Representation of continuous linear forms on the set of ladlag processes and the hedging of American claims under proportional costs
Bruno Bouchard (Université Paris Dauphine, Ceremade)
Abstract
We discuss a d-dimensional version (for làdlàg optional processes) of a duality result by Meyer (1976) between {bounded} càdlàg adapted processes and random measures. We show that it allows to establish, in a very natural way, a dual representation for the set of initial endowments which allow to super-hedge a given American claim in a continuous time model with proportional transaction costs. It generalizes a previous result of Bouchard and Temam (2005) who considered a discrete time setting. It also completes the very recent work of Denis, De Vallière and Kabanov (2008) who studied càdlàg American claims and used a completely different approach.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 612-632
Publication Date: February 27, 2009
DOI: 10.1214/EJP.v14-625
References
- Bismut J.-M. (1979). Temps d'arrÃt optimal, quasi-temps d'arrÃt et retournement du temps. Ann. Probab. 7, 933-964. Math. Review number not available.
- Bouchard B. and H. Pham (2004). Wealth-Path Dependent Utility Maximization in Incomplete Markets. Finance and Stochastics, 8 (4), 579-603. Math. Review 2212119
- Bouchard B. and E. Temam (2005). On the Hedging of American Options in Discrete Time Markets with Proportional Transaction Costs. Electronic Journal of Probability, 10, 746-760. Math. Review 2164029
- Bouchard B., N. Touzi and A. Zeghal (2004). Dual Formulation of the Utility Maximization Problem : the case of Nonsmooth Utility. The Annals of Applied Probability, 14 (2), 678-717. Math. Review 2052898
- Campi L. and W. Schachermayer (2006). A super-replication theorem in Kabanov's model of transaction costs. Finance and Stochastics, 10(4), 579-596. Math. Review number not available.
- Chalasani P. and S. Jha (2001). Randomized stopping times and American option pricing with transaction costs. Mathematical Finance, 11(1), 33-77. Math. Review 1807848
- Delbaen F. and W. Shachermayer (1998). The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Annalen , 312, 215-250. Math. Review number not available.
- Dellacherie C. (1972). CapacitÃs et processus stochastiques. Springer-Verlag. Math. Review number not available.
- Denis E. , D. De ValliÃre and Y. Kabanov (2008). Hedging of american options under transaction costs. preprint. Math. Review number not available.
- El Karoui N. (1979). Les aspects probabilistes du contrÃle stochastique. Ecole d'Età de ProbabilitÃs de Saint Flour IX, Lecture Notes in Mathematics 876, Springer Verlag. Math. Review number not available.
- El Karoui N. (1982). Une propriÃtà de domination de l'enveloppe de Snell des semimartingales fortes. SÃm. prob. Strasbourg, 16, 400-408. Math. Review number not available.
- Kabanov Y. and G. Last (2002). Hedging under transaction costs in currency markets: a continuous time model. Mathematical Finance, 12, 63-70. Math. Review 1883786
- Kabanov Y. and C. Stricker (2002). Hedging of contingent claims under transaction costs. Advances in Finance and Stochastics. Eds. K. Sandmann and Ph. SchËnbucher, Springer, 125-136. Math. Review 1929375
- Karatzas I. and S. G. Kou (1998). Hedging American contingent claims with constrained portfolios. Finance and Stochastics, 2, 215-258. Math. Review 1809521
- Karatzas I. and S. E. Shreve (1991). Brownian motion and stochastic calculus. Springer Verlag, Berlin. Math. Review 1121940
- Karatzas I. et S.E. Shreve (1998), Methods of Mathematical Finance, Springer Verlag. Math. Review 1640352
- Kindler J. (1983). A simple proof of the Daniell-Stone representation theorem. Amer. Math. Monthly, 90 (3), 396-397.Math. Review 0707155
- Kramkov D. (1996). Optional decomposition of supermartingales and hedging in incomplete security markets. Probability Theory and Related Fields, 105 (4), 459-479. Math. Review number not available.
- Kramkov D. and W. Schachermayer (1999). The Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Markets. Annals of Applied Probability, {bf 9} 3, 904 - 950. Math. Review 1722287
- Meyer P.A. (1966). ProbabilitÃs et potentiel. Hermann, Paris. Math. Review 0205287
- Meyer P.A. (1976). Un cours sur les intÃgrales stochastiques. SÃm. prob. Strasbourg, 10, 245-400. Math. Review 0501332
- Rasonyi M. (2003). A remark on the superhedging theorem under transaction costs. SÃminaire de ProbabilitÃs XXXVII, Lecture Notes in Math., 1832, Springer, Berlin-Heidelberg-New York, 394-398. Math. Review 2053056
- Schachermayer W. (2004). The Fundamental Theorem of Asset Pricing under Proportional Transaction Costs in Finite Discrete Time. Mathematical Finance, 14 (1), 19-48. Math. Review 2030834

This work is licensed under a Creative Commons Attribution 3.0 License.