Convergence of Lattice Trees to Super-Brownian Motion above the Critical Dimension
Abstract
We use the lace expansion to prove asymptotic formulae for the Fourier transforms of the $r$-point functions for a spread-out model of critically weighted lattice trees on the $d$-dimensional integer lattice for $d > 8$. A lattice tree containing the origin defines a sequence of measures on the lattice, and the statistical mechanics literature gives rise to a natural probability measure on the collection of such lattice trees. Under this probability measure, our results, together with the appropriate limiting behaviour for the survival probability, imply convergence to super-Brownian excursion in the sense of finite-dimensional distributions.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 671-755
Publication Date: April 18, 2008
DOI: 10.1214/EJP.v13-499
References
- R. Adler. Superprocess local and intersection local times and their corresponding particle pictures. In Seminar on Stochastic Processes 1992. Birkhauser, Boston, 1993. MR1278075
- D. Aldous. Tree-based models for random distribution of mass. J. Stat. Phys., 73:625--641, 1993. MR1251658
- D. Brydges and J. Imbrie. Dimensional reduction formulas for branched polymer correlation functions. J. Stat. Phys., 110:503--518, 2003. MR1964682
- D. Brydges and T. Spencer. Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys., 97:125--148, 1985. MR0782962
- D. Dawson, I. Iscoe, and E. Perkins. Super-Brownian motion: path properties and hitting probabilities. Probab. Theory Relat. Fields., 83:135--205, 1989. MR1012498
- E. Derbez and G. Slade. The scaling limit of lattice trees in high dimensions. Commun. Math. Phys., 193:69--104, 1998. MR1620301
- J. Frohlich. Mathematical aspects of the physics of disordered systems. In Phenomenes critiques, systemes aleatoires, theories de jauge, Part II. North-Holland, Amsterdam, 1986. MR0880538
- T. Hara, R. van der Hofstad, and G. Slade. Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab., 31:349--408, 2003. MR1959796
- T. Hara and G. Slade. On the upper critical dimension of lattice trees and lattice animals. J. Stat. Phys., 59:1469--1510, 1990. MR1063208
- T. Hara and G. Slade. The number and size of branched polymers in high dimensions. J. Stat. Phys., 67:1009--1038, 1992. MR1170084
- T. Hara and G. Slade. The scaling limit of the incipient infinite cluster in high-dimensional percolation. i. critical exponents. J. Stat. Phys., 99:1075--1168, 2000. MR1773141
- T. Hara and G. Slade. The scaling limit of the incipient infinite cluster in high-dimensional percolation. ii. integrated super-Brownian excursion. J. Math. Phys., 41:1244--1293, 2000. MR1757958
- R. van der Hofstad, F. den Hollander, and G. Slade. The survival probability for critical spread-out oriented percolation above 4+1 dimensions. I. Induction. Probab. Theory Relat. Fields., 138:363--389, 2007. MR2299712
- R. van der Hofstad, F. den Hollander, and G. Slade. The survival probability for critical spread-out oriented percolation above 4+1 dimensions. II. Expansion. Ann. Inst. H. Poincare Probab. Statist., 43:509--570, 2007. MR2347096
- R. van der Hofstad, M. Holmes, and G. Slade. An extension of the generalised inductive approach to the lace expansion. Preprint, 2007.
- R. van der Hofstad and A. Sakai. Convergence of the critical finite-range contact process to super-Brownian motion above 4 spatial dimensions. In preparation, 2007.
- R. van der Hofstad and G. Slade. A generalised inductive approach to the lace expansion. Probab. Theory Relat. Fields., 122:389--430, 2002. MR1892852
- R. van der Hofstad and G. Slade. Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions. Ann. Inst. H. Poincar'e Probab. Statist., 39(3):413--485, 2003. MR1978987
- R. van der Hofstad and G. Slade. The lace expansion on a tree with application to networks of self-avoiding walks. Adv. Appl. Math., 30:471--528, 2003. MR1973954
- M. Holmes, A. Jarai, A. Sakai, and G. Slade. High-dimensional graphical networks of self-avoiding walks. Canadian Journal Math., 56:77--114, 2004. MR2031124
- M. Holmes and E. Perkins. Weak convergence of measure-valued processes and r-point functions. Ann. Probab., 35:1769--1782, 2007. MR2349574
- J. Klein. Rigorous results for branched polymer models with excluded volume. J. Chem. Phys., 75:5186--5189, 1981.
- T. Lubensky and J. Isaacson. Statistics of lattice animals and dilute branched polymers. Phys. Rev., A20:2130--2146, 1979.
- N. Madras and G. Slade. The Self-Avoiding Walk. Birkhauser, Boston, 1993. MR1197356
- E. Perkins. Dawson-Watanabe superprocesses and measure-valued diffusions. In Lectures on Probability Theory and Statistics, no. 1781, Ecole d'Ete de Probabilites de Saint Flour 1999. Springer, Berlin, 2002. MR1915445
- G. Slade. The lace expansion and its applications, volume 1879 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2006. MR2239599
- W. Werner. Random planar curves and Schramm-Loewner evolutions. In Lectures on Probability Theory and Statistics, no. 1840, Ecole d'Ete de Probabilites de Saint Flour 2002. Springer, Berlin, 2004. MR2079672

This work is licensed under a Creative Commons Attribution 3.0 License.