 6= ∅, C1

2 ∩ f−1
e2

(XΓ1
2
) = ∅, and C1

2 ∩ f−1
e2

(XΓ2
2
) = ∅,

and that f−1
e2

(XΓ1
2
) ⊆ C2

2 .

Let a2 ∈ DX2 ∩C1
2 , b2 ∈ DX2 ∩C2

2 , and c2 ∈ DX2 \ (C1
2 ∪C2

2 ∪ {x2}) be marked points of X•
2 .

Note that a2, b2, c2 are distinct from x2. We denote by ea2 , eb2 , ec2 ∈ eop(ΓX•
2
) the open edges of

ΓX•
2
corresponding to a2, b2, c2, respectively. Moreover, we put

ea1
def
= (φsg,op)−1(ea2), eb1

def
= (φsg,op)−1(eb2), ec1

def
= (φsg,op)−1(ec2) ∈ eop(ΓX•

1
).

Write a1, b1, c1 ∈ DX1 for the marked points corresponding to ea1 , eb1 , ec1 , respectively.

We put Ei
def
= eop(ΓX•

i
)\{ei, eai , ebi , eci}. Then we obtain an open continuous homomorphism

φE : ΠX•
E1
→ ΠX•

E2
. The above constructions imply that X•

E2
is a singular pointed stable curve

of type (0, 4) over k2 such that the irreducible components containing fE2(x2) and fE2(a2),
respectively, are equal, and that the irreducible components containing fE2(b2) and fE2(c2),
respectively, are equal.

On the other hand, since φe : ΠX•
e1
→ ΠX•

e2
is a strong topological specialization homomor-

phism (4.0.3), X•
E1

is a singular pointed stable curve over k1 of type (0, 4) such that one of the
following cases holds:

• The irreducible components containing fE1(x1) and fE1(c1), respectively, are equal, and
that the irreducible components containing fE1(a1) and fE1(b1), respectively, are equal.
• The irreducible components containing fE1(x1) and fE1(b1), respectively, are equal, and
that the irreducible components containing fE1(a1) and fE1(c1), respectively, are equal.

By applying Corollary 3.3 (b), we obtain that one of the following cases holds:

• The irreducible components of XE2 containing fE2(x2) and fE2(c2), respectively, are
equal.
• The irreducible components of XE2 containing fE2(x2) and fE2(b2), respectively, are
equal.

This contradicts our construction of X•
E2
. We complete the proof of (ii). □

4.0.6. The main result of the present section is the following:

Theorem 4.9. We maintain the notation introduced in 3.1.1. Suppose that gX = 0, and that
ΠX•

i
, i ∈ {1, 2}, is either the admissible fundamental group of X•

i or the maximal pro-solvable
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quotient of the admissible fundamental group of X•
i . Let φ : ΠX•

1
→ ΠX•

2
be an arbitrary open

continuous homomorphism. Then φ is a strong topological specialization homomorphism. In
particular, the topological specialization conjecture holds.

Proof. Since the maximal pro-solvable quotient of the admissible fundamental groups can be re-
constructed group-theoretically from the admissible fundamental groups, to verify the theorem,
we may assume that ΠX•

i
is the maximal pro-solvable quotient of the admissible fundamental

group of X•
i .

Suppose that nX = 3. Then X•
i , i ∈ {1, 2}, is a smooth pointed stable curve over ki. The

theorem follows immediately from Corollary 3.3 (a). Suppose that nX = 4. Then the theorem
follows immediately from Corollary 3.3 (b).

Next, suppose that the theorem holds for 3 ≤ nX ≤ n − 1. We will prove the theorem
holds for nX = n. We maintain the settings introduced in 4.0.3 and the notation introduced
at the beginning of 4.0.5. Since the theorem holds for nX ≤ n− 1, to verify the theorem holds
for nX = n (i.e. the underlying topological space of X2 is a degeneration of the underlying
topological space of X1), it’s sufficient to prove that the following statements hold:

(i) If #(v(ΓX•
1
)) = #(v(ΓX•

e1
)) and #(v(ΓX•

2
)) = #(v(ΓX•

e2
)), then Xve2

is an irreducible
component of XΓ2 .

