The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Basdevant, Anne-Laure; Schapira, Bruno; Singh, Arvind. Localization on 4 sites for Vertex Reinforced Random walk on $\Bbb Z$. Ann. Probab. (2012) To appear.
  • Chen Jun; Kozma Gady. Vertex-reinforced random walk on Z with sub-square-root weights is recurrent. Preprint (2014).
  • Pemantle, Robin. Vertex-reinforced random walk. Probab. Theory Related Fields 92 (1992), no. 1, 117--136. MR1156453
  • Pemantle, Robin. A survey of random processes with reinforcement. Probab. Surv. 4 (2007), 1--79. MR2282181
  • Pemantle, Robin; Volkov, Stanislav. Vertex-reinforced random walk on ${\bf Z}$ has finite range. Ann. Probab. 27 (1999), no. 3, 1368--1388. MR1733153
  • Schapira, Bruno. A 0-1 law for vertex-reinforced random walks on $\Bbb Z$ with weight of order $k^ \alpha$, $\alpha<1/2$. Electron. Commun. Probab. 17 (2012), no. 22, 8 pp. MR2943105
  • Tarrès, Pierre. Vertex-reinforced random walk on $\Bbb Z$ eventually gets stuck on five points. Ann. Probab. 32 (2004), no. 3B, 2650--2701. MR2078554
  • Tarrès P. Localization of reinforced random walks. (2011) Preprint, arXiv:1103.5536.
  • Volkov, Stanislav. Phase transition in vertex-reinforced random walks on $\Bbb Z$ with non-linear reinforcement. J. Theoret. Probab. 19 (2006), no. 3, 691--700. MR2280515

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.