DOCUMENTA MATHEMATICA, Vol. Extra Volume: Andrei A. Suslin's Sixtieth Birthday (2010), 171-195

Vincent Franjou and Wilberd van der Kallen

Power Reductivity over an Arbitrary Base

Our starting point is Mumford's conjecture, on representations of Chevalley groups over fields, as it is phrased in the preface of Geometric Invariant Theory. After extending the conjecture appropriately, we show that it holds over an arbitrary commutative base ring. We thus obtain the first fundamental theorem of invariant theory (often referred to as Hilbert's fourteenth problem) over an arbitrary Noetherian ring. We also prove results on the Grosshans graded deformation of an algebra in the same generality. We end with tentative finiteness results for rational cohomology over the integers.

2010 Mathematics Subject Classification: 20G35; 20G05; 20G10

Keywords and Phrases: Chevalley group; Hilbert's 14th; cohomology; Geometric reductivity.

Full text: dvi.gz 58 k, dvi 194 k, ps.gz 935 k, pdf 299 k.