(ii) If #(v(ΓX•
1
)) = #(v(ΓX•

e1
)), #(v(ΓX•

2
)) = #(v(ΓX•

e2
)) + 1, and fe2(Xv2) is a marked

point of X•
e2
, then Xve2

is an irreducible component of XΓ2 .
(iii) If #(v(ΓX•

1
)) = #(v(ΓX•

e1
)), #(v(ΓX•

2
)) = #(v(ΓX•

e2
))+1, and fe2(Xv2) is a node of Xe2 ,

then fe2(Xv2) is contained in XΓ2 .
(iv) If #(v(ΓX•

1
)) = #(v(ΓX•

e1
)) + 1 and fe1(x1) ∈ DXe1

is a marked point of X•
e1
, then

fe2(x2) ∈ DXe2
is a marked point of X•

e2
, and Xve2

is an irreducible component of XΓ2 .
(v) If #(v(ΓX•

1
)) = #(v(ΓX•

e1
)) + 1 and fe1(x1) is a node of Xe1 , then fe2(x2) is a node of

Xe2 , and fe2(x2) is contained in XΓ1
2
∩XΓ2

2
.

Suppose #(v(ΓX•
1
)) = #(v(ΓX•

e1
)). Since Xe2 is a degeneration of Xe1 (as topological spaces),

X2 is a degeneration of X1 if fe2(x2) is contained in XΓ2 which is equivalent to (i), (ii), (iii)
listed above.

Suppose #(v(ΓX•
1
)) = #(v(ΓX•

e1
)) + 1. If fe1(x1) ∈ DXe1

is a marked point of X•
e1

(i.e.

fe1 : X1 → Xe1 is a blow-up along a smooth closed point of Xe1), since Xe2 is a degeneration
of Xe1 (as topological spaces), X2 is a degeneration of X1 if fe2 : X2 → Xe2 is a blow-up along
a smooth closed point of Xe2 contained in XΓ2 which is equivalent to (iv).
Suppose #(v(ΓX•

1
)) = #(v(ΓX•

e1
))+1. If fe1(x1) is a singular point of X

•
e1
(i.e. fe1 : X1 → Xe1

is a blow-up along a singular point of Xe1), since Xe2 is a degeneration of Xe1 (as topological
spaces), X2 is a degeneration of X1 if fe2 : X2 → Xe2 is a blow-up along a singular point of Xe2

contained in XΓ1
2
∩XΓ2

2
which is equivalent to (v).

The statements (i), (ii), (iii), (iv), (v) follow from Lemma 4.4, Lemma 4.5, Lemma 4.6,
Lemma 4.7, and Lemma 4.8, respectively. We complete the proof of the theorem. □

5. Group-theoretical specialization conjecture for gX = 0 under assumptions

In this section, we will prove that the group-theoretical specialization conjecture holds for
gX = 0 if we assume that the topological specialization conjecture holds for arbitrary types
in the sense of the fourth condition given in 5.2.1. The main result of the present section is
Theorem 5.8.

5.1. Boundary data.
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5.1.1. Let W • be a pointed stable curve of type (0, n) over an algebraically closed field k of
characteristic p > 0 and ΓW • the dual semi-graph of W •. Note that since ΓW • is a tree, we
have Ssg(ΓW •) = Com(ΓW •) (2.3.5).

Definition 5.1. Let B ∈ Com(ΓW •) be a combinatorial datum associated to W •. We shall
call B a boundary combinatorial datum (or, a boundary sub-semi-graph (2.1.2)) of ΓW • if the
following conditions are satisfied:

• v(B) 6= ∅.
• ΓW • \B is connected or empty (note that we have Ssg(ΓW •) = Com(ΓW •)).

Let W •
B be the pointed stable curve associated to B (2.2.4). We see that B is a boundary

combinatorial datum if and only if W \WB is connected or empty.
If v(ΓW •) \ v(B) 6= ∅ and B is a boundary combinatorial datum, there exists a unique

boundary combinatorial datum Bc ∈ Com(ΓW •) such that v(Bc) = v(ΓW •) \ v(B) (i.e. Bc is
the sub-semi-graph determined by v(ΓW •) \ v(B)), where “c” means “complement”.

