On existence of progressively measurable modifications

Martin Ondrejat (Institute of Information Theory and Automation, Academy of Sciences of the Czech)
Jan Seidler (Institute of Information Theory and Automation, Academy of Sciences of the Czech)


In this note we provide a short and simple proof that every adapted measurable stochastic process admits a progressively measurable modification.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-6

Publication Date: March 12, 2013

DOI: 10.1214/ECP.v18-2548


  • Dellacherie, Claude; Meyer, Paul-André. Probabilités et potentiel. (French) Chapitres I à IV. Édition entièrement refondue. Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. XV. Actualités Scientifiques et Industrielles, No. 1372. Hermann, Paris, 1975. x+291 pp. MR0488194
  • Irle, Albrecht. On the measurability of conditional expectations. Pacific J. Math. 70 (1977), no. 1, 177--178. MR0488248
  • Kaden, Svenja; Potthoff, Jürgen. Progressive stochastic processes and an application to the Itô integral. Stochastic Anal. Appl. 22 (2004), no. 4, 843--865. MR2062948
  • Medvegyev, Péter. Stochastic integration theory. Oxford Graduate Texts in Mathematics, 14. Oxford University Press, Oxford, 2007. xx+608 pp. ISBN: 978-0-19-921525-6 MR2345169
  • Peszat, S.; Zabczyk, J. Stochastic partial differential equations with Lévy noise. An evolution equation approach. Encyclopedia of Mathematics and its Applications, 113. Cambridge University Press, Cambridge, 2007. xii+419 pp. ISBN: 978-0-521-87989-7 MR2356959
  • Srivastava, S. M. A course on Borel sets. Graduate Texts in Mathematics, 180. Springer-Verlag, New York, 1998. xvi+261 pp. ISBN: 0-387-98412-7 MR1619545

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.