Metastable densities for the contact process on power law random graphs
Daniel Valesin (University of British Columbia)
Qiang Yao (East China Normal University)
Abstract
We consider the contact process on a random graph with fixed degree distribution given by a power law. We follow the work of Chatterjee and Durrett (2009), who showed that for arbitrarily small infection parameter $\lambda$, the survival time of the process is larger than a stretched exponential function of the number of vertices, $n$. We obtain sharp bounds for the typical density of infected sites in the graph, as $\lambda$ is kept fixed and $n$ tends to infinity. We exhibit three different regimes for this density, depending on the tail of the degree law.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-36
Publication Date: December 3, 2013
DOI: 10.1214/EJP.v18-2512
References
- Berger, Noam; Borgs, Christian; Chayes, Jennifer T.; Saberi, Amin. On the spread of viruses on the internet. Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 301--310, ACM, New York, 2005. MR2298278
- Chatterjee, Shirshendu; Durrett, Rick. Contact processes on random graphs with power law degree distributions have critical value 0. Ann. Probab. 37 (2009), no. 6, 2332--2356. MR2573560
- Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications. Second edition. Applications of Mathematics (New York), 38. Springer-Verlag, New York, 1998. xvi+396 pp. ISBN: 0-387-98406-2 MR1619036
- Dommers, S., Giardinà, C., vd Hofstad, R. textitIsing critical exponents on random trees and graphs, arXiv:1211.3005 (2012)
- Durrett, Rick. Probability: theory and examples. Fourth edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. x+428 pp. ISBN: 978-0-521-76539-8 MR2722836
- Durrett, Rick. Random graph dynamics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2007. x+212 pp. ISBN: 978-0-521-86656-9; 0-521-86656-1 MR2271734
- Durrett, Richard; Liu, Xiu Fang. The contact process on a finite set. Ann. Probab. 16 (1988), no. 3, 1158--1173. MR0942760
- vd Hofstad, R. textitRandom graphs and complex networks. Available at http://www.win.tue.nl/~rhofstad/
- Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4 MR0776231
- Liggett, Thomas M. Stochastic interacting systems: contact, voter and exclusion processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 324. Springer-Verlag, Berlin, 1999. xii+332 pp. ISBN: 3-540-65995-1 MR1717346
- Mountford, T. S. A metastable result for the finite multidimensional contact process. Canad. Math. Bull. 36 (1993), no. 2, 216--226. MR1222537
- T. Mountford, J.C. Mourrat, D. Valesin, Q. Yao. textitExponential extinction time of the contact process on finite graphs, arXiv:1203.2972 (2012)
- Newman, M.E.J., Strogatz, S.H., and Watts, D.J. (2001) Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E. 64, paper 026118

This work is licensed under a Creative Commons Attribution 3.0 License.