Coarse graining, fractional moments and the critical slope of random copolymers
Abstract
For a much-studied model of random copolymer at a selective interface we prove that the slope of the critical curve in the weak-disorder limit is strictly smaller than 1, which is the value given by the annealed inequality. The proof is based on a coarse-graining procedure, combined with upper bounds on the fractional moments of the partition function.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 531-547
Publication Date: February 23, 2009
DOI: 10.1214/EJP.v14-612
References
- K. S. Alexander and N. Zygouras. Quenched and annealed critical points in polymer pinning models. arXiv:0805.1708. Math. Review number not available.
- T. Bodineau and G. Giacomin. On the localization transition of random copolymers near selective interfaces J. Statist. Phys. 117 (2004), 801--818. MR2107896 (2005g:82057)
- T. Bodineau, G. Giacomin, H. Lacoin and F. L. Toninelli. Copolymers at selective interfaces: new bounds on the phase diagram. J. Statist. Phys. 132 (2008), 603-626. MR2429695
- E. Bolthausen, F. Caravenna and B. de Tilière. The quenched critical point of a diluted disordered polymer model. Stochastic Process. Appl., to appear. arXiv:0711.0141v1 [math.PR]. Math. Review number not available.
- E. Bolthausen and F. den Hollander. Localization transition for a polymer near an interface. Ann. Probab. 25 (1997), 1334--1366. MR1457622 (98h:60149)
- F. Caravenna, G. Giacomin and M. Gubinelli. A Numerical Approach to Copolymers at Selective Interfaces. J. Statist. Phys. 122 (2006), 799--832. MR2213950 (2006k:82049)
- B. Derrida, G. Giacomin, H. Lacoin and F. L. Toninelli. Fractional moment bounds and disorder relevance for pinning models. Commun. Math. Phys., to appear. arXiv:0712.2515 [math.PR]. Math. Review number not available.
- R. A. Doney. One-sided local large deviations and renewal theorems in the case of infinite mean. Probab. Theory Rel. Fields 107 (1997), 451--465. MR1440141 (98e:60040)
- W. Feller. An introduction to probability theory and its applications, Vol. I, Second Edition, John Wiley & Sons, 1966. MR0228020 (37 #3604)
- T. Garel, D. A. Huse, S. Leibler and H. Orland. Localization transition of random chains at interfaces. Europhys. Lett. 8 (1989), 9--13. Math. Review number not available.
- G. Giacomin. Random Polymer Models. Imperial College Press, London (2007). MR2380992
- G. Giacomin, H. Lacoin and F. L. Toninelli. Hierarchical pinning models, quadratic maps and quenched disorder. Probab. Theory Rel. Fields, to appear. arXiv:0711.4649 [math.PR]. Math. Review number not available.
- G. Giacomin and F. L. Toninelli. Estimates on path delocalization for copolymers at selective interfaces. Probab.Theory Rel. Fields 133 (2005), 464--482. MR2197110 (2006m:60137)
- C. Monthus. On the localization of random heteropolymers at the interface between two selective solvents. Eur. Phys. Journal B 13 (2000), 111--130. Math. Review number not available.
- F. L. Toninelli. Disordered pinning models and copolymers: beyond annealed bounds. Ann. Appl. Probab. 18 (2008), 1569-1587. MR2434181

This work is licensed under a Creative Commons Attribution 3.0 License.