The number of unbounded components in the Poisson Boolean model of continuum percolation in hyperbolic space

Johan Harald Tykesson (Chalmers University of Technology)

Abstract


We consider the Poisson Boolean model of continuum percolation with balls of fixed radius $R$ in $n$-dimensional hyperbolic space $H^n$. Let $\lambda$ be the intensity of the underlying Poisson process, and let $N_C$ denote the number of unbounded components in the covered region. For the model in any dimension we show that there are intensities such that $N_C=\infty$ a.s. if $R$ is big enough. In $H^2$ we show a stronger result: for any $R$ there are two intensities $\lambda_c$ and $\lambda_u$ where $0< \lambda_c < \lambda _u < \infty$, such that$N_C=0$ for $\lambda \in [0,\lambda_c]$, $N_C=\infty$ for $\lambda \in (\lambda_c,\lambda_u)$ and $N_C=1$ for $\lambda \in [\lambda_u, \infty)$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1379-1401

Publication Date: November 4, 2007

DOI: 10.1214/EJP.v12-460

References

  • P. Albin, Private communication.
  • Alexander, Kenneth S. The RSW theorem for continuum percolation and the CLT for Euclidean minimal spanning trees. Ann. Appl. Probab. 6 (1996), no. 2, 466--494. MR1398054
  • Athreya, Krishna B.; Ney, Peter E. Branching processes. Die Grundlehren der mathematischen Wissenschaften, Band 196. Springer-Verlag, New York-Heidelberg, 1972. xi+287 pp. MR0373040
  • Benjamini, Itai; Lyons, Russell; Peres, Yuval; Schramm, Oded. Critical percolation on any nonamenable group has no infinite clusters. Ann. Probab. 27 (1999), no. 3, 1347--1356. MR1733151
  • Benjamini, I.; Lyons, R.; Peres, Y.; Schramm, O. Group-invariant percolation on graphs. Geom. Funct. Anal. 9 (1999), no. 1, 29--66. MR1675890
  • Benjamini, Itai; Schramm, Oded. Percolation in the hyperbolic plane. J. Amer. Math. Soc. 14 (2001), no. 2, 487--507 (electronic). MR1815220
  • Benjamini, Itai; Schramm, Oded. Percolation beyond $\bf Z^ d$, many questions and a few answers. Electron. Comm. Probab. 1 (1996), no. 8, 71--82 (electronic). MR1423907
  • Burton, R. M.; Keane, M. Density and uniqueness in percolation. Comm. Math. Phys. 121 (1989), no. 3, 501--505. MR0990777
  • Cannon, James W.; Floyd, William J.; Kenyon, Richard; Parry, Walter R. Hyperbolic geometry. Flavors of geometry, 59--115, Math. Sci. Res. Inst. Publ., 31, Cambridge Univ. Press, Cambridge, 1997. MR1491098
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill, 1953.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill, 1953.
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
  • Häggström, Olle. Infinite clusters in dependent automorphism invariant percolation on trees. Ann. Probab. 25 (1997), no. 3, 1423--1436. MR1457624
  • Häggström, Olle; Jonasson, Johan. Uniqueness and non-uniqueness in percolation theory. Probab. Surv. 3 (2006), 289--344 (electronic). MR2280297
  • Hall, Peter. On continuum percolation. Ann. Probab. 13 (1985), no. 4, 1250--1266. MR0806222
  • J. Jonasson, textitHard-sphere percolation: Some positive answers in the hyperbolic plane and on the integer lattice, Preprint, 2001.
  • Pak, Igor; Smirnova-Nagnibeda, Tatiana. On non-uniqueness of percolation on nonamenable Cayley graphs. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 6, 495--500. MR1756965
  • Meester, Ronald; Roy, Rahul. Continuum percolation. Cambridge Tracts in Mathematics, 119. Cambridge University Press, Cambridge, 1996. x+238 pp. ISBN: 0-521-47504-X MR1409145
  • Prudnikov, A. P.; Brychkov, Yu. A.; Marichev, O. I. Integrals and series. Vol. 1. Elementary functions. Translated from the Russian and with a preface by N. M. Queen. Gordon & Breach Science Publishers, New York, 1986. 798 pp. ISBN: 2-88124-097-6 MR0874986
  • Ratcliffe, John G. Foundations of hyperbolic manifolds. Second edition. Graduate Texts in Mathematics, 149. Springer, New York, 2006. xii+779 pp. ISBN: 978-0387-33197-3; 0-387-33197-2 MR2249478
  • Sarkar, Anish. Co-existence of the occupied and vacant phase in Boolean models in three or more dimensions. Adv. in Appl. Probab. 29 (1997), no. 4, 878--889. MR1484772
  • Schonmann, Roberto H. Stability of infinite clusters in supercritical percolation. Probab. Theory Related Fields 113 (1999), no. 2, 287--300. MR1676831


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.