On Semi-Martingale Characterizations of Functionals of Symmetric Markov Processes
Abstract
For a quasi-regular (symmetric) Dirichlet space $( {\cal E}, {\cal F})$ and an associated symmetric standard process $(X_t, P_x)$, we show that, for $u in {\cal F}$, the additive functional $u^*(X_t) - u^*(X_0)$ is a semimartingale if and only if there exists an ${\cal E}$-nest $\{F_n\}$ and positive constants $C_n$ such that $ \vert {\cal E}(u,v)\vert \leq C_n \Vert v\Vert_\infty, v \in {\cal F}_{F_n,b}.$ In particular, a signed measure resulting from the inequality will be automatically smooth. One of the variants of this assertion is applied to the distorted Brownian motion on a closed subset of $R^d$, giving stochastic characterizations of BV functions and Caccioppoli sets.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-32
Publication Date: October 6, 1999
DOI: 10.1214/EJP.v4-55
References
- Albeverio, S. and Ma, Z.M., A general correspondence between Dirichlet forms and right processes. Bull. Amer. Math. Soc. 26 (1992) 245-252 Math. Review 92h:31010
- Blumenthal, R.M. and Getoor,R.K., Markov processes and potential theory. Academic Press, New York and London 1968 Math. Review 41:9348
- Chen, Z. Q., Fitzsimmons P. J. and Williams, R. J., Reflecting Brownian motions: quasimartingales and strong Caccioppoli sets. Potential Analysis 2 (1993) 219-243 Math. Review 95d:60134
- Chen, Z. Q., Ma, Z.-M. and Röckner, M., Quasi-homeomorphisms of Dirichlet forms. Nagoya Math. J. 136 (1994) 1-15 Math. Review 95m:31020
- Çinlar, E., Jacod,. J., Protter, Ph. and Sharpe, M. J., Semimartingale and Markov processes. Z. Wahrscheinlichkietstheorie verw. Gebiete 54 (1980) 161-219 Math. Review 82h:60084
- Evans, L. C. and Gariepy, R. F., Measure theory and fine properties of functions. CRC Press, Boca Raton, New York, Tokyo 1992 Math. Review 93f:28001
- Fitzsimmons, P. J., On the quasi-regularity of semi-Dirichlet forms. Potential Analysis, to appear Math. Review number not available.
- Fitzsimmons, P. J. and Getoor, R. K., Smooth measures and continuous additive functionals of right Markov processes. Itô's Stochastic Calculus and Probability Theory, N. Ikeda, S. Wantanabe, M. Fukushima, H. Kunita, eds., Springer 1996 31-50 Math. Review 98g:60137
- Fukushima,M., A construction of reflecting barrier Brownian motions for bounded domains. Osaka J. Math. 4 (1967) 183-215 Math. Review 38:5291
- Fukushima, M., Regular representations of Dirichlet spaces. Trans. Amer. Math. Soc. 155 (1971) 455-473 Math. Review 43:6975
- Fukushima, M., Dirichlet spaces and strong Markov processes. Trans. Amer. Math. Soc. 162 (1971) 185-224 Math. Review 45:4501
- Fukushima, M., Dirichlet forms and Markov processes. Kodansha and North Holland 1980 Math. Review 81f:60105
- Fukushima, M., Dirichlet forms, Caccioppoli sets and the Skorohod equations. Stochastic Differential and Difference Equations, Csiszar, Michaletzky, eds., Birkhäuser 1997 59-66 Math. Review number not available.
- Fukushima, M., Distorted Brownian motions and BV functions. Trends in Probability and Analysis N. Kôno, N-R. Shieh, eds., World Scientific 1997 143-150 Math. Review number not available
- Fukushima, M., On decomposition of symmetric diffusion processes and related topics in analysis. Sugaku 50 (1998) 56-67 (in Japanese) English translation to appear from AMS Math. Review number not available
- Fukushima,M., Oshima, Y. and Takeda, M., Dirichlet forms and symmetric Markov processes. Walter de Gruyter 1994 Math. Review 96f:60126
- Kunita, H. and Watanabe, T., Some theorems concerning resolvents over locally compact spaces. Proc. Fifth Berkely Sympos. Math. Statist. and Probability, vol. II, part 2, Univ. of Calfornia Press, Berkeley, Calif. 1967, 131-164 Math. Review 35:4999
- Ma, Z.-M., Overbeck, L. and Röckner, M., Markov processes asscoiated with semi-Dirichlet forms. Osaka J. Math. 47 (1995) 97-119 Math. Review 96k:31016
- Ma, Z.M. and Röckner, M., Introduction to the theory of (non-symmetric) Dirichlet forms. Springer-Verlag 1992 Math. Review 94d:60119
- Maz'ja, V.G., Sobolev spaces. Springer-Verlag 1985 Math. Review 87g:46056
- Ray, D., Resolvents, transition functions, and strongly Markovian processes. Ann. of Math. 70 (1959) 43-72 Math. Review 21:6027
- Röckner, M. and Wielens, N., Dirichlet forms-closability and change of speed measure. Infinite dimensional analysis and stochastic processes, Research Notes in Math. S. Albeverio, ed., Pitman 124 (1985) 119-144 Math. Review 88a:31016

This work is licensed under a Creative Commons Attribution 3.0 License.