Comparison Theorems for Small Deviations of Random Series

Fuchang Gao (University of Idaho)
Jan Hannig (Colorado State University)
Fred Torcaso (Johns Hopkins University)

Abstract


Let ${\xi_n}$ be a sequence of i.i.d. positive random variables with common distribution function $F(x)$. Let ${a_n}$ and ${b_n}$ be two positive non-increasing summable sequences such that ${\prod_{n=1}^{\infty}(a_n/b_n)}$ converges. Under some mild assumptions on $F$, we prove the following comparison $$P\left(\sum_{n=1}^{\infty}a_n \xi_n \leq \varepsilon \right) \sim \left(\prod_{n=1}^{\infty}\frac{b_n}{a_n}\right)^{-\alpha} P \left(\sum_{n=1}^{\infty}b_n \xi_n \leq \varepsilon \right),$$ where $${ \alpha=\lim_{x\to \infty}\frac{\log F(1/x)}{\log x}}< 0$$ is the index of variation of $F(1/\cdot)$. When applied to the case $\xi_n=|Z_n|^p$, where $Z_n$ are independent standard Gaussian random variables, it affirms a conjecture of Li cite {Li1992a}.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-17

Publication Date: December 27, 2003

DOI: 10.1214/EJP.v8-147

References

  1. Abramowitz, Milton; Stegun, Irene A. (1992), Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, Inc., New York. xiv+1046 pp. Math. Review Link
  2. Bingham, N. H.; Goldie, C. M.; Teugels, J. L. (1987), Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge. xx+491 pp. Math. Review Link
  3. Brockwell, Peter J.; Davis, Richard A. (2002), Introduction to time series and forecasting. Second edition. With 1 CD-ROM (Windows). Springer Texts in Statistics. Springer-Verlag, New York. xiv+434 pp. Math. Review Link
  4. Cox, Dennis D. (1982), On the existence of natural rate of escape functions for infinite-dimensional Brownian motions. Ann. Probab. 10, no. 3, 623--638. Math. Review Link
  5. Dunker, T.; Lifshits, M. A.; Linde, W. (1998), Small deviation probabilities of sums of independent random variables. High dimensional probability (Oberwolfach, 1996), 59--74, Progr. Probab., 43, Birkhäuser, Basel. Math. Review Link
  6. Erickson, K. Bruce (1980), Rates of escape of infinite-dimensional Brownian motion. Ann. Probab. 8 no. 2, 325--338. Math. Review Link
  7. Gao, Fuchang; Hannig, Jan; Lee, Tzong-Yow; Torcaso, Fred (2003), Exact L^2 small balls of Gaussian processes. Journal of Theoretical Probability (to appear).
  8. Gao, Fuchang; Hannig, Jan; Lee, Tzong-Yow ; Torcaso, Fred (2003), Laplace transforms via Hadamard factorization. Electron. J. Probab. 8 no. 13, 20 pp. (electronic). Math. Review Link
  9. Li, Wenbo V. (1992), Comparison results for the lower tail of Gaussian seminorms. J. Theoret. Probab. 5 no. 1, 1--31. Math. Review Link
  10. Li, W. V.; Shao, Q.-M. (2001), Gaussian processes: inequalities, small ball probabilities and applications. Stochastic processes: theory and methods, 533--597, Handbook of Statist., 19, North-Holland, Amsterdam. Math. Review Link
  11. Lifshits, M. A. (1997), On the lower tail probabilities of some random series. Ann. Probab. 25 no. 1, 424--442. Math. Review Link
  12. Nazarov, A.I.; Nikitin, Ya. Yu. (2003), Exact small ball behavior of integrated Gaussian processes under L_2-norm ans spectral asymptotics of boundary value problems. Tech. Report, Universita Bocconi, Studi Statisici, No. 70.
  13. Sytaja, G. N. (1974), Certain asymptotic representations for a Gaussian measure in Hilbert space. (Russian) Theory of random processes, No. 2 (Russian), pp. 93--104, 140. Izdat. "Naukova Dumka", Kiev. Math. Review Link


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.