The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • B. Bah and E. Pardoux. λ-look-down model with selection. Preprint, 2012. arXiv.1303.1953.
  • Berestycki, Nathanaël. Recent progress in coalescent theory. Ensaios Matemáticos [Mathematical Surveys], 16. Sociedade Brasileira de Matemática, Rio de Janeiro, 2009. 193 pp. ISBN: 978-85-85818-40-1 MR2574323
  • Bertoin, Jean; Le Gall, Jean-François. Stochastic flows associated to coalescent processes. II. Stochastic differential equations. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), no. 3, 307--333. MR2139022
  • Birkner, Matthias; Blath, Jochen. Measure-valued diffusions, general coalescents and population genetic inference. Trends in stochastic analysis, 329--363, London Math. Soc. Lecture Note Ser., 353, Cambridge Univ. Press, Cambridge, 2009. MR2562160
  • Dawson, Donald A.; Li, Zenghu. Stochastic equations, flows and measure-valued processes. Ann. Probab. 40 (2012), no. 2, 813--857. MR2952093
  • R. Der, C. Epstein, and J. Plotkin. Dynamics of neutral and selected alleles when the offspring diffusion is skewed. Genetics, May 2012.
  • R. Der, C. L. Epstein, and J. B. Plotkin. Generalized population models and the nature of genetic drift. Theoretical Population Biology, 80(2):80 -- 99, 2011.
  • Etheridge, Alison. Some mathematical models from population genetics. Lectures from the 39th Probability Summer School held in Saint-Flour, 2009. Lecture Notes in Mathematics, 2012. Springer, Heidelberg, 2011. viii+119 pp. ISBN: 978-3-642-16631-0 MR2759587
  • A. M. Etheridge, R. C. Griffiths, and J. E. Taylor. A coalescent dual process in a moran model with genic selection, and the lambda coalescent limit. Theoretical Population Biology, 78(2):77 -- 92, 2010.
  • Foucart, Clément. Distinguished exchangeable coalescents and generalized Fleming-Viot processes with immigration. Adv. in Appl. Probab. 43 (2011), no. 2, 348--374. MR2848380
  • Gnedin, Alexander; Iksanov, Alexander; Marynych, Alexander. On $\Lambda$-coalescents with dust component. J. Appl. Probab. 48 (2011), no. 4, 1133--1151. MR2896672
  • S. Jansen and N. Kurt. On the notion(s) of duality for markov processes. 2012. arXiv.1210.7193.
  • C. Krone and S. Neuhauser. Ancestral processes with selection. Theoretical Population Biology, 51(3):210--37, 1997.
  • Lagerås, Andreas Nordvall. A population model for $\Lambda$-coalescents with neutral mutations. Electron. Comm. Probab. 12 (2007), 9--20 (electronic). MR2284043
  • M. Möhle and P. Herriger. Conditions for exchangeable coalescents to come down from infinity. ALEA Lat. Am. J. Probab. Math. Stat., 9:637--665, 2012.
  • Pitman, Jim. Coalescents with multiple collisions. Ann. Probab. 27 (1999), no. 4, 1870--1902. MR1742892
  • Schweinsberg, Jason. A necessary and sufficient condition for the $\Lambda$-coalescent to come down from infinity. Electron. Comm. Probab. 5 (2000), 1--11 (electronic). MR1736720

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.