Maximal Arithmetic Progressions in Random Subsets

Itai Benjamini (Weizmann Institute of Science)
Ariel Yadin (Weizmann Institute of Science)
Ofer Zeitouni (University of Minnesota)

Abstract


Let $U(N)$ denote the maximal length of arithmetic progressions in a random uniform subset of $\{0,1\}^N$. By an application of the Chen-Stein method, we show that $U(N)- 2 \log(N)/\log(2)$ converges in law to an extreme type (asymmetric) distribution. The same result holds for the maximal length $W(N)$ of arithmetic progressions (mod $N$). When considered in the natural way on a common probability space, we observe that $U(N)/\log(N)$ converges almost surely to $2/\log(2)$, while $W(N)/\log(N)$ does not converge almost surely (and in particular, $\limsup W(N)/\log(N)$ is at least $3/\log(2)$).

An Erratum is available in ECP volume 17 paper number 18.


Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 365-376

Publication Date: October 14, 2007

DOI: 10.1214/ECP.v12-1321

References

  1. N. Alon, J. H. Spencer, The Probabilistic Method (2000), John Wiley & Sons. New York. Math. Review 1140703
  2. R. Arratia, L. Goldstein, L. Gordon, Two moments suffice for Poisson approximations: The Chen-Stein method, Ann. Probab. 17 (1989), 9--25. Math. Review 972770
  3. P. Erdos, A. R'{e}nyi, On a new law of large numbers, J. Analyse Math. 23 (1970), 103--111. Math. Review 272026
  4. P. Erdos, P. Revesz, On the length of the longest head-run, Colloq. Math. Soc. Janos Bolyai 16 (1977), 219--228. Math. Review 478304
  5. R. Gradwohl, A. Yehudayoff, t-wise independence with local dependencies. preprint arXiv:math.PR/0706.1637
  6. S. Janson, Large deviations for sums of partly dependent random variables. Random Structures Algorithms 24 (2004), no. 3, 234--248. Math. Review 2068873
  7. T. Tao, What is good mathematics. (2007). arXiv:math.HO/0702.5396 Math. Review number not available


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.