Example 5.2. Let us give an example to explain the above notation. We use the notation “•”
and “◦ with a line segment” to denote a vertex and an open edge, respectively. Let ΓW • be a
semi-graph as follows:

v1 e3 e5v2

e4

v3

e2

e1

e7

e6

ΓW • :

Let B be a sub-semi-graph as follows:

v1 e3

e2

e1

B:

Then B is boundary, and Bc is the following:

e3 e5v2

e4

v3

e7

e6

Bc:

On the other hand, we also give an example of sub-semi-graphs which is not a boundary
sub-semi-graph.

v2

e3 e5

e4

B′:
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The following lemma will be used in the next subsection.

Lemma 5.3. Let B ∈ Ssg(ΓW •) be a boundary sub-semi-graph such that v(ΓW •) \ v(B) 6= ∅,
and w ∈ v(Bc) the vertex such that w and B are connected with a closed edge of ΓW •. Write
W •

B, W
•
w for the pointed stable curves over k associated to B, w, respectively. Then there exist

a pointed stable curve Z• of type (gZ , nZ) over k and an abelian Galois admissible covering
f • : Z• → W • with Galois group Z/`Z for some prime number ` 6= p such that the following
conditions are satisfied:

• gZ = 0.
• Write f sg : ΓZ• → ΓW • for the natural map of dual semi-graphs induced by f •. Let
u ∈ (f sg)−1(w) and Γ ∈ Ssg(ΓZ•) a connected component of (f sg)−1(B). We denote by

Z•
u, Z

•
Γ

the pointed stable curves of types (0, nu), (0, nΓ) over k associated to u, Γ, respectively.
Then we have

nΓ << nu.

This means that for any positive natural number m, nu − nΓ > m for a suitable choice
of `.

Proof. Since W • is a pointed stable curve of genus 0, we have

#(Ww ∩DW ) + #(Ww ∩W sing) ≥ 3.

Note that Ww ∩ WB 6= ∅ implies that #(Ww ∩ W sing) ≥ 1. Now, we construct two marked
points x1, x2 ∈ DW of W • as follows.

Suppose #(Ww ∩DW ) ≥ 2. We take x1, x2 ∈ Ww ∩DW marked points of W • distinct from
each other.

Suppose #(Ww ∩ DW ) = 1. Then we have #(π0(W \Ww)) ≥ 2. Moreover, there exists a
connected component C ∈ π0(W \Ww) such that C ∩WB = ∅. We take x1 the marked point
contained in Ww ∩DW and take x2 a marked point contained in C.
Suppose #(Ww ∩DW ) = 0. Then we have #(π0(W \Ww)) ≥ 3. Moreover, there exist two

connected components C1, C2 ∈ π0(W \Ww) distinct from each other such that C1 ∩WB = ∅
and C2 ∩WB = ∅. We take x1, x2 marked points contained in C1, C2, respectively.
Let ` >> 0 be a prime number prime to p, and let f • : Z• → W • be a Galois admissible

covering with Galois group Z/`Z such that f • is totally ramified over x1, x2 and is étale over
DW \{x1, x2}. Then we see immediately that f • is the desired Galois admissible covering. This
completes the proof of the lemma. □

5.2. Main result.

5.2.1. Settings. We maintain the notation introduced in 3.1.1. Moreover, we assume that the
following holds:

• gX = 0.
• ΠX•

i
, i ∈ {1, 2}, is the maximal pro-solvable quotient of the admissible fundamental

group of X•
i .

• φ ∈ Homop
pg(ΠX•

1
,ΠX•

2
).

• Let Π1 ∈ Geo(ΠX•
1
) and Π2

def
= φ(Π1) ⊆ ΠX•

2
. If Π2 ∈ Geo(ΠX•

2
), then φ|H1 : H1 → H2

is a topological specialization homomorphism for all open subgroups H2 ⊆ Π2, where

H1
def
= (φ|Π1)

−1(H2) ⊆ Π1.
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5.2.2. We maintain the notation introduced in 5.2.1. Let Γ1 ∈ Ssg(ΓX•
1
) be a boundary sub-

semi-graph. Note that, in this situation, this means that X1 \XΓ1 is connected or empty, where
XΓ1 ⊆ X1 denotes the semi-stable curve corresponding Γ1 (2.2.3).
By applying Theorem 4.9, we obtain that φ : ΠX•

1
→ ΠX•

2
is a strong topological specialization

homomorphism. Namely, φsg,op = spcomX•
1 ,X

•
2
|eop(ΓX•

1
) holds for some spcomX•

1 ,X
•
2

: Com(ΓX•
1
) →

Com(ΓX•
2
) (Definition 4.1). We put

(Γ2, ∅)
def
= spcomX•

1 ,X
•
2
((Γ1, ∅)).

