The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • M. Abramowitz & I. A. Stegun, eds., Handbook of Mathematical Functions. Dover, New York, 1972. MR0167642
  • Albright, J. R.; Gavathas, E. P. Integrals involving Airy functions. Comment on: "Evaluation of an integral involving Airy functions'' by L. T. Wille and J. Vennik. J. Phys. A 19 (1986), no. 13, 2663--2665. MR0857056
  • Anevski, Dragi; Soulier, Philippe. Monotone spectral density estimation. Ann. Statist. 39 (2011), no. 1, 418--438. MR2797852
  • Barbour, Andrew D. A note on the maximum size of a closed epidemic. J. Roy. Statist. Soc. Ser. B 37 (1975), no. 3, 459--460. MR0397907
  • Barbour, A. D. Brownian motion and a sharply curved boundary. Adv. in Appl. Probab. 13 (1981), no. 4, 736--750. MR0632959
  • Chernoff, Herman. Estimation of the mode. Ann. Inst. Statist. Math. 16 1964 31--41. MR0172382
  • Daniels, H. E. The maximum size of a closed epidemic. Advances in Appl. Probability 6 (1974), 607--621. MR0373656
  • Daniels, H. E. The maximum of a Gaussian process whose mean path has a maximum, with an application to the strength of bundles of fibres. Adv. in Appl. Probab. 21 (1989), no. 2, 315--333. MR0997726
  • Daniels, H. E.; Skyrme, T. H. R. The maximum of a random walk whose mean path has a maximum. Adv. in Appl. Probab. 17 (1985), no. 1, 85--99. MR0778595
  • Groeneboom, P. Estimating a monotone density. Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1983), 539--555, Wadsworth Statist./Probab. Ser., Wadsworth, Belmont, CA, 1985. MR0822052
  • Groeneboom, Piet. Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields 81 (1989), no. 1, 79--109. MR0981568
  • Groeneboom, Piet. The maximum of Brownian motion minus a parabola. Electron. J. Probab. 15 (2010), no. 62, 1930--1937. MR2738343
  • Groeneboom, Piet. Vertices of the least concave majorant of Brownian motion with parabolic drift. Electron. J. Probab. 16 (2011), no. 84, 2234--2258. MR2861676
  • Groeneboom, Piet; Wellner, Jon A. Computing Chernoff's distribution. J. Comput. Graph. Statist. 10 (2001), no. 2, 388--400. MR1939706
  • Janson, Svante; Louchard, Guy; Martin-Löf, Anders. The maximum of Brownian motion with parabolic drift. Electron. J. Probab. 15 (2010), no. 61, 1893--1929. MR2738342
  • L. P. R. Pimentel, On the location of the maximum of a continuous stochastic process. Preprint, 2012. arxiv1207.4469
  • W. Rudin, Real and Complex Analysis. McGraw-Hill, London, 1970. MR0210528
  • Rudin, Walter. Functional analysis. Second edition. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991. xviii+424 pp. ISBN: 0-07-054236-8. MR1157815

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.