Two Coalescents Derived from the Ranges of Stable Subordinators
Jim Pitman (University of California, Berkeley)
Abstract
Let $M_\alpha$ be the closure of the range of a stable subordinator of index $\alpha\in ]0,1[$. There are two natural constructions of the $M_{\alpha}$'s simultaneously for all $\alpha\in ]0,1[$, so that $M_{\alpha}\subseteq M_{\beta}$ for $0< \alpha < \beta < 1$: one based on the intersection of independent regenerative sets and one based on Bochner's subordination. We compare the corresponding two coalescent processes defined by the lengths of complementary intervals of $[0,1]\backslash M_{1-\rho}$ for $0 < \rho < 1$. In particular, we identify the coalescent based on the subordination scheme with the coalescent recently introduced by Bolthausen and Sznitman.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-17
Publication Date: November 10, 1999
DOI: 10.1214/EJP.v5-63
References
- D. J. Aldous and J. Pitman. The standard additive coalescent. Ann. Probab., 26:1703-1726, 1998. Math. Review number not available.
- J. Bertoin. Renewal theory for embedded regenerative sets. Ann. Probab. , 27:1523--1535, 1999. Math. Review number not available.
- J. Bertoin. A fragmentation process related to Brownian motion. To appear in Probab. Theory Relat. Fields 1999. Math. Review number not available.
- J. Bertoin and J. F. Le Gall. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. To appear in Probab. Theory Relat. Fields 1999. Math. Review number not available.
- S. Bochner. Harmonic analysis and the theory of probability. University of California Press, Berkeley and Los Angeles, 1955. Math. Review 17,273d .
- E. Bolthausen and A.-S. Sznitman. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys., 197(2):247-276, 1998. Math. Review 99k:60244.
- E. B. Dynkin. Some limit theorems for sums of independent random variables with infinite mathematical expectations. IMS-AMS Selected Translations in Math. Stat. and Prob., 1:171-189, 1961. Math. Review 17,865b.
- S. N. Evans and J. Pitman. Construction of Markovian coalescents. Ann. Inst. Henri Poincaré , 34:339-383, 1998. Math. Review 99k:60184 .
- P. J. Fitzsimmons, B. Fristedt, and L. A. Shepp. The set of real numbers left uncovered by random covering intervals. Z. Wahrscheinlichkeitstheorie verw. Gebiete 70:175 - 189, 1985. Math. Review 86k:60017.
- K. Itô. Poisson point processes attached to Markov processes. In Proc. 6th Berk. Symp. Math. Stat. Prob., volume 3, pages 225-240, 1971. Math. Review 53 #6763.
- J. F. C. Kingman. The coalescent. Stochastic Process. Appl. , 13:235-248, 1982. Math. Review 84a:60079.
- J. F. C. Kingman. On the genealogy of large populations. In J. Gani and E. J. Hannan, editors, Essays in Statistical Science , volume 19A of J. Appl. Probab. Special vol. 1, pages 27-43, 1982. Math. Review 83d:92043.
- G. Matheron. Random Sets and Integral Geometry. John Wiley and Sons, New York-London-Sydney, 1975. Math. Review 52 #6828.
- S. A. Molchanov and E. Ostrovskii. Symmetric stable processes as traces of degenerate diffusion processes. Theor. Prob. Appl. , 14, No. 1:128-131, 1969. Math. Review 40 #931.
- J. Pitman. Cyclically stationary Brownian local time processes. Probab. Th. Rel. Fields, 106:299-329, 1996. Math. Review 98d:60152.
- J. Pitman. Coalescents with multiple collisions. To appear in Ann. Probab. Math. Review number not available.
- J. Pitman. Partition structures derived from Brownian motion and stable subordinators. Bernoulli , 3:79-96, 1997. Math. Review 99c:60078.
- J. Pitman and M. Yor. A decomposition of Bessel bridges. Z. Wahrscheinlichkeitstheorie verw. Gebiete , 59:425-457, 1982. Math. Review 84a:60091.
- J. Pitman and M. Yor. Arcsine laws and interval partitions derived from a stable subordinator. Proc. London Math. Soc. , 65:326-356, 1992. Math. Review 93e:60152.
- J. Pitman and M. Yor. Random discrete distributions derived from self-similar random sets. Electronic J. Probability , 1:Paper 4, 1-28, 1996. Math. Review 98i:60010.
- J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. , 25:855-900, 1997. Math. Review 98f:60147.
- L. C. G. Rogers and J. Pitman. Markov functions. Ann. Probab , 9:573-582, 1981. Math. Review 82j:60133 .
- T. Shiga and S. Watanabe. Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete , 27:37-46, 1973. Math. Review 51 #4433 .

This work is licensed under a Creative Commons Attribution 3.0 License.