An asymptotic expansion for the discrete harmonic potential
Ehud Schreiber (Tel Aviv University)
Abstract
We give two algorithms that allow to get arbitrary precision asymptotics for the harmonic potential of a random walk.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-17
Publication Date: February 4, 2004
DOI: 10.1214/EJP.v9-170
References
- Yasunari Fukai and Kôhei Uchiyama (1996), Potential kernel for two-dimensional random walk, Ann. Probab. 24, 1979-1992. MR 97m:60098
- Gady Kozma, Scaling limit of loop erased random walk — a naive approach, preprint. Math. Review number not available. arxiv.org:math.PR/0212338
- Vladimir Matsaev and Mikhail Sodin (2002), Asymptotics of Fourier and Laplace transforms in weighted spaces of analytic functions, Algebra i Analiz 14, 107-140. translation in St. Petersburg Math. J. 14, 615-640. MR 2003h:42009
- W. H. McCrea and F. J. W. Whipple (1940), Random paths in two and three dimensions, Proc. Roy. Soc. Edinburgh 60, 281-298. MR 0002733
- Frank Spitzer (1976), Principles of Random Walk, Second Edition, Springer-Verlag. MR 52:9383
- Elias M. Stein and Guido Weiss (1971), Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press. MR 46:4102
- Alfred Stöhr (1950), Über einige lineare partielle Differenzengleichungen mit konstanten Koeffizienten III, Math. Nachr. 3, 330-357. MR 0040555
- Kôhei Uchiyama (1998), Green's Functions for Random Walks on $Z^N$, Proc. London Math. Soc. (3) 77, 215-240. MR 99f:60132

This work is licensed under a Creative Commons Attribution 3.0 License.