On Euclidean random matrices in high dimension

Charles Bordenave (Université de Toulouse & CNRS)

Abstract


In this note, we study the n x n random Euclidean matrix whose entry (i,j) is equal to f (|| Xi - Xj ||) for some function f and the Xi's are i.i.d. isotropic vectors in Rp. In the regime where n and p both grow to infinity and are proportional, we give some sufficient conditions for the empirical distribution of the eigenvalues to converge weakly. We illustrate our result on log-concave random vectors.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-8

Publication Date: April 5, 2013

DOI: 10.1214/ECP.v18-2340

References

  • Adamczak, Radosław. On the Marchenko-Pastur and circular laws for some classes of random matrices with dependent entries. Electron. J. Probab. 16 (2011), no. 37, 1068--1095. MR2820070
  • Anderson, Greg W.; Guionnet, Alice; Zeitouni, Ofer. An introduction to random matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge, 2010. xiv+492 pp. ISBN: 978-0-521-19452-5 MR2760897
  • Anttila, Milla; Ball, Keith; Perissinaki, Irini. The central limit problem for convex bodies. Trans. Amer. Math. Soc. 355 (2003), no. 12, 4723--4735 (electronic). MR1997580
  • Bai, Zhidong; Silverstein, Jack W. Spectral analysis of large dimensional random matrices. Second edition. Springer Series in Statistics. Springer, New York, 2010. xvi+551 pp. ISBN: 978-1-4419-0660-1 MR2567175
  • Barthe, Franck. Un théorème de la limite centrale pour les ensembles convexes (d'après Klartag et Fleury-Guédon-Paouris). (French) [A central limit theorem for convex sets (after Klartag and Fleury-Guedon-Paouris)] Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011. Astérisque No. 332 (2010), Exp. No. 1007, ix, 287--304. ISBN: 978-2-85629-291-4 MR2648682
  • Bobkov, S. G.; Koldobsky, A. On the central limit property of convex bodies. Geometric aspects of functional analysis, 44--52, Lecture Notes in Math., 1807, Springer, Berlin, 2003. MR2083387
  • Bordenave, Charles. Eigenvalues of Euclidean random matrices. Random Structures Algorithms 33 (2008), no. 4, 515--532. MR2462254
  • Bordenave, Charles; Caputo, Pietro; Chafaï, Djalil. Spectrum of non-Hermitian heavy tailed random matrices. Comm. Math. Phys. 307 (2011), no. 2, 513--560. MR2837123
  • Yen Do and Van Vu, phThe spectrum of random kernel matrices, preprint, ARXIV1206.3763
  • El Karoui, Noureddine. The spectrum of kernel random matrices. Ann. Statist. 38 (2010), no. 1, 1--50. MR2589315
  • Götze, F.; Tikhomirov, A. Limit theorems for spectra of positive random matrices under dependence. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 311 (2004), Veroyatn. i Stat. 7, 92--123, 299; translation in J. Math. Sci. (N. Y.) 133 (2006), no. 3, 1257--1276 MR2092202
  • Guédon, Olivier; Milman, Emanuel. Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures. Geom. Funct. Anal. 21 (2011), no. 5, 1043--1068. MR2846382
  • Guntuboyina, Adityanand; Leeb, Hannes. Concentration of the spectral measure of large Wishart matrices with dependent entries. Electron. Commun. Probab. 14 (2009), 334--342. MR2535081
  • Klartag, Bo'az. A Berry-Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Related Fields 145 (2009), no. 1-2, 1--33. MR2520120
  • Marčenko, V. A.; Pastur, L. A. Distribution of eigenvalues in certain sets of random matrices. (Russian) Mat. Sb. (N.S.) 72 (114) 1967 507--536. MR0208649
  • Mézard, M.; Parisi, G.; Zee, A. Spectra of Euclidean random matrices. Nuclear Phys. B 559 (1999), no. 3, 689--701. MR1724455
  • Pajor, A.; Pastur, L. On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution. Studia Math. 195 (2009), no. 1, 11--29. MR2539559
  • Vershik, A. M. Random metric spaces and universality. (Russian) Uspekhi Mat. Nauk 59 (2004), no. 2(356), 65--104; translation in Russian Math. Surveys 59 (2004), no. 2, 259--295 MR2086637
  • Yin, Y. Q.; Krishnaiah, P. R. Limit theorem for the eigenvalues of the sample covariance matrix when the underlying distribution is isotropic. Teor. Veroyatnost. i Primenen. 30 (1985), no. 4, 810--816. MR0816299


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.