Generation of One-Sided Random Dynamical Systems by Stochastic Differential Equations

Gerald Kager (Technische Universität Berlin)
Michael Scheutzow (Technische Universität Berlin)

Abstract


Let $Z$ be an $R^m$-valued semimartingale with stationary increments which is realized as a helix over a filtered metric dynamical system $S$. Consider a stochastic differential equation with Lipschitz coefficients which is driven by $Z$. We show that its solution semiflow $\phi$ has a version for which $\varphi(t,\omega)=\phi(0,t,\omega)$ is a cocycle and therefore ($S$,$\varphi$) is a random dynamical system. Our results generalize previous results which required $Z$ to be continuous. We also address the case of local Lipschitz coefficients with possible blow-up in finite time. Our abstract perfection theorems are designed to cover also potential applications to infinite dimensional equations.

 


Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-17

Publication Date: December 2, 1997

DOI: 10.1214/EJP.v2-22

References

  1. L. Arnold, Random dynamical systems, Springer, Berlin (to appear) (1998). Math Review article not available.
  2. L. Arnold and M. Scheutzow, Perfect cocycles through stochastic differential equations, Probab. Theory Relat. Fields 101, (1995) 65-88. Math Review link
  3. D.L. Cohn, Measure theory, Birkh"auser, Boston (1980). Math Review link
  4. C. Dellacherie and P.A. Meyer, Probabilities and potential, North Holland, Amsterdam (1978). Math Review link
  5. J. Dugundji, Topology, Allyn and Bacon, Boston (1966). Math Review link
  6. R. Getoor, Excessive measures, Birkh"auser, Boston (1990). Math Review link
  7. G. Kager, Zur Perfektionierung nicht invertierbarer grober Kozykel, Ph.D. thesis, Technische Universit"at Berlin. Math Review article not available.
  8. H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms. Ecole d''Et'e de Prob. de Saint Flour XII. Lecture Notes in Mathematics 1097, 143-303. Springer, Berlin (1984). Math Review link
  9. H. Kunita, Stochastic flows and stochastic differential equations, Cambridge University Press, Cambridge (1990). Math Review link
  10. P.A. Meyer, La perfection en probabilit'e. S'eminaire de Probabilit'e VI. Lecture Notes in Mathematics 258, 243-253, Springer, Berlin (1972). Math Review link
  11. P.A. Meyer, Flot d'une 'equation diff'erentielle stochastique. S'eminaire de Probabilit'e XV}. Lecture Notes in Mathematics 850, 103-117, Springer, Berlin (1981). Math Review link
  12. S.E.A. Mohammed and M. Scheutzow, Lyapunov exponents of linear stochastic functional differential equations driven by semimartingales. Part I: the multiplicative ergodic theory, Ann. Inst. Henri Poincar'e (Prob. et Stat.) 32, (1996) 69-105. Math Review link
  13. P. Protter, Semimartingales and measure preserving flows, Ann. Inst. Henri Poincar'e (Prob. et Stat.) 22, (1986) 127-147. Math Review link
  14. P. Protter, Stochastic integration and differential equations, Springer, Berlin (1992). Math Review link
  15. M. Scheutzow, On the perfection of crude cocycles, Random and Comp. Dynamics, 4, (1996) 235-255. Math Review article not available.
  16. M. Sharpe, General theory of Markov processes, Academic Press, Boston (1988). Math Review link
  17. J.B. Walsh, The perfection of multiplicative functionals, S'eminaire de Probabilit'e VI. Lecture Notes in Mathematics 258, 233-242. Springer, Berlin (1972). Math Review link
  18. R. Zimmer, Ergodic theory and semisimple groups, Birkh"auser, Boston (1984). Math Review link


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.