Large deviations for stable like random walks on $\mathbb Z^d$ with applications to random walks on wreath products

Laurent Saloff-Coste (Cornell University)
Tianyi Zheng (Cornell University)


We derive Donsker-Vardhan type results for functionals of the occupation times when the underlying random walk on $\mathbb Z^d$ is in the domain of attraction of an operator stable law on $\mathbb R^d$. Applications to random walks on wreath products (also known as lamplighter groups) are given.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-35

Publication Date: October 26, 2013

DOI: 10.1214/EJP.v18-2439


  • Bañuelos, Rodrigo; Méndez-Hernández, Pedro J. Symmetrization of Lévy processes and applications. J. Funct. Anal. 258 (2010), no. 12, 4026--4051. MR2609537
  • Bendikov, Alexander; Saloff-Coste, Laurent. Random walks driven by low moment measures. Ann. Probab. 40 (2012), no. 6, 2539--2588. MR3050511
  • Biskup, Marek; König, Wolfgang. Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab. 29 (2001), no. 2, 636--682. MR1849173
  • Chen, Xia. Random walk intersections. Large deviations and related topics. Mathematical Surveys and Monographs, 157. American Mathematical Society, Providence, RI, 2010. x+332 pp. ISBN: 978-0-8218-4820-3 MR2584458
  • Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications. Corrected reprint of the second (1998) edition. Stochastic Modelling and Applied Probability, 38. Springer-Verlag, Berlin, 2010. xvi+396 pp. ISBN: 978-3-642-03310-0 MR2571413
  • Deuschel, Jean-Dominique; Stroock, Daniel W. Large deviations. Pure and Applied Mathematics, 137. Academic Press, Inc., Boston, MA, 1989. xiv+307 pp. ISBN: 0-12-213150-9 MR0997938
  • Donsker, M. D.; Varadhan, S. R. S. Asymptotics for the Wiener sausage. Comm. Pure Appl. Math. 28 (1975), no. 4, 525--565. MR0397901
  • Donsker, M. D.; Varadhan, S. R. S. On the number of distinct sites visited by a random walk. Comm. Pure Appl. Math. 32 (1979), no. 6, 721--747. MR0539157
  • Erschler, Anna. Isoperimetry for wreath products of Markov chains and multiplicity of selfintersections of random walks. Probab. Theory Related Fields 136 (2006), no. 4, 560--586. MR2257136
  • Feller, William. On regular variation and local limit theorems. 1967 Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1 pp. 373--388 Univ. California Press, Berkeley, Calif. MR0219117
  • Gantert, Nina; König, Wolfgang; Shi, Zhan. Annealed deviations of random walk in random scenery. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007), no. 1, 47--76. MR2288269
  • Griffin, Philip S. Matrix normalized sums of independent identically distributed random vectors. Ann. Probab. 14 (1986), no. 1, 224--246. MR0815967
  • Hazod, Wilfried; Siebert, Eberhard. Stable probability measures on Euclidean spaces and on locally compact groups. Structural properties and limit theorems. Mathematics and its Applications, 531. Kluwer Academic Publishers, Dordrecht, 2001. xviii+612 pp. ISBN: 1-4020-0040-5 MR1860249
  • Hebisch, Waldemar; Sikora, Adam. A smooth subadditive homogeneous norm on a homogeneous group. Studia Math. 96 (1990), no. 3, 231--236. MR1067309
  • Jurek, Zbigniew J.; Mason, J. David. Operator-limit distributions in probability theory. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993. xvi+292 pp. ISBN: 0-471-58595-5 MR1243181
  • Pittet, C.; Saloff-Coste, L. On random walks on wreath products. Ann. Probab. 30 (2002), no. 2, 948--977. MR1905862
  • Pittet, Ch.; Saloff-Coste, L. On the stability of the behavior of random walks on groups. J. Geom. Anal. 10 (2000), no. 4, 713--737. MR1817783
  • Schmidt, Bernd. On a semilinear variational problem. ESAIM Control Optim. Calc. Var. 17 (2011), no. 1, 86--101. MR2775187
  • L. Saloff-Coste and T. Zheng, Large deviation results related to occupation times on groups of polynomial volume growth, In preparation, 2013.
  • bysame, Random walks on nilpotent groups driven by measures supported on powers of generators, Submitted, 2013.
  • Varadhan, Srinivasa R. S. Large deviations and applications. École d'Été de Probabilités de Saint-Flour XV–XVII, 1985–87, 1--49, Lecture Notes in Math., 1362, Springer, Berlin, 1988. MR0983371
  • Varopoulos, Nicholas Th. Random walks on soluble groups. Bull. Sci. Math. (2) 107 (1983), no. 4, 337--344. MR0732356

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.