Exponential inequalities for self-normalized processes with applications

Victor H de la Peña (Columbia University)
Guodong Pang (Columbia University)

Abstract


We prove the following exponential inequality for a pair of random variables $(A,B)$ with $B >0$ satisfying the canonical assumption, $E[\exp(\lambda A - \frac{\lambda^2}{2} B^2)]\leq 1$ for $\lambda \in R$, $$P\left( \frac{|A|}{\sqrt{ \frac{2q-1}{q} \left(B^2+ (E[|A|^p])^{2/p} \right) }} \geq x \right) \leq \left(\frac{q}{2q-1} \right)^{\frac{q}{2q-1}} x^{-\frac{q}{2q-1}} e^{-x^2/2} $$ for $x>0$, where $1/p+ 1/q =1$ and $p\geq1$. Applying this inequality, we obtain exponential bounds for the tail probabilities for self-normalized martingale difference sequences. We propose a method of hypothesis testing for the $L^p$-norm $(p \geq 1)$ of $A$ (in particular, martingales) and some stopping times. We apply this inequality to the stochastic TSP in $[0,1]^d$ ($d\geq 2$), connected to the CLT.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 372-381

Publication Date: September 8, 2009

DOI: 10.1214/ECP.v14-1490

References

  1. B. Bercu and A. Touati. Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probab. (2008), 18, 1848--1869. MR2462551
  2. N.J. Cerf, J. Boutet de Monvel, O. Bohigas, O.C. Martin and A.G. Percus. The random link approximation for the Euclidean Traveling Salesman Problem. Journal de Physique I. (1997), 7, 117--136.
  3. V.H. de la Pe\~{n}a. A general class of exponential inequalities for martingales and ratios. Ann. Probab. (1999), 27, 537--564. MR1681153 (2000c:60020)
  4. V.H. de la Pe\~{n}a, M.J. Klass and T.L. Lai. Self-normalized processes: exponential inequalities, moment bounds and iterated logarithm laws. Ann. Probab.. (2004), Vol. 32, No.3A, 1902--1933. MR2073181 (2005g:60035)
  5. V.H. de la Pe\~{n}a, M.J. Klass and T.L. Lai. Pseudo-maximization and self-normalized processes. Probability Surveys . (2007), Vol. 4,172--192. MR2368950 (2009b:60061)
  6. V.H. de la Pe\~{n}a, T.L. Lai and Q.M. Shao. Self-Normalized Processes: Limit Theory and Statistical Applications. Springer. (2009). MR2488094
  7. V. Egorov. On the Growth Rate of Moments of Random Sums. {\em Preprint. } (1998).
  8. E. Gin{\'e}, F. G{\"o}tze and D. Mason. When is the Student $t$-statistic asymptotically standard normal? Ann. Probab. (1997), 25, 1514--1531. MR1457629 (98j:60033)
  9. B. Efron. Student's $t$-test under symmetry conditions. J. Amer. Statist. Assoc. (1969), 64, 1278--1302. MR1121940 (92h:60127)
  10. B.F. Logan, C.L. Mallows, S.O. Rice and L.A. Shepp. Limit Distributions of Self-Normalized Sums. Ann. Probab. (1973), 1, 788--809. MR0362449 (50 #14890)
  11. W.T. Rhee and M. Talagrand. Martingale inequalities and NP-complete problems. Mathematics of Operations Research. (1987), 12, 177--181. MR0882849 (88j:68071)
  12. W.T. Rhee and M. Talagrand. Martingale inequalities, interpolation and NP-complete problems. Mathematics of Operations Research. (1989a), 13, 91--96. MR0984560 (89m:60104)
  13. W.T. Rhee and M. Talagrand. A sharp deviation inequality for the stochastic Traveling Salesman Problem. Ann. Probab. (1989b), 17, 1--8. MR0972767 (89m:60065)
  14. J.M. Steele. Complete convergence of short paths and Karp's algorithm for the TSP. Mathematics of Operations Research. (1981), 6, 374--378. MR0629637 (82i:90040)
  15. J.M. Steele. Probability Theory and Combinatorial Optimization. CBMS-NSF regional conference series in applied mathematics. (1997). MR1422018 (99d:60002)


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.