Pitman's $2M-X$ Theorem for Skip-Free Random Walks with Markovian Increments

B. M. Hambly (University of Oxford)
James B. Martin (Cambridge University)
Neil O'Connell (BRIMS, HP Labs)

Abstract


Let $(\xi_k, k\ge 0)$ be a Markov chain on ${-1,+1}$ with $\xi_0=1$ and transition probabilities $P(\xi_{k+1}=1| \xi_k=1)=a>b=P(\xi_{k+1}=-1| \xi_k=-1)$. Set $X_0=0$, $X_n=\xi_1+\cdots +\xi_n$ and $M_n=\max_{0\le k\le n}X_k$. We prove that the process $2M-X$ has the same law as that of $X$ conditioned to stay non-negative.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 73-77

Publication Date: August 21, 2001

DOI: 10.1214/ECP.v6-1036

References

  1. Yu. Baryshnikov (2001), GUES and QUEUES. Probab. Theor. Rel. Fields 119, 256-274. Math. Review 1 818 248
  2. J. Bertoin (1992), An extension of Pitman's theorem for spectrally positive Lévy processes. Ann. Probab. 20, 1464 - 1483. Math. Review 93k:60191
  3. Ph. Biane (1994), Quelques propriétés du mouvement brownien dans un cone.. Stoch. Proc. Appl. 53, no. 2, 233-240. Math. Review 95j:60129
  4. P. Brémaud (1981), Point Processes and Queues: Martingale Dynamics. Springer-Verlag. Math. Review 82m:60058
  5. P.J. Burke (1956), The output of a queueing system. Operations Research 4, no. 6, 699--704. Math. Review 18,707g
  6. S.K. Foong and S. Kanno (1994), Properties of the telegrapher's random process with or without a trap. Stoch. Proc. Appl. 53, 147--173. Math. Review 95g:60089
  7. B. Gaveau, T. Jacobson, L. Schulman and M. Kac (1984), Relavistic extension of the analogy between quantum mechanics and Brownian motion. Phys. Rev. Lett. 53, no. 5, 419-422. Math. Review 85g:81045
  8. J. Gravner, C.A. Tracy and H. Widom (2001), Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Stat. Phys. 102, nos. 5-6, 1085-1132. Math. Review number not available.
  9. K. Johansson (2000), Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437-476. Math. Review 1 737 991
  10. K. Johansson (1999), Discrete orthogonal polynomial ensembles and the Plancherel measure. Preprint 1999, to appear in Ann. Math. (xxx math.CO/9906120) Math. Review number not available.
  11. J.-F. le Gall (1986), Une approche élémentaire des théorémes de décomposition de Williams. Seminaire de Probabilités XX; Lecture Notes in Mathematics, Vol. 1204; Springer, 1986. Math. Review 89g:60219
  12. M. Kac (1974), A stochastic model related to the telegrapher's equation. Rocky Mountain J. Math. 4, 497-509. Math. Review 58 #23185
  13. F.P. Kelly (1979), Reversibility and Stochastic Networks. Wiley. Math. Review 81j:60105
  14. Wolfgang König and Neil O'Connell (2001), Eigenvalues of the Laguerre process as non-colliding squared Bessel processes. To appear in Elect. Commun. Probab.. Math. Review number not available.
  15. Wolfgang König, Neil O'Connell and Sebastien Roch (2001), Non-colliding random walks, tandem queues and discrete ensembles. Preprint. Math. Review number not available.
  16. H. Matsumoto and M. Yor (1999), A version of Pitman's 2M-X theorem for geometric Brownian motions. C.R. Acad. Sci. Paris 328, Série I, 1067-1074. Math. Review 2000d:60134
  17. Neil O'Connell and Marc Yor (2001), Brownian analogues of Burke's theorem. Stoch. Proc. Appl., to appear. Math. Review number not available.
  18. Neil O'Connell and Marc Yor (2001), A representation for non-colliding random walks. Elect. Commun. Probab., to appear. Math. Review number not available.
  19. J. W. Pitman (1975), One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7, 511-526. Math. Review 51 #11677
  20. J. W. Pitman and L.C.G. Rogers (1981), Markov functions. Ann. Probab. 9, 573-582. Math. Review 82j:60133
  21. E. Reich (1957), Waiting times when queues are in tandem. Ann. Math. Statist. 28, 768-773. Math. Review 19,1203b
  22. Ph. Robert (2000), Réseaux et files d'attente: méthodes probabilistes. Math. et Applications, vol. 35. Springer. Math. Review number not available.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.