Then Theorem 4.9 implies that Γ2 ⊆ ΓX•
2
is a boundary sub-semi-graph. On the other hand,

write EΓ1 ⊆ eop(ΓX•
1
) for the set of open edges of ΓX•

1
on which Γ1 is abutted, EΓ2 ⊆ eop(ΓX•

2
)

for the set of open edges of ΓX•
2
on which Γ2 is abutted. Note that we have

φsg,op(EΓ1) = EΓ2 .

Let Γ̂i ⊆ Γ̂X•
i
, i ∈ {1, 2}, be a connected component of π−1

Xi
(Γi), and ΠΓ̂i

⊆ ΠX•
i
the geometry-

like subgroup associated to Γ̂i (2.3.3). Moreover, we put

EdgopEΓi
(ΠΓ̂i

)
def
= {Iêi ⊆ ΠΓ̂i

| êi ∈ π−1
Xi
(ei), ei ∈ EΓi

} ⊆ Edgop(ΠX•
i
).

Then we have the following lemma:

Lemma 5.4. We maintain the notation introduced above. Then ΠΓ̂i
is generated by {Iêi | Iêi ∈

EdgopEΓi
(ΠΓ̂i

)}.

Proof. This lemma follows immediately from the facts that gX is equal to 0, and that Γi is a
boundary sub-semi-graph. □
5.2.3. We maintain the setting and notation introduced in 5.2.1 and 5.2.2. Before we start
to prove the group-theoretical specialization conjecture under the settings 5.2.1, we will prove
firstly the following:

(∗) : There exists a connected component Γ̂2 ⊆ Γ̂X•
2
of π−1

X2
(Γ2) such that

φ(ΠΓ̂1
) = ΠΓ̂2

.

By Lemma 5.4, (∗) is equivalent to the following statement:

(∗∗) : Let Iê1,j ∈ EdgopEΓ1
(ΠΓ̂1

), j ∈ {a, b}. Theorem 3.2 (a) implies φ(Iê1,j) = Iê2,j

for some ê2,j ∈ eop(Γ̂X•
2
). Suppose that Iê2,j ⊆ ΠΓ̂2,j

(or equivalently, ê2,j ∈ Γ̂2,j)

for some connected component Γ̂2,j of π
−1
X2
(Γ2). Then we have ΠΓ̂2,a

= ΠΓ̂2,b
.

Let H2 ⊆ ΠX•
2
be an arbitrary open subgroup and H1

def
= φ−1(H2) ⊆ ΠX•

1
. Write X•

Hi
,

i ∈ {1, 2}, for the pointed stable curve of type (gH , nH) over ki corresponding to Hi (note
that Theorem 3.2 (a) implies that the types of X•

H1
and X•

H2
are equal), f •

Hi
: X•

Hi
→ X•

i the
admissible covering determined by the natural injection Hi ↪→ ΠX•

i
, ΓX•

Hi
for the dual semi-

graph of X•
Hi
, and f sg

Hi
: ΓX•

Hi
→ ΓX•

i
the natural map of dual semi-graphs induced by f •

Hi
. We

maintain the notation introduced in (∗∗). Moreover, for j ∈ {a, b}, we denote by

eH1,j, ΓH1 , eH2,j, ΓH2,j

the images of ê1,j, Γ̂1, ê2,j, Γ̂2,j under the natural maps of semi-graphs Γ̂X•
1
→ ΓX•

H1
and

Γ̂X•
2
→ ΓX•

H2
, respectively. Note that we have

eH1,a, eH1,b ∈ eop(ΓH1), eH2,a ∈ eop(ΓH2,a), eH2,b ∈ eop(ΓH2,b).

Moreover, we shall write X•
ΓH1

, X•
ΓH2,a

, X•
ΓH2,b

for the pointed stable curves of types (gΓH1
, nΓH1

),

(gΓH2,a
, nΓH2,a

), (gΓH2,b
, nΓH2,b

), corresponding to ΓH1 , ΓH2,a, ΓH2,b, respectively. In particular, if
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H2 is an open normal subgroup of ΠX•
2
, we have (gΓH2,a

, nΓH2,a
) = (gΓH2,b

, nΓH2,b
). Then we put

(gΓH2
, nΓH2

)
def
= (gΓH2,a

, nΓH2,a
) = (gΓH2,b

, nΓH2,b
) when H2 is an open normal subgroup of ΠX•

2
.

