The Metastability Threshold for Modified Bootstrap Percolation in $d$ Dimensions

Alexander E Holroyd (Department of Mathematics, University of British Columbia)

Abstract


In the modified bootstrap percolation model, sites in the cube $\{1,\ldots,L\}^d$ are initially declared active independently with probability $p$. At subsequent steps, an inactive site becomes active if it has at least one active nearest neighbour in each of the $d$ dimensions, while an active site remains active forever. We study the probability that the entire cube is eventually active. For all $d\geq 2$ we prove that as $L\to\infty$ and $p\to 0$ simultaneously, this probability converges to $1$ if $L\geq\exp \cdots \exp \frac{\lambda+\epsilon}{p}$, and converges to $0$ if $L\leq\exp \cdots \exp \frac{\lambda-\epsilon}{p}$, for any $\epsilon>0$. Here the exponential function is iterated $d-1$ times, and the threshold $\lambda$ equals $\pi^2/6$ for all $d$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 418-433

Publication Date: June 6, 2006

DOI: 10.1214/EJP.v11-326

References

  1. Adler J.; Stauffer, D.; Aharony, A. Comparison of bootstrap percolation models. J. Phys. A 22 (1989), L297--L301.
  2. Aizenman, M.; Lebowitz, J. L. Metastability effects in bootstrap percolation. J. Phys. A 21 (1988), no. 19, 3801--3813. MR0968311 (90e:82047)
  3. Balogh, J.; Bollobas, B. Sharp thresholds in bootstrap percolation. Physica A, 326 (2003), 305--312.
  4. Cerf, Raphaël; Cirillo, Emilio N. M. Finite size scaling in three-dimensional bootstrap percolation. Ann. Probab. 27 (1999), no. 4, 1837--1850. MR1742890 (2001b:82047)
  5. Cerf, R.; Manzo, F.. The threshold regime of finite volume bootstrap percolation. Stochastic Process. Appl. 101 (2002), no. 1, 69--82. MR1921442 (2003e:60217)
  6. Gregorio, P. D.; Lawlor, A.; Bradley, P.; Dawson, K. A. Clarification of the bootstrap percolation paradox. Phys. Rev. Lett., 93 (2004), no. 2, 025501
  7. Grimmett, Geoffrey. Percolation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339 (2001a:60114)
  8. Holroyd, Alexander E. Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields 125 (2003), no. 2, 195--224. MR1961342 (2003k:60257)
  9. Holroyd, Alexander E.; Liggett, Thomas M.; Romik, Dan. Integrals, partitions, and cellular automata. Trans. Amer. Math. Soc. 356 (2004), no. 8, 3349--3368 (electronic). MR2052953 (2005b:60018)
  10. Schonmann, Roberto H. On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20 (1992), no. 1, 174--193. MR1143417 (93b:60231)
  11. van Enter, Aernout C. D. Proof of Straley's argument for bootstrap percolation. J. Statist. Phys. 48 (1987), no. 3-4, 943--945. MR0914911 (88j:82024)


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.