Some remarks on tangent martingale difference sequences in $L^1$-spaces

Sonja Gisela Cox (TU Delft)
Mark Christiaan Veraar (TU Delft)

Abstract


Let $X$ be a Banach space. Suppose that for all $p\in (1, \infty)$ a constant $C_{p,X}$ depending only on $X$ and $p$ exists such that for any two $X$-valued martingales $f$ and $g$ with tangent martingale difference sequences one has $$\mathbb{E}\|f\|^p \leq C_{p,X} \mathbb{E}\|g\|^p \qquad (*).$$ This property is equivalent to the UMD condition. In fact, it is still equivalent to the UMD condition if in addition one demands that either $f$ or $g$ satisfy the so-called (CI) condition. However, for some applications it suffices to assume that $(*)$ holds whenever $g$ satisfies the (CI) condition. We show that the class of Banach spaces for which $(*)$ holds whenever only $g$ satisfies the (CI) condition is more general than the class of UMD spaces, in particular it includes the space $L^1$. We state several problems related to $(*)$ and other decoupling inequalities.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 421-433

Publication Date: October 29, 2007

DOI: 10.1214/ECP.v12-1328

References

  1. Burkholder, D. L. Distribution function inequalities for martingales. Ann. Probability 1 (1973), 19--42. MR0365692 (51 #1944)
  2. Burkholder, D. L. A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional. Ann. Probab. 9 (1981), no. 6, 997--1011. MR0632972 (83f:60070)
  3. Burkholder, Donald L. Martingales and Fourier analysis in Banach spaces. Probability and analysis (Varenna, 1985), 61--108, Lecture Notes in Math., 1206, Springer, Berlin, 1986. MR0864712 (88c:42017)
  4. Burkholder, Donald L. Martingales and singular integrals in Banach spaces. Handbook of the geometry of Banach spaces, Vol. I, 233--269, North-Holland, Amsterdam, 2001. MR1863694 (2003b:46009)
  5. de la Peña, Víctor H.; Giné, Evarist. Decoupling.From dependence to independence.Randomly stopped processes. $U$-statistics and processes. Martingales and beyond.Probability and its Applications (New York). Springer-Verlag, New York, 1999. xvi+392 pp. ISBN: 0-387-98616-2 MR1666908 (99k:60044)
  6. Garling, D. J. H. Random martingale transform inequalities. Probability in Banach spaces 6 (Sandbjerg, 1986), 101--119, Progr. Probab., 20, Birkhäuser Boston, Boston, MA, 1990. MR1056706 (92a:60111)
  7. Geiss, Stefan. A counterexample concerning the relation between decoupling constants and UMD-constants. Trans. Amer. Math. Soc. 351 (1999), no. 4, 1355--1375. MR1458301 (99f:60011)
  8. P. Hitczenko. On tangent sequences of UMD-space valued random vectors. unpublished manuscript.
  9. Hitczenko, Pawel. Comparison of moments for tangent sequences of random variables. Probab. Theory Related Fields 78 (1988), no. 2, 223--230. MR0945110 (90a:60089)
  10. P. Hitczenko. On a domination of sums of random variables by sums of conditionally independent ones. Ann. Probab., 22(1):453--468, 1994.
  11. Kallenberg, Olav. Foundations of modern probability.Second edition.Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169 (2002m:60002)
  12. Kwapien, S.; Woyczynski, W. A. Tangent sequences of random variables: basic inequalities and their applications. Almost everywhere convergence (Columbus, OH, 1988), 237--265, Academic Press, Boston, MA, 1989. MR1035249 (91c:60020)
  13. Kwapien, Stanislaw; Woyczynski, Wojbor A. Random series and stochastic integrals: single and multiple.Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. xvi+360 pp. ISBN: 0-8176-3572-6 MR1167198 (94k:60074)
  14. B. Maurey. SystËme de Haar. In SÈminaire Maurey-Schwartz 1974--1975: Espaces $L^{p}$, applications radonifiantes et gÈomÈtrie des espaces de Banach, Exp. Nos. I et II}, page 26 pp. Centre Math., Ecole Polytech., Paris, 1975.
  15. McConnell, Terry R. Decoupling and stochastic integration in UMD Banach spaces. Probab. Math. Statist. 10 (1989), no. 2, 283--295. MR1057936 (91i:60010)
  16. Montgomery-Smith, Stephen. Concrete representation of martingales. Electron. J. Probab. 3 (1998), No. 15, 15 pp. (electronic). MR1658686 (99k:60116)
  17. van Neerven, J. M. A. M.; Veraar, M. C.; Weis, L. Stochastic integration in UMD Banach spaces. Ann. Probab. 35 (2007), no. 4, 1438--1478. MR2330977


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.