We see that, to verify (∗∗), it’s sufficient to prove the following statement:

(?) : ΓH2,a = ΓH2,b for arbitrary open subgroup H2 ⊆ ΠX•
2
.

In 5.2.4 below, we will prove the statement (?) under the settings 5.2.1 (see Proposition 5.6
below).

If v(ΓX•
i
) \ v(Γi) 6= ∅, write Γc

i for the unique boundary sub-semi-graph of ΓX•
i
such that

v(Γc
i ) = v(ΓX•

i
) \ v(Γi). Moreover, we denote by X•

Γc
i
the pointed stable curve of type (0, nΓc

i
)

over ki. On the other hand, since ΓX•
2
is a tree, there exists a unique vertex

w2 ∈ v(Γc
2) ⊆ v(ΓX•

2
)

such that w2 and Γ2 are connected with a closed edge of ΓX•
2
. We denote by X•

w2
the smooth

pointed stable curve of type (0, nw2) over k2 corresponding to w2.
By applying Lemma 5.3, there exists an open normal subgroup P2 ⊆ ΠX•

2
such that ΠX•

2
/P2
∼=

Z/`′Z for some `′ 6= p, and that the Galois admissible covering f •
P2

: X•
P2
→ X•

2 corresponding
to the natural injection P2 ↪→ ΠX•

2
satisfies the conditions listed in the conclusion of Lemma

5.3. Let P1
def
= φ−1(P2), and let X•

P1
be the pointed stable curve of type (gP1 , nP1) over k1.

Theorem 3.2 (a) implies that (gP1 , nP1) = (gP2 , nP2) and gP1 = gP2 = 0, where (gP2 , nP2) denotes
the type of X•

P2
. Moreover, we note that φ|P1 : P1 → P2 is a strong topological specialization

homomorphism (Definition 4.1 and Theorem 4.9). To verify (?), it’s sufficient to prove the
following:

ΓH2,a = ΓH2,b for arbitrary open subgroup H2 ⊆ P2.

Then by replacing X•
i , ΠX•

i
, i ∈ {1, 2}, and φ by X•

Pi
, Pi, and φ|P1 , in the remainder of this

subsection, we may assume (see 2.2.3 for nΓ1 , nΓ2)

nw2 >> nΓ2(= nΓ1).

5.2.4. We maintain the settings and the notation introduced in 5.2.1 and 5.2.3.

Lemma 5.5. Let H2 ⊆ ΠX•
2
be an open normal subgroup of ΠX•

2
and H1

def
= φ−1(H2) ⊆ ΠX•

2
.

Let wH2 ∈ (f sg
H2
)−1(w2) ⊆ v(ΓX•

H2
) be a vertex over w2 and X•

wH2
the smooth (since gX = 0)

pointed stable curve of type (gwH2
, nwH2

) associated to wH2. Suppose gwH2
>> gΓH1

for all wH2.
Then we have ΓH2,a = ΓH2,b.

Proof. To verify the lemma, we suppose ΓH2,a 6= ΓH2,b. We will construct a contradiction.
Let ` be the minimal odd prime number distinct from p (i.e. ` is equal to either 3 or 5). Let

Q1 ⊆ H1 be an open normal subgroup of H1 such that the following conditions are satisfied
(the existence of Q1 follows immediately from the structure of maximal prime-to-p quotients of
admissible fundamental groups):

• H1/Q1
∼= Z/`Z.

• Write X•
Q1

for the pointed stable curve over k1 corresponding to Q1 and

h•1 : X
•
Q1
→ X•

H1

for the Galois admissible covering determined by Q1 ↪→ H1 satisfying the following
conditions:

(i) #π0((h
−1
1 (XH1 \ XΓH1

)) = `#π0(XH1 \ XΓH1
) (i.e. h1 is a trivial covering

over XH1 \XΓH1
).

