Extending the Martingale Measure Stochastic Integral With Applications to Spatially Homogeneous S.P.D.E.'s
Abstract
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-29
Publication Date: March 24, 1999
DOI: 10.1214/EJP.v4-43
Supplementary Files
Correction (pdf) (76KB)Correction (ps) (256KB)
References
Adams, R.A. Sobolev Spaces. Academic Press, New
York (1975). Math
Review link
Albeverio, S., Haba, Z. and Russo, F. Trivial solutions for a non-linear
two space-dimensional wave equation perturbed by a space-time white noise.
Stochastics and Stochastics Rep. 56 (1996), 127-160.
Math
Review link
Albeverio, S., Haba, Z. and Russo, F. A two space-dimensional semilinear heat equation perturbed by (Gaussian) white noise. Probab. Th. Rel. Fields (1999, to appear). Math. Review number not available.
Berberian, S.K. Introduction to Hilbert Space. 2nd ed. Chelsea Publ. Co., New York (1976). Math Review link
Bie, E.S.-L. Etude d'une EDPS conduite par un bruit poissonien. Probab. Th. Rel. Fields 111-2 (1998), 287-321. Math. Review number not available.
Chung, K.L. and Williams, R.J. Introduction to Stochastic Integration. 2nd ed. Birkhäuser Boston (1990). Math Review link
Dalang, R.C. and Frangos, N.E. The stochastic wave equation in two spatial dimensions. Ann. Probab. 26-1 (1998), 187-212. Math Review link
Dawson, D.A. and Salehi, H. Spatially homogeneous random evolutions. J. Mult. Anal. 10 (1980), 141-180. Math Review link
Dembo, A. and Zeitouni, O. Large Deviations Techniques and Applications. Jones and Bartlett (1993). Math Review link
Folland, G.B. Introduction to Partial Differential Equations. Princeton Univ. Press (1976). Math Review link
Friedman, A. Stochastic Differential Equations and Applications Vol. 1. Academic Press, New York (1975). Math Review link
Itô, K. Foundations of stochastic differential equations in infinite dimensional spaces. CBMS Notes, SIAM, Baton Rouge (1983). Math Review link
Karkzewska, A. and Zabczyk, J. Stochastic PDE's with function-valued solutions (preprint). Math. Review number not available.
Landkof, N.S. Foundations of Modern Potential Theory. Berlin Heidelberg New York: Springer 1972. Math Review link
Millet, A. and Sanz-Sole, M. A stochastic wave equation in two space dimension: Smoothness of the law, Annals of Probab. (1999, to appear). Math. Review number not available.
Millet, A. and Sanz, M. Approximation and support theorem for a two space-dimensional wave equation (preprint). Math. Review number not available.
Mikulevicius, R. and Rozovkii, B.L. Normalized stochastic integrals in topological vector spaces. Sém. de Proba. XXXII, Lect. N. in Math. 1686, Springer Verlag (1998), 137-165. Math. Review number not available.
Mueller, C. A modulus for the 3-dimensional wave equation with noise: Dealing with a singular kernel. Canad. J. Math. 45-6 (1993), 1263-1275. Math Review link
Mueller, C. Long time existence for the wave equation with a noise term. Ann. Probab. 25-1 (1997), 133-151. Math Review link
Neveu, J. Processus aléatoires gaussiens. Presses de L'Univ. de Montréal. Montréal, Canada (1968). Math Review link
Nobel, J. Evolution equation with Gaussian potential. Nonlinear Analysis: Theory, Methods and Appl. 28 (1997), 103-135. Math Review number not available
Oberguggenberger, M. and Russo, F. White noise driven stochastic partial
differential equations: triviality and non-triviality. In: Nonlinear Theory
of Generalized Functions (M. Grosser, G. Hormann, M. Kunzinger & M.
Oberguggenberger, eds), Chapman & Hall/CRC Research Notes
in Mathematics Series, CRC Press (1999), 315-333. Math. Review number
not available.
Oberguggenberger, M. and Russo, F. The non-linear stochastic wave equation. Integral transforms and special functions 6 (1997), 58-70. Math. Review number not available.
Peszat, S. and Zabczyk, J. Stochastic evolution equations with a spatially homogeneous Wiener process. Stoch. Proc. Appl. 72 (1997), 187-204. Math Review number not available
Peszat, S. and Zabczyk, J. Nonlinear stochastic wave and heat equations (preprint). Math. Review number not available.
Revuz, D. and Yor, M. Continuous Martingales and Brownian Motion. Grundlehren der math. Wissenschaften 293, Springer Verlag (1991). Math Review link
Schwartz, L. Théorie des distributions. Hermann, Paris (1966). Math Review link
Stein, E.M. Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1970). Math Review link
Treves, F. Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967). Math Review link
Treves, F. Basic Linear Partial Differential Equations. Academic Press, New York (1975). Math Review link
Walsh, J.B. An introduction to stochastic partial differential equations, Ecole d'Eté de Prob. de St. Flour XIV, 1984, Lect. Notes in Math 1180, Springer Verlag (1986). Math Review link
Wheeden, R.L. and Zygmund, A. Measure and Integral: An Introduction to Real Analysis, Marcel Dekker (1977). Math Review link

This work is licensed under a Creative Commons Attribution 3.0 License.