A note on ergodic transformations of self-similar Volterra Gaussian processes

Céline Jost (University of Helsinki)

Abstract


We derive a class of ergodic transformation of self-similar Gaussian processes that are Volterra, i.e. of type $X_t = \int^t_0 z_X(t,s)dW_s$, $t \in [0,\infty)$, where $z_X$ is a deterministic kernel and $W$ is a standard Brownian motion.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 259-266

Publication Date: August 25, 2007

DOI: 10.1214/ECP.v12-1298

References

  1. P. Deheuvels. Invariance of Wiener processes and of Brownian bridges by integral transforms and applications. Stochastic Processes and their Applications 13, 311-318, 1982.
  2. P. Embrechts, M. Maejima. Selfsimilar Processes. Princeton University Press, 2002.
  3. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi. Tables of integral transforms, Volume 1. McGraw-Hill Book Company, Inc., 1954.
  4. T. Hida, M. Hitsuda. Gaussian Processes. Translations of Mathematical Monographs 120, American Mathematical Society, 1993.
  5. S.T. Huang, S. Cambanis. Stochastic and Multiple Wiener Integrals for Gaussian Processes. Annals of Probability 6(4), 585-614, 1978.
  6. T. Jeulin, M. Yor. Filtration des ponts browniens et équations différentielles stochastiques linéaires. Séminaire de probabilités de Strasbourg 24, 227-265, 1990.
  7. C. Jost. Measure-preserving transformations of Volterra Gaussian processes and related bridges. [arXiv:math.PR/0701888]
  8. G.M. Molchan. Linear problems for a fractional Brownian motion: group approach. Theory of Probability and its Applications 47 (1), 69-78, 2003.
  9. I. Norros, E. Valkeila, J. Virtamo. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5(4), 571-587, 1999.
  10. G. Peccati. Explicit formulae for time-space Brownian chaos. Bernoulli 9(1), 25-48, 2003.
  11. K. Petersen. Ergodic theory. Cambridge University Press, 1983.
  12. A.N. Shiryaev. Probability, Second Edition. Springer, 1989.
  13. A.M. Yaglom. Correlation Theory of Stationary and Related Random Functions, Volume 1: Basic Results. Springer, 1987.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.