(ii) h1 is étale over DXH1
\ {xeH1,a

, xeH1,b
} and is totally ramified over xeH1,j

,
j ∈ {a, b}, where xeH1,j

denotes the marked point corresponding to eH1,j. Note

that in this situation, h−1
1 (XΓH1

) is connected.
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We put Q2
def
= φ(Q1) ⊆ ΠX•

2
. Moreover, we denote by X•

Q2
the pointed stable curve over k2

corresponding to Q2 and
h•2 : X

•
Q2
→ X•

H2

the Galois admissible covering determined by Q2 ↪→ H2. We see H2/Q2
∼= Z/`Z.

Write ΓX•
Qi
, i ∈ {1, 2}, for the dual semi-graph of X•

Qi
. Write ΓQ1 ⊆ ΓX•

Q1
for the sub-semi-

graph such that the underlying curve of the corresponding pointed stable curve X•
ΓQ1

is equal

to h−1
1 (XΓH1

). By the construction of h•1 and the choice of `, we have

gΓQ1
= `(gΓH1

− 1) + (`− 1) + 1 << gwH2
,

where gΓQ1
denotes the genus of X•

ΓQ1
.

On the other hand, since we assume that φ|Q1 : Q1 → Q2 is a topological specialization
homomorphism (i.e. the settings 5.2.1), there is a map of combinatorial data (i.e. the map of
dual semi-graphs induced by a degeneration or reduction)

spcomQ1,Q2
: Com(ΓX•

Q1
)→ Com(ΓX•

Q2
).

We put (ΓQ2 , ∅)
def
= spcomQ1,Q2

((ΓQ1 , ∅)). Then we have the following claim.

Claim: hsg2 (ΓQ2) ⊆ ΓX•
H2

contains ΓH2,a and ΓH2,b, where h
sg
2 : ΓX•

Q2
→ ΓX•

H2

denotes the map of dual semi-graphs induced by h•2. In particular, hsg2 (ΓQ2)
contains wH2 for some wH2 ∈ (f sg

H2
)−1(w2) ⊆ v(ΓX•

H2
).

Let us prove the claim. Since ΓX•
Q2

can be regarded as the dual semi-graph of

a reduction of X•
Q1

and spcomQ1,Q2
is induced by the reduction map, the action of

Z/`Z on ΓX•
Q1

(determined by the action of Z/`Z on X•
Q1

induced by the Galois

admissible covering h•1) induces uniquely an action of Z/`Z on ΓX•
Q2
.

Note that we do not know whether or not the action of Z/`Z on ΓX•
Q2

defined

above coincides with the action Z/`Z on ΓX•
Q2

induced by the Galois admissible

covering h•2. In the remainder of the proof of the claim, we only consider the
action of Z/`Z on ΓX•

Q2
induced by the action of Z/`Z on ΓX•

Q1
defined above.

Let G ⊆ ΓX•
Q1

be an arbitrary sub-semi-graph such that v(G) ∩ v(ΓQ1) =

∅. By the construction of X•
Q1
, we see that the decomposition subgroup of

G under the action of Z/`Z is trivial, and the the decomposition subgroup
of ΓQ1 under the action of Z/`Z is Z/`Z. Then we have the decomposition
subgroup of spcomQ1,Q2

(G) under the action of Z/`Z is trivial, and the decomposition
subgroup of ΓQ2 = spcomQ1,Q2

(ΓQ1) under the action of Z/`Z is Z/`Z. Since the
decomposition group of eQ2,j, j ∈ {a, b}, under the action of Z/`Z is Z/`Z, where
eQ2,j is defined in 5.2.3 by replacing H2 by Q2, we see that eQ2,j, j ∈ {a, b}, is
contained in eop(ΓQ2). Thus, hsg2 (ΓQ2) ⊆ ΓX•

H2
contains ΓH2,j, j ∈ {a, b}, since

hsg2 (eQ2,j) = eH2,j ∈ eop(ΓH2,j).
On the other hand, since hsg2 (ΓQ2) is connected and ΓH2,a is distinct from

ΓH2,b, then h
sg
2 (ΓQ2) contains wH2 for some wH2 ∈ (f sg

H2
)−1(w2) ⊆ v(ΓX•

H2
). We

complete the proof of the claim.

