On the Number of Collisions in Lambda-Coalescents

Alexander Gnedin (Utrecht University)
Yuri Yakubovich (PDMI, St.Petersburg, Russia)

Abstract


We examine the total number of collisions $C_n$ in the $\Lambda$-coalescent process which starts with $n$ particles. A linear growth and a stable limit law for $C_n$ are shown under the assumption of a power-like behaviour of the measure $\Lambda$ near $0$ with exponent $0<\alpha<1$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1547-1567

Publication Date: December 4, 2007

DOI: 10.1214/EJP.v12-464

References

  1. J. Berestycki, N. Berestycki and J. Schweinsberg. Small-time behavior of beta coalescents. To appear in Ann. Inst. H. Poincare Probab. Statist.; arXiv:math.PR/0601032.
  2. J. Berestycki, N. Berestycki, J. Schweinsberg. Beta-coalescents and continuous stable random trees. Ann. Probab. 35 (2007), 1835–1887; arXiv:math.PR/0602113.
  3. J. Bertoin, J.-F. Le Gall. Stochastic flows associated to coalescent processes III: Limit theorems. Illinois J. Math. 50 (2006), no. 14, 147–181 (electronic); arXiv:math.PR/0506092. MR2247827
  4. N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambr. Univ. Press (1987). MR0898871
  5. M. Birkner, J. Blath, M. Capaldo, A. Etheridge, M. Möhle, J. Schweinsberg, A. Wakolbinger, Alpha-stable branching and beta-coalescents, Elec. J. Prob. 10 (2005), 303–325 (electronic). MR2120246
  6. E. Bolthausen, A.-S. Sznitman. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys. 197 (1998), 247–276. MR1652734
  7. J.-F. Delmas, J.-S. Dhersin, A. Siri-Jegousse. Asymptotic results on the length of coalescent trees. To appear in Ann. Appl. Probab.; arXiv:0706.0204.
  8. M. Drmota, A. Iksanov, M. Moehle, U. Roesler. A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Submitted to Random Struct. Algorithms.
  9. M. Drmota, A. Iksanov, M. Moehle, U. Roesler. Asymptotic results about the total branch length of the Bolthausen–Sznitman coalescent. Stoch. Proc. Appl. 117 (2007), no. 10, 1404–1421.
  10. R. Dong, A. Gnedin and J. Pitman. Exchangeable partitions derived from Markovian coalescents. Ann. Appl. Prob., 17 (2007), no. 4, 1172–1201.
  11. W. Feller. Fluctuation theory of recurrent events. Trans. Amer. Math. Soc. 67 (1949), 98–119. MR0032114
  12. W. Feller. An Introduction to Probability Theory and Its Applications. Vol. 2. Second edition, Wiley, New York (1971). MR0270403
  13. J. F. C. Kingman. The coalescent. Stochastic Process. Appl. 13 (1982), 235–248. MR0671034
  14. M. Möhle. On sampling distributions for coalescent processes with simultaneous multiple collisions, Bernoulli 12 (2006), 35–53. MR2202319
  15. M. Möhle. On the number of segregating sites for populations with large family sizes. Adv. Appl. Prob. 38 (2006), 750–767. MR2256876
  16. J. Pitman. Coalescents with multiple collisions. Ann. Probab. 27 (1999), 1870–1902. MR1742892
  17. S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36 (1999), 1116–1125. MR1742154
  18. G. Samorodnitsky, M. S. Taqqu. Stable non-Gaussian random processes. Stochastic models with infinite variance. Stochastic Modeling. Chapman & Hall, New York, 1994. MR1280932
  19. J. Schweinsberg. A necessary and sufficient condition for the Λ-coalescent to come down from infinity. Elec. Comm. Probab. 5 (2000), 1–11. MR1736720
  20. W. Whitt. Stochastic-process limits. An introduction to stochastic-process limits and their application to queues. Springer Series in Operations Research, Springer–Verlag, New York (2002).MR1876437
  21. V. M. Zolotarev. One-dimensional stable distributions. Providence, Rhode Island: American Mathematical Society, Providence, RI, 1986. MR0854867


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.