Moderate deviations for stable Markov chains and regression models
Abstract
We prove moderate deviations principles for
- unbounded additive functionals of the form $S_n = \sum_{j=1}^{n} g(X^{(p)}_{j-1})$, where $(X_n)_{n\in N}$ is a stable $R^d$-valued functional autoregressive model of order $p$ with white noise and stationary distribution $\mu$, and $g$ is an $R^q$-valued Lipschitz function of order $(r,s)$;
- the error of the least squares estimator (LSE) of the matrix $\theta$ in an $R^d$-valued regression model $X_n = \theta^t \phi_{n-1} + \epsilon_n$, where $(\epsilon_n)$ is a generalized gaussian noise.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-28
Publication Date: April 16, 1999
DOI: 10.1214/EJP.v4-45
References
- A. De Acosta (1990).
Large deviations for empirical measures of Markov chains,
J. Theoretical Prob.
3, , 395-431, Math. Review 91j:60051 - A. De Acosta (1997).
Moderate deviations for empirical measures of Markov chains: lower bounds,
Ann. Probability
25, 259-284, Math. Review 98f:60049 - A. De Acosta and X. Chen (1998).
Moderate deviations for empirical measures of Markov chains: upper bounds,
J. Theoretical Prob.
11, 1075--1110, Math. Review 1 660 920 - A. Benveniste M. Metivier and P. Priouret (1990). Adaptive algorithms and stochastic appproximation, Springer Math. Review 92h:62137
- B. Bercu F. Gamboa and A. Rouault (1997).
Large deviations for quadratic forms of stationary Gaussian processes,
Stoch. Proc. and their Appl.
71, 75-90, Math. Review 97c:60072 - A.A. Borovkov (1991).
Lyapunov functions and multidimensionnal markov chains,
Theory of probability and applications
36, 1-18, Math. Review 93g:60136 - W. Bryc and A. Dembo (1995).
On large deviations of empirical measures for stationary Gaussian processes,
Stochastic Proc. and their Appl.
58, 23-34, Math. Review 96f:60038 - W. Bryc and A. Dembo (1996).
Large deviations and strong mixing,
Ann. Inst. Henri Poincare, Probab. stat.
32, 549-569, Math. Review 97k:60075 - W. Bryc and W. Smolenski (1993).
On large deviations of empirical measures for quadratic functional of the autoregressive process,
Stat. and probability letters
17, 281-285, Math. Review 93h:60037 - A. Dembo (1996).
Moderate deviations for martingales with bounded jumps,
Electronic Communication in Probab.
1, 11-17, Math. Review 97k:60077 - J. Deshayes and D. Picard (1979).
Grandes et moyennes deviations pour les marches aleatoires,
Asterisque
68, 53-70, Math. Review number not available - J.D. Deuschel and D.W. Stroock (1989). Large deviations, Academic press , Math. Review 90h:60026
- I.H. Dinwoodie and P. Ney (1995).
Occupation measures of Markov chains,
J. Theoretical Prob.
8 (3), 679-691, Math. Review 96i:60026 - M.D. Donsker and S.R.S. Varadhan (1975).
Asymptotic evaluation of certain Markov process expectations for large time I,
Commun. Pure Appl. Math.
28, 1-47, Math. Review 52:6883 - M.D. Donsker and S.R.S. Varadhan (1975).
Asymptotic evaluation of certain Markov process expectations for large time II,
Commun. Pure Appl. Math.
28, 279-301, Math. Review 52:6883 - M.D. Donsker and S.R.S. Varadhan (1976).
Asymptotic evaluation of certain Markov process expectations for large time III,
Commun. Pure Appl. Math.
29, 389-461, Math. Review 55:1492 - M. Duflo (1997). Random Iterative Models, Springer , Math. Review 98m:62239
- P. Dupuis and R.S. Ellis (1997). A weak convergence approach to the theory of large deviations, Wiley , Math. Review 1 431 744.
- R.S. Ellis (1988).
Large deviations for the empirical measure of a Markov chain with
an application to the multivariate empirical measure,
Ann. Probability
16, 1496-1508, Math. Review 90a:6055. - F.Q. Gao (1996).
Moderate deviations for martingales and mixing processes,
Stochastic processes and appl.
61, 263-277, Math. Review 97g:60039 - R.A. Horn and C.R. Johnson (1991). Topics in matrix analysis, Cambridge University Press , Math. Review 92e:15003
- N.C. Jain (1990).
Large deviation lower bounds for additive functionals of Markov processes:
discrete time, non compact case,
Ann. probability
18, 1071-1098, Math. Review 91g:60037 - R. Liptser (1996).
Large deviation property for occupation measures of Markov processes:
discrete time, non compact case,
Theory probability and appl.
41, 35-54, Math. Review 97k:60081 - R.Sh. Liptser and A.A. Puhalskii (1992).
Limit theorems on large deviations for semi-martingales,
Stochastics and stochastic reports
38, 201-249, Math. Review 95f:60032 - R.S. Liptser O.V. Gulinskii S.V. Lototskii (1994).
Large deviations for unbounded additive functionnals of a
Markov process with discrete time (non compact case),
J. Appl. Math. Stoch. Anal.
7 (3), 423-436, Math. Review 96e:60045 - S.P. Meyn and R.L. Tweedie (1993). Markov Chains and Stochastic Stability, Springer Math. Review 95j:60103
- V.V. Petrov (1995). Limit theorems of probability theory, sequences of independent random variables, Clarendon Press, Oxford Math. Review 96h:60048
- A.A. Puhalskii (1994).
The method of stochastic exponentials for large deviations,
Stochastic processes and appl.
54, 45-70, Math. Review 95j:60043 - A.A. Puhalskii (1997).
Large deviations of semimartingales: a maxingale problem approach I:
limits as solutions to a maxingale problem,
Stochastics and Stochastics Reports
61, 141-243, Math. Review 98h:60033 - J. Worms (1998). Moderate deviations for regression models, Preprint, Universit'e de Marne-la-Vall'ee (France), number 1
- J. Worms (1999).
Principes de d'eviations mod'er'ees pour des mod`eles
autor'egressifs d'ordre p
(moderate deviations principles for autoregressive models of order p),
Comptes Rendus de l'Acad'emie des Sciences, s'erie 1,
328 (1), 67-72 Math. Review 1 674 386 - L. Wu (1995).
Moderate deviations of dependent random variables related to a CLT,
Ann. of probability
23, 420-445, Math. Review 96f:60047

This work is licensed under a Creative Commons Attribution 3.0 License.