A CLT for winding angles of the arms for critical planar percolation
Abstract
Consider critical percolation in two dimensions. Under the condition that there are k disjoint alternating open and closed arms crossing the annulus $A(l,n)$, we prove a central limit theorem and variance estimates for the winding angles of the arms (as $n\rightarrow \infty$, $l$ fixed). This result confirms a prediction of Beffara and Nolin (Ann. Probab. 39: 1286-1304, 2011). Using this theorem, we also get a CLT for the multiple-armed incipient infinite cluster (IIC) measures.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-20
Publication Date: September 23, 2013
DOI: 10.1214/EJP.v18-2285
References
- Beffara, V., Duminil-Copin, H.: Planar percolation with a glimpse of Schramm-Loewner Evolution. arXiv:1107.0158 (2011)
- Beffara, Vincent; Nolin, Pierre. On monochromatic arm exponents for 2D critical percolation. Ann. Probab. 39 (2011), no. 4, 1286--1304. MR2857240
- Bélisle, Claude. Windings of random walks. Ann. Probab. 17 (1989), no. 4, 1377--1402. MR1048932
- Bélisle, Claude; Faraway, Julian. Winding angle and maximum winding angle of the two-dimensional random walk. J. Appl. Probab. 28 (1991), no. 4, 717--726. MR1133781
- Damron, Michael; Sapozhnikov, Artëm. Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters. Probab. Theory Related Fields 150 (2011), no. 1-2, 257--294. MR2800910
- Duplantier, Bertrand. Conformal random geometry. Mathematical statistical physics, 101--217, Elsevier B. V., Amsterdam, 2006. MR2581884
- Duplantier, Bertrand; Binder, Ilia A. Harmonic measure and winding of random conformal paths: a Coulomb gas perspective. Nuclear Phys. B 802 (2008), no. 3, 494--513. MR2436507
- Duplantier, Bertrand; Saleur, Hubert. Winding-angle distributions of two-dimensional self-avoiding walks from conformal invariance. Phys. Rev. Lett. 60 (1988), no. 23, 2343--2346. MR0947310
- Garban, Christophe; Pete, Gábor; Schramm, Oded. The Fourier spectrum of critical percolation. Acta Math. 205 (2010), no. 1, 19--104. MR2736153
- Garban, Christophe; Pete, Gábor; Schramm, Oded. Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc. 26 (2013), no. 4, 939--1024. MR3073882
- Hammond, A., Pete, G., Schramm, O.: Local time on the exceptional set of dynamical percolation, and the Incipient Infinite Cluster. arXiv:1208.3826 (2012)
- Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
- Járai, Antal A. Incipient infinite percolation clusters in 2D. Ann. Probab. 31 (2003), no. 1, 444--485. MR1959799
- Kenyon, Richard. Long-range properties of spanning trees. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (2000), no. 3, 1338--1363. MR1757962
- Kesten, Harry. The incipient infinite cluster in two-dimensional percolation. Probab. Theory Related Fields 73 (1986), no. 3, 369--394. MR0859839
- Kesten, Harry. Scaling relations for $2$D-percolation. Comm. Math. Phys. 109 (1987), no. 1, 109--156. MR0879034
- Kesten, Harry; Zhang, Yu. A central limit theorem for "critical'' first-passage percolation in two dimensions. Probab. Theory Related Fields 107 (1997), no. 2, 137--160. MR1431216
- Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 (2004), no. 1B, 939--995. MR2044671
- McLeish, D. L. Dependent central limit theorems and invariance principles. Ann. Probability 2 (1974), 620--628. MR0358933
- Mörters, Peter; Peres, Yuval. Brownian motion. With an appendix by Oded Schramm and Wendelin Werner. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. xii+403 pp. ISBN: 978-0-521-76018-8 MR2604525
- Nolin, Pierre. Near-critical percolation in two dimensions. Electron. J. Probab. 13 (2008), no. 55, 1562--1623. MR2438816
- Reimer, David. Proof of the van den Berg-Kesten conjecture. Combin. Probab. Comput. 9 (2000), no. 1, 27--32. MR1751301
- Schramm, Oded. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000), 221--288. MR1776084
- Schramm, Oded. Conformally invariant scaling limits: an overview and a collection of problems. International Congress of Mathematicians. Vol. I, 513--543, Eur. Math. Soc., Zürich, 2007. MR2334202
- Spitzer, Frank. Some theorems concerning $2$-dimensional Brownian motion. Trans. Amer. Math. Soc. 87 1958 187--197. MR0104296
- Weiland, B., Wilson, D.B.: Winding angle variance of Fortuin-Kasteleyn contours. Phys. Rev. E 68, 056101 (2003)
- Werner, Wendelin. Lectures on two-dimensional critical percolation. Statistical mechanics, 297--360, IAS/Park City Math. Ser., 16, Amer. Math. Soc., Providence, RI, 2009. MR2523462

This work is licensed under a Creative Commons Attribution 3.0 License.