Lower bound estimate of the spectral gap for simple exclusion process with degenerate rates

Yukio Nagahata (Niigata University)


We consider exclusion process with degenerate rates  in a finite torus with size $n$. This model is a simplified model for some peculiar phenomena of the "glassy" dynamics. We prove that the spectral gap is bounded below by $C\rho^4/n^2$, where $\rho = k/n$ denotes the density of particle and $C$ does not depend on $n$ nor $\rho$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-19

Publication Date: October 26, 2012

DOI: 10.1214/EJP.v17-1916


  • Bertini, Lorenzo; Toninelli, Cristina. Exclusion processes with degenerate rates: convergence to equilibrium and tagged particle. J. Statist. Phys. 117 (2004), no. 3-4, 549--580. MR2099727
  • Caputo, Pietro; Liggett, Thomas M.; Richthammer, Thomas. Proof of Aldous' spectral gap conjecture. J. Amer. Math. Soc. 23 (2010), no. 3, 831--851. MR2629990
  • Gonçalves, P.; Landim, C.; Toninelli, C. Hydrodynamic limit for a particle system with degenerate rates. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), no. 4, 887--909. MR2572156
  • Kipnis, Claude; Landim, Claudio. Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 320. Springer-Verlag, Berlin, 1999. xvi+442 pp. ISBN: 3-540-64913-1 MR1707314
  • Ritort F.; Sollich P.; Glassy dynamics of kinetically constrained models. Adv. Phys. 52 (2003), no. 4, 219--342.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.