Recurrence and Transience for Long-Range Reversible Random Walks on a Random Point Process
Alessandra Faggionato (University La Sapienza Rome)
Alexandre Gaudilliere (University of Roma Tre)
Abstract
We consider reversible random walks in random environment obtained from symmetric long-range jump rates on a random point process. We prove almost sure transience and recurrence results under suitable assumptions on the point process and the jump rate function. For recurrent models we obtain almost sure estimates on effective resistances in finite boxes. For transient models we construct explicit fluxes with finite energy on the associated electrical network.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 2580-2616
Publication Date: November 3, 2009
DOI: 10.1214/EJP.v14-721
References
- L. Addario-Berry, A. Sarkar. The simple random walk on a random Voronoi tiling. Preprint.
- M.T. Barlow, R.F. Bass, T. Kumagai. Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps. Math. Z. 261 (2009), 297-320. Math. Review 2009m:60111
- N. Berger. Transience, recurrence and critical behavior for long-range percolation. Commun. Math. Phys. 226 (2002), 531-558. Math. Review 2003a:82034
- J. Ben Hough, M. Krishnapur, Y. Peres, B.Virág. Determinantal processes and independence. Probability Surveys. 3 (2006), 206-229. Math. Review 2006m:60068
- I. Benjamini, R. Pemantle, Y. Peres. Unpredictable paths and percolation. Ann. Probab. 26 (1998), 1198-1211. Math. Review 99g:60183
- P. Caputo, A. Faggionato. Isoperimetric inequalities and mixing time for a random walk on a random point process. Ann. Appl. Probab. 17 (2007), 1707-1744. Math. Review 2008m:60204
- P. Caputo, A. Faggionato. Diffusivity in one-dimensional generalized Mott variable-range hopping models. Ann. Appl. Probab. 19 (2009), 1459-1494. Math. Review number not available.
- D.J. Delay, D. Vere-Jones. An introduction to the theory of point processes. Vol. I, Second edition. Springer-Verlag, 2003.
- P.G. Doyle, J.L. Snell. Random walks and electric networks. The Carus mathematical monographs 22, Mathematical Association of America, Washington, 1984. Math. Review 89a:94023
- R.A. Doney. One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Rel. Fields 107 (1997), 451-465. Math. Review 98e:60040
- A. Faggionato, P. Mathieu. Mott law as upper bound for a random walk in a random environment. Comm. Math. Phys. 281 (2008), 263-286. Math. Review 2009b:60309
- A. Faggionato, H. Schulz--Baldes, D. Spehner. Mott law as lower bound for a random walk in a random environment. Comm. Math. Phys. 263 (2006), 21-64. Math. Review 2007c:82034
- A. Gaudillière. Condenser physics applied to Markov chains - A brief introduction to potential theory. Lecture notes.
- H.-O. Georgii, T. Küneth. Stochastic comparison of point random fields. J. Appl. Probab. 34 (1997), 868-881. Math. Review 99c:60101
- G. Grimmett. Percolation. Second edition. Springer, Grundlehren 321, Berlin, 1999. Math. Review 2001a:60114
- G. Grimmett, H. Kesten, Y. Zhang. Random walk on the infinite cluster of the percolation model. Probab. Theory Rel. Fields 96, no. 1 (1993), 33-44. Math. Review 94i:60078
- T. Kumagai, J. Misumi. Heat kernel estimates for strongly recurrent random walk on random media. J. Theoret. Probab. 21 (2008), 910-935. Math. Review 2009g:35101
- J. Kurkijärvi. Hopping conductivity in one dimension. Phys. Rev. B, 8, no. 2 (1973), 922--924.
- T. Lyons. A simple criterion for transience of a reversible Markov chain. Ann. Probab. 11, no. 2 (1983), 393-402. Math. Review 84e:60102
- R. Lyons, Y. Peres. Probability on Trees and Networks. Book in progress.
- R. Lyons, J. Steif. Stationary determinantal processes: Phase multiplicity, Bernoullicity, Entropy, and Domination. Duke Math. Journal 120 (2003), 515-575. Math. Review 2004k:60100
- J. Misumi. Estimates on the effective resistance in a long-range percolation on Z^d. Kyoto U. Math. Journal 48, no.2 (2008), 389-400. Math. Review 2009d:60332
- A. Pisztora. Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Rel. Fields 104 (1996), 427-466. Math. Review 97d:82016
- A. Soshnikov. Determinantal random point fields. Russian Mathematical Surveys 55 (2000), 923-975. Math. Review 2002f:60097
- F. Spitzer. Principles of random walk . Second edition, Graduate Texts in Mathematics, Vol. 34. Springer-Verlag, 1976. Math. Review 52#9383

This work is licensed under a Creative Commons Attribution 3.0 License.