Marked metric measure spaces

Andrej Depperschmidt (University of Freiburg)
Andreas Greven (University of Erlangen)
Peter Pfaffelhuber (University of Freiburg)

Abstract


A marked metric measure space (mmm-space) is a triple $(X,r,μ)$, where $(X,r)$ is a complete and separable metric space and $μ$ is a probability measure on $X \times I$ for some Polish space $I$ of possible marks. We study the space of all (equivalence classes of) marked metric measure spaces for some fixed $I$. It arises as a state space in the construction of Markov processes which take values in random graphs, e.g. tree-valued dynamics describing randomly evolving genealogical structures in population models. We derive here the topological properties of the space of mmm-spaces needed to study convergence in distribution of random mmm-spaces. Extending the notion of the Gromov-weak topology introduced in (Greven, Pfaffelhuber and Winter, 2009), we define the marked Gromov-weak topology, which turns the set of mmm-spaces into a Polish space. We give a characterization of tightness for families of distributions of random mmm-spaces and identify a convergence determining algebra of functions, called polynomials.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 174-188

Publication Date: March 27, 2011

DOI: 10.1214/ECP.v16-1615

References

  1. L. Addario-Berry, N. Broutin, and C. Goldschmidt. The continuum limit of critical random graphs. Probab. Theory Relat. Fields, online first, 2010. Math. Review number not available.
  2. D. Aldous. The continuum random tree III. Ann. Probab., 21(1):248--289, 1993. MR1207226 (94c:60015)
  3. D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry, graduate studies in mathematics. AMS, Boston, MA, 33, 2001. MR1835418 (2002e:53053)
  4. D. Dawson. Measure-valued Markov processes. In P.L. Hennequin, editor, École d'Été de Probabilités de Saint-Flour XXI—1991, , volume 1541 of Lecture Notes in Mathematics , pages 1--260, Berlin, 1993. Springer. MR1242575 (94m:60101)
  5. A. Depperschmidt, A. Greven, and P. Pfaffelhuber. Tree-valued Fleming-Viot dynamics with mutation and selection. Preprint, 2011. Math. Review number not available.
  6. J.-S. Dhersin, L. Decreusefond, P. Moyal, and V.C. Tran. Large graph limit for an infection process in random network with heterogeneous connectivity. Preprint , 2011. Math. Review number not available.
  7. A. Dress. Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorical properties of metric spaces. Adv. Math., 53:321--402, 1984. MR0753872 (86j:05053)
  8. R. Durrett. Random graph dynamics. Cambridge University Press, 2007. MR2271734 (2008c:05167)
  9. S.Ethier and T.G. Kurtz. Markov Processes. Characterization and Convergence. John Wiley, New York, 1986. MR0838085 (88a:60130)
  10. S. Evans. Kingman's coalescent as a random metric space. In Stochastic Models: Proceedings of the International Conference on Stochastic Models in Honour of Professor Donald A. Dawson, Ottawa, Canada, June 10-13, 1998 (L.G Gorostiza and B.G. Ivanoff eds.), Canad. Math. Soc., 2000. MR1765005 (2002d:60006)
  11. S. Evans, J. Pitman, and A. Winter. Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Relat. Fields, 134(1):81--126, 2006. MR2221786 (2007d:60003)
  12. S. Evans and A. Winter. Subtree prune and re-graft: A reversible real-tree valued Markov chain. Ann. Probab., 34(3):918--961, 2006. MR2243874 (2007k:60233)
  13. A. Greven, P. Pfaffelhuber, and A. Winter. Convergence in distribution of random metric measure spaces (The $\Lambda$-coalescent measure tree). Probab. Theory Relat. Fields , 145(1):285--322, 2009. MR2520129 (2011c:60008)
  14. A. Greven, P. Pfaffelhuber, and A. Winter. Tree-valued resampling dynamics (martingale problems and applications). Submitted, 2010. Math. Review number not available.
  15. A. Greven, R. Sun, and A. Winter. Limit genealogies of interacting Fleming-Viot processes on $Z^1$. Preprint , 2011. Math. Review number not available.
  16. M. Gromov. Metric structures for Riemannian and non-Riemannian spaces, volume 152 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1999. MR1699320 (2000d:53065)
  17. J.-F. LeGall. Random trees and applications. Probability surveys, 2:245--311, 2005. MR2203728 (2007h:60078)
  18. J.-F. LeGall. The topological structure of scaling limits of large planar maps. Invent. Math., 169:621--670, 2007. MR2336042 (2008i:60022)
  19. S. Piotrowiak. Dynamics of Genealogical Trees for Type- and State-dependent Resampling Models. PhD thesis, Department Mathematik, Erlangen-Nürnberg University, 2011. http://www.opus.ub.uni-erlangen.de/opus/volltexte/2011/2260/. Math. Review number not available.
  20. R. van der Hofstad. Percolation and random graphs. Kendall, Wilfrid S. (ed.) et al., New perspectives in stochastic geometry. Oxford University Press. 173-247}, 2010. MR2654679 (Review)


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.