We return to prove the lemma. By the claim, we obtain

gΓQ1
= gΓQ2

≥ gwH2
,

where gΓQ2
denotes the genus of the pointed stable curve X•

ΓQ2
corresponding to ΓQ2 . We obtain

a contradiction. This completes the proof of the lemma. □
Proposition 5.6. The statement (?) mentioned in 5.2.3 holds. In particular, the statement
(∗) mentioned in 5.2.3 holds.
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Proof. Suppose that (?) does not hold. Then there exists an open subgroup Q2 ⊆ ΠX•
2
such

that

ΓQ2,a 6= ΓQ2,b.

Thus, for any open subgroup P2 ⊆ Q2, we have ΓP2,a 6= ΓP2,b. Let us construct a contradiction.
Let ` >> #(ΠX•

1
/Q1) = #(ΠX•

2
/Q2) be a prime number prime to p and K2 ⊆ ΠX•

2
an open

normal subgroup such that the following conditions are satisfied (the existence of K2 follows
immediately from the structure of maximal prime-to-p quotients of admissible fundamental
groups):

• ΠX•
2
/K2
∼= Z/`Z.

• Write f •
K2

: X•
K2
→ X•

2 for the Galois admissible covering over k2 corresponding to
K2 ↪→ ΠX•

2
. Then f •

K2
is totally ramified over

(Xw2 ∩DX2) ∪ ((Xw2 ∩X
sing
2 ) \ (XΓ2 ∩X

sing
2 ))

and is étale over (XΓ2 ∩X
sing
2 ) ∪ (XΓ2 ∩DX2). Note that in this situation, f •

K2
induces

a trivial covering over X•
Γ2
.

We put K1 = φ−1(K2). Write f •
K1

: X•
K1
→ X•

1 for the Galois admissible covering over k1
corresponding to K1 ↪→ ΠX•

1
. Since φ is a strong topological specialization homomorphism

(Theorem 4.9), we see that

(gΓK1
, nΓK1

) = (gΓK2,a
, nΓK2,a

) = (gΓK2,b
, nΓK2,b

).

On the other hand, since we assume nw2 >> nΓ2 , we obtain that

gwK2
>> gΓK2,a

= gΓK2,b
= gΓK1

, wK2 ∈ (f sg
K2
)−1(w2) ⊆ v(ΓX•

K2
).

We put H2
def
= K2 ∩Q2 and H1

def
= φ−1(H2). Write f •

Hi
: X•

Hi
→ X•

i , i ∈ {1, 2}, for the Galois
admissible covering over ki corresponding to Hi ↪→ ΠX•

i
. The choice of ` >> #(ΠX•

1
/Q1) =

#(ΠX•
2
/Q2) and the fact gwK2

>> gΓK2,a
= gΓK2,b

= gΓK1
imply

gwH2
>> gΓH2,a

= gΓH2,b
, gwH2

>> gΓH1
.

Note that we do not know whether or not gΓH2,a
= gΓH2,b

= gΓH1
holds in general. Thus, by

Lemma 5.5, we obtain

ΓH2,a = ΓH2,b.

This contradicts the fact ΓH2,a 6= ΓH2,b since H2 is contained in Q2. We complete the proof of
the proposition. □

Corollary 5.7. We maintain the notation introduced in 3.1.1. Suppose that the following hold:

• gX = 0.
• ΠX•

i
, i ∈ {1, 2}, is the maximal pro-solvable quotient of the admissible fundamental

group of X•
i .

• φ ∈ Homop
pg(ΠX•

1
,ΠX•

2
).

• Let Π1 ∈ Geo(ΠX•
1
) and Π2

def
= φ(Π1) ⊆ ΠX•

2
. If Π2 ∈ Geo(ΠX•

2
), then φ|H1 : H1 → H2

is a topological specialization homomorphism (Definition 3.1 (a)) for all open subgroups

H2 ⊆ Π2, where H1
def
= (φ|Π1)

−1(H2) ⊆ Π1.

