Collision Local Times, Historical Stochastic Calculus, and Competing Species
Edwin A. Perkins (The University of British Columbia)
Abstract
Branching measure-valued diffusion models are investigated that can be regarded as pairs of historical Brownian motions modified by a competitive interaction mechanism under which individuals from each population have their longevity or fertility adversely affected by collisions with individuals from the other population. For 3 or fewer spatial dimensions, such processes are constructed using a new fixed-point technique as the unique solution of a strong equation driven by another pair of more explicitly constructible measure-valued diffusions. This existence and uniqueness is used to establish well-posedness of the related martingale problem and hence the strong Markov property for solutions. Previous work of the authors has shown that in 4 or more dimensions models with the analogous definition do not exist.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-120
Publication Date: April 8, 1998
DOI: 10.1214/EJP.v3-27
References
- R. J. Adler and R. Tribe, Uniqueness of a historical SDE with a singular interaction, J. Theoret. Probab., 1997. In Press. Math Review article not available.
- M. T. Barlow, S. N. Evans, and E. A. Perkins, Collision local times and measure-valued processes. Canad. J. Math., 43:897-938, 1991. Math Review link
- B. Bolker and S. W. Pacala, Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theoret. Popul. Biol., 1997. In Press. Math Review article not available.
- B. Bolker, S. W. Pacala, and S. A. Levin, Moment methods for stochastic processes in continuous space and time. In U. Dieckmann and J. Metz, editors, Low-Dimensional Dynamics of Spatial Ecological Systems, 1997. In Press. Math Review article not available.
- D. A. Dawson, Measure-valued Markov processes, In Ecole d'Ete de Probabilites de Saint-Flour XXI-1991, volume 1541 of Lecture Notes in Math., pages 1-260. Springer, Berlin, 1993. Math Review link
- D. A. Dawson and K. Fleischmann, Longtime behavior of branching processes controlled by branching catalysts. Preprint, 1996. Math Review article not available.
- D. A. Dawson and K. Fleischmann, A continuous super-Brownian motion in a super-Brownian medium, J. Theoret. Probab., 10: 213-276, 1997. Math Review link
- D. A. Dawson and P. March, Resolvent estimates for Fleming-Viot operators and uniqueness of solutions to related martingale problems, J. Funct. Anal., 132: 417-472, 1995. Math Review link
- D. A. Dawson and E. A. Perkins, Historical processes, Mem. Amer. Math. Soc., 93, 1991. Math Review link
- D. A. Dawson and E. A. Perkins, Long-time behaviour and co-existence in a mutually catalytic branching model. Preprint, 1997. To appear in Ann Probab. Math Review article not available.
- C. Dellacherie and P.-A. Meyer, Probabilities and Potential, Number 29 in Mathematics Studies. North-Holland, Amsterdam, 1978. Math Review link
- C. Dellacherie and P.-A. Meyer, Probabilities and Potential B, Number 72 in Mathematics Studies. North-Holland, Amsterdam, 1982. Math Review link
- E. B. Dynkin, Three classes of infinite dimensional diffusions, J. Funct. Anal., 86:75-110, 1989. Math Review link
- E. B. Dynkin, Path processes and historical processes, Probab. Theory Relat. Fields, 90:89-115, 1991. Math Review link
- E. B. Dynkin, On regularity of superprocesses, Probab. Theory Relat. Fields, 95:263-281, 1993. Math Review link
- N. El-Karoui and S. Roelly, Proprietes de martingales, explosion et representation de Levy-Khintchine d'une class de processus de branchement a valeurs mesures. Stoch. Proc. Appl., 39: 239-266, 1991. Math Review link
- A. M. Etheridge and K. Fleischmann, Persistence of a two-dimensional super-Brownian motion in a catalytic medium, Preprint, 1997. Math Review article not available.
- S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986. Math Review link
- S. N. Evans and E. A. Perkins, Absolute continuity results for superprocesses with some applications, Trans. Amer. Math. Soc., 325: 661-681, 1991. Math Review link
- S. N. Evans and E. A. Perkins, Measure-valued branching diffusions with singular interactions, Canad. J. Math., 46: 120-168, 1994. Math Review link
- S. N. Evans and E. A. Perkins, Explicit stochastic integral representations for historical functionals, Ann. Prob., 23: 1772-1815, 1995. Math Review link
- P. J. Fitzsimmons, Construction and regularity of measure-valued Markov branching processes, Israel J. Math., 64: 337-361, 1988. Math Review link
- K. Fleischmann and A. Klenke, Smooth density field of catalytic super-Brownian motion, Preprint, 1997. Math Review article not available.
- D. N. Hoover and H. J. Keisler, Adapted probability distributions, Trans. Amer. Math. Soc., 286: 159-201, 1984. Math Review link
- N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981. Math Review link
- M. Lopez, Path properties and convergence of interacting superprocesses, PhD thesis, University of British Columbia, 1996. Math Review article not available.
- L. Mytnik, Uniqueness of a competing species model, Preprint, 1997. Math Review article not available.
- C. Neuhauser and S. W. Pacala, An explicitly spatial version of the Lotka-Volterra model with interspecific competition, Preprint, 1997. Math Review article not available.
- L. Overbeck, Nonlinear superprocesses, Ann. Probab., 24: 743-760, 1996. Math Review link
- E. A. Perkins, Measure-valued branching diffusion with spatial interactions, Prob. Theory Relat. Fields, 94: 189-245, 1992. Math Review link
- E. A. Perkins, On the martingale problem for interactive measure-valued branching diffusions, Mem. Amer. Math. Soc., 115, 1995. Math Review link
- J. B. Walsh, An introduction to stochastic partial differential equations. In Ecole d'Ete de Probabilites de Saint-Flour XIV-1984, volume 1180 of Lecture Notes in Math., pages 265-439, Springer, Berlin, 1986. Math Review link

This work is licensed under a Creative Commons Attribution 3.0 License.