A note on stable point processes occurring in branching Brownian motion

Pascal Maillard (The Weizmann Institute of Science)

Abstract


We call a point process $Z$ on $\mathbb R$ exp-1-stable if for every $\alpha,\beta\in\mathbb R$ with $e^\alpha+e^\beta=1$, $Z$ is equal in law to $T_\alpha Z+T_\beta Z'$, where $Z'$ is an independent copy of $Z$ and $T_x$ is the translation by $x$. Such processes appear in the study of the extremal particles of branching Brownian motion and branching random walk and several authors have proven in that setting the existence of a point process $D$ on $\mathbb R$ such that $Z$ is equal in law to $\sum_{i=1}^\infty T_{\xi_i} D_i$, where $(\xi_i)_{i\ge1}$ are the atoms of a Poisson process of intensity $e^{-x}\,\mathrm d x$ on $\mathbb R$ and $(D_i)_{i\ge 1}$ are independent copies of $D$ and independent of $(\xi_i)_{i\ge1}$. In this note, we show how this decomposition follows from the classic LePage decomposition of a (union)-stable point process. Moreover, we give a short proof of it in the general case of random measures on $\mathbb R$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-9

Publication Date: January 16, 2013

DOI: 10.1214/ECP.v18-2390

References

  • Aïdékon, Elie; Berestycki, Julien; Brunet, Éric; Shi, Zhan. The branching Brownian motion seen from its tip, arXiv:1104.3738, April 2011.
  • Arguin, L.-P.; Bovier, A.; Kistler, N. Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math. 64 (2011), no. 12, 1647--1676. MR2838339
  • Arguin, L.-P.; Bovier, A.; Kistler, N. The extremal process of branching Brownian motion, arXiv:1103.2322, March 2011.
  • Berg, Christian; Christensen, Jens Peter Reus; Ressel, Paul. Harmonic analysis on semigroups. Theory of positive definite and related functions. Graduate Texts in Mathematics, 100. Springer-Verlag, New York, 1984. x+289 pp. ISBN: 0-387-90925-7 MR0747302
  • Bourbaki, Nicolas. Elements of mathematics. General topology. Part 2, Hermann, Paris, 1966. MR0205211
  • Bramson, Maury D. Convergence of solutions of the Kolmogorov equation to travelling waves, Memoirs of the American Mathematical Society 44 (1983), no. 285. MR0705746
  • Brunet, Éric; Derrida, Bernard. A branching random walk seen from the tip. J. Stat. Phys. 143 (2011), no. 3, 420--446. MR2799946
  • Daley, D. J.; Vere-Jones, D. An introduction to the theory of point processes. Vol. I. Second edition. Springer Series in Statistics. Springer-Verlag, New York, 2003. xxii+469 pp. ISBN: 0-387-95541-0 MR1950431
  • Daley, D. J.; Vere-Jones, D. An introduction to the theory of point processes. Vol. II. Second edition. Springer Series in Statistics. Springer-Verlag, New York, 2008. xviii+573 pp. ISBN: 978-0-387-21337-8 MR2371524
  • Darboux, G. Sur le théorème fondamental de la géométrie projective. (French) Math. Ann. 17 (1880), no. 1, 55--61. MR1510050
  • Davydov, Youri; Molchanov, Ilya; Zuyev, Sergei. Strictly stable distributions on convex cones. Electron. J. Probab. 13 (2008), no. 11, 259--321. MR2386734
  • Kabluchko, Zakhar. Persistence of competing systems of branching random walks, arXiv:1103.5865, March 2011.
  • Kabluchko, Zakhar; Schlather, Martin; de Haan, Laurens. Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37 (2009), no. 5, 2042--2065. MR2561440
  • Kallenberg, Olav. Random measures. Third edition. Akademie-Verlag, Berlin; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. 187 pp. ISBN: 0-12-394960-2 MR0818219
  • Kallenberg, Olav. Foundations of modern probability. Probability and its Applications (New York). Springer-Verlag, New York, 1997. xii+523 pp. ISBN: 0-387-94957-7 MR1464694
  • Lalley, S. P.; Sellke, T. A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab. 15 (1987), no. 3, 1052--1061. MR0893913
  • Madaule, Thomas. Convergence in law for the branching random walk seen from its tip, arXiv:1107.2543, July 2011.
  • Maillard, Pascal. A characterisation of superposable random measures, arXiv:1102.1888v1, February 2011.
  • Molchanov, Ilya. Theory of random sets. Probability and its Applications (New York). Springer-Verlag London, Ltd., London, 2005. xvi+488 pp. ISBN: 978-185223-892-3; 1-85233-892-X MR2132405
  • Resnick, Sidney I. Extreme values, regular variation, and point processes. Applied Probability. A Series of the Applied Probability Trust, 4. Springer-Verlag, New York, 1987. xii+320 pp. ISBN: 0-387-96481-9 MR0900810
  • Rosinski, Jan. On series representations of infinitely divisible random vectors. Ann. Probab. 18 (1990), no. 1, 405--430. MR1043955


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.