Let Γ1 be a boundary sub-semi-graph Γ1 ∈ Ssg(ΓX•
1
) (Definition 5.1), Γ̂1 a connected component

of π−1
X1
(Γ1) ⊆ Γ̂X•

1
, and ΠΓ̂1

∈ Geo(ΠX•
1
) the geometry-like subgroup associated to Γ̂1. Then we

have

φ(ΠΓ̂1
) ∈ Geo(ΠX•

2
)
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Proof. Proposition 5.6 implies that there exist a sub-semi-graph Γ2 ∈ Ssg(ΓX•
2
) and a connected

component Γ̂2 ∈ π−1
X2
(Γ2) such that ΠΓ̂2

= φ(ΠΓ̂1
) ∈ Geo(ΠX•

2
), where ΠΓ̂2

is the geometry-like

subgroup associated to Γ̂2. This complete the proof of the corollary. □

5.2.5. The main theorem of the present section is the following:

Theorem 5.8. We maintain the notation introduced in 3.1.1. Moreover, we assume that the
following holds:

• gX = 0.
• ΠX•

i
, i ∈ {1, 2}, is the maximal pro-solvable quotient of the admissible fundamental

group of X•
i .

• φ ∈ Homop
pg(ΠX•

1
,ΠX•

2
).

• Let Π1 ∈ Geo(ΠX•
1
) and Π2

def
= φ(Π1) ⊆ ΠX•

2
. If Π2 ∈ Geo(ΠX•

2
), then φ|H1 : H1 → H2

is a topological specialization homomorphism (Definition 3.1 (a)) for all open subgroups

H2 ⊆ Π2, where H1
def
= (φ|Π1)

−1(H2) ⊆ Π1.

Then φ is a group-theoretical specialization homomorphism (i.e. the group-theoretical special-
ization conjecture holds (3.1.3)).

Proof. Suppose #(v(ΓX•
1
)) = 1. Then the theorem is trivial. To verify the theorem, we assume

#(v(ΓX•
1
)) ≥ 2.

Let v1 ∈ v(ΓX•
1
) be an arbitrary vertex of ΓX•

1
, v̂1 ∈ π−1

X1
(v1) ⊆ Γ̂X•

1
, and Πv̂1 ∈ Ver(ΠX•

1
) the

vertex-like subgroup associated to v̂1. To verify the theorem, by Proposition 3.9, it’s sufficient
to prove φ(Πv̂1) ∈ Geo(ΠX•

2
). Let Γ be a tree-like semi-graph. We shall denote by (see 2.2.5 for

Γv).

vB(Γ)
def
= {v ∈ v(Γ) | Γv is a boundary sub-semi-graph of Γ}.

Suppose v1 ∈ vB(ΓX•
1
). Then the theorem follows immediately from Corollary 5.7. Then

we may assume v1 6∈ vB(ΓX•
1
). Let w1 ∈ vB(ΓX•

1
). Then Γ1

def
= Γc

w1
∈ Ssg(ΓX•

1
) is a boundary

sub-semi-graph such that v1 ∈ v(Γ1). Let Γ̂1 be the connected component of π−1
X1
(Γ1) ⊆ Γ̂X•

1

containing v̂1 and ΠΓ̂1
∈ Geo(ΠX•

1
) the geometry-like subgroup associated to Γ̂1. Note that we

have
Πv̂1 ⊆ ΠΓ̂1

.

Corollary 5.7 implies that there exist a sub-semi-graph Γ2 ∈ Ssg(ΓX•
2
) and a connected com-

ponent Γ̂2 ∈ π−1
X2
(Γ2) such that ΠΓ̂2

= φ(ΠΓ̂1
) ∈ Geo(ΠX•

2
), where ΠΓ̂2

is the geometry-like

subgroup associated to Γ̂2.
Suppose v1 ∈ vB(Γ1). Then by applying Corollary 5.7 for φ|Π

Γ̂1
: ΠΓ̂1

→ ΠΓ̂2
(our assumptions

say that φ|H1 : H1 → H2 is a topological specialization homomorphism for all open subgroups

H2 ⊆ ΠΓ̂2
, where H1

def
= (φ|Π

Γ̂1
)−1(H2) ⊆ ΠΓ̂1

), we obtain φ(Πv̂1) ∈ Geo(ΠΓ̂2
) ⊆ Geo(ΠX•

2
).

Suppose v1 6∈ vB(Γ1). Note that it is easy to see that there exists a sub-semi-graph Γ′ ∈ Ssg(ΓX•
1
)

such that Γv1 is a boundary sub-semi-graph of Γ′ (e.g. Γv1). Then by replacing ΓX•
1
, φ by Γ1,

φ|Π
Γ̂1
, respectively, and by repeating the arguments to the arguments given above, we obtain

φ(Πv̂1) ∈ Geo(ΠX•
2
). This completes the proof of the theorem. □
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