Quasi-stationary distributions associated with explosive CSBP

Cyril Labbé (Université Pierre et Marie Curie)


We characterize all the quasi-stationary distributions and the Q process associated with a continuous state branching process that explodes in finite time. We also provide a rescaling for the continuous state branching process conditioned on non-explosion when the branching mechanism is regularly varying at 0.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-13

Publication Date: July 8, 2013

DOI: 10.1214/ECP.v18-2508


  • Bertoin, Jean. Lévy processes. Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 MR1406564
  • Bingham, N. H. Continuous branching processes and spectral positivity. Stochastic Processes Appl. 4 (1976), no. 3, 217--242. MR0410961
  • Grey, D. R. Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Probability 11 (1974), 669--677. MR0408016
  • Harris, Theodore E. The theory of branching processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119 Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood Cliffs, N.J. 1963 xiv+230 pp. MR0163361
  • Jacod, Jean; Shiryaev, Albert N. Limit theorems for stochastic processes. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288. Springer-Verlag, Berlin, 2003. xx+661 pp. ISBN: 3-540-43932-3 MR1943877
  • Jiřina, Miloslav. Stochastic branching processes with continuous state space. Czechoslovak Math. J. 8 (83) 1958 292--313. MR0101554
  • Kyprianou, Andreas E. Introductory lectures on fluctuations of Lévy processes with applications. Universitext. Springer-Verlag, Berlin, 2006. xiv+373 pp. ISBN: 978-3-540-31342-7; 3-540-31342-7 MR2250061
  • Lambert, Amaury. Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Probab. 12 (2007), no. 14, 420--446. MR2299923
  • Lamperti, John. An occupation time theorem for a class of stochastic processes. Trans. Amer. Math. Soc. 88 1958 380--387. MR0094863
  • Lamperti, John. Continuous state branching processes. Bull. Amer. Math. Soc. 73 1967 382--386. MR0208685
  • Le Gall, Jean-François. Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1999. x+163 pp. ISBN: 3-7643-6126-3 MR1714707
  • Li, Zeng-Hu. Asymptotic behaviour of continuous time and state branching processes. J. Austral. Math. Soc. Ser. A 68 (2000), no. 1, 68--84. MR1727226
  • Silverstein, M. L. A new approach to local times. J. Math. Mech. 17 1967/1968 1023--1054. MR0226734
  • Slack, R. S. A branching process with mean one and possibly infinite variance. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 1968 139--145. MR0228077
  • Yaglom, A. M. Certain limit theorems of the theory of branching random processes. (Russian) Doklady Akad. Nauk SSSR (N.S.) 56, (1947). 795--798. MR0022045

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.