Permutation Matrices and the Moments of their Characteristics Polynomials

Dirk Zeindler (University Zürich)

Abstract


In this paper, we are interested in the moments of the characteristic polynomial $Z_n(x)$ of the $n\times n$ permutation matrices with respect to the uniform measure. We use a combinatorial argument to write down the generating function of $E[\prod_{k=1}^pZ_n^{s_k}(x_k)]$ for $s_k\in\mathbb{N}$. We show with this generating function that $\lim_{n\to\infty}E[\prod_{k=1}^pZ_n^{s_k}(x_k)]$ exists exists for $\max_k|x_k|<1$ and calculate the growth rate for $p=2$, $|x_1|=|x_2|=1$, $x_1=x_2$ and $n\to\infty$. We also look at the case $s_k\in\mathbb{C}$. We use the Feller coupling to show that for each $|x|<1$ and $s\in\mathbb{C}$ there exists a random variable $Z_\infty^s(x)$ such that $Z_n^s(x)\overset{d}{\to}Z_\infty^s(x)$ and $E[\prod_{k=1}^pZ_n^{s_k}(x_k)]\to E[\prod_{k=1}^pZ_\infty^{s_k}(x_k)]$ for $\max_k|x_k|<1$ and $n\to\infty$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1092-1118

Publication Date: July 7, 2010

DOI: 10.1214/EJP.v15-781

References

  1. Arratia, Richard; Barbour, A. D.; TavarÈ, Simon. Logarithmic combinatorial structures: a probabilistic approach. EMS Monographs in Mathematics. European Mathematical Society (EMS), Z¸rich, 2003. xii+363 pp. ISBN: 3-03719-000-0 MR2032426 (2004m:60004)
  2. Bourgade, P.; Hughes, C. P.; Nikeghbali, A.; Yor, M. The characteristic polynomial of a random unitary matrix: a probabilistic approach. Duke Math. J. 145 (2008), no. 1, 45--69. MR2451289 (2009j:60011)
  3. Bump, Daniel. Lie groups. Graduate Texts in Mathematics, 225. Springer-Verlag, New York, 2004. xii+451 pp. ISBN: 0-387-21154-3 MR2062813 (2005f:22001)
  4. Bump, Daniel; Gamburd, Alex. On the averages of characteristic polynomials from classical groups. Comm. Math. Phys. 265 (2006), no. 1, 227--274. MR2217304 (2008f:60009)
  5. Flajolet, Philippe; Sedgewick, Robert. Analytic combinatorics. Cambridge University Press, Cambridge, 2009. xiv+810 pp. ISBN: 978-0-521-89806-5 MR2483235 (Review)
  6. Freitag, Eberhard; Busam, Rolf. Complex analysis. Translated from the 2005 German edition by Dan Fulea. Universitext. Springer-Verlag, Berlin, 2005. x+547 pp. ISBN: 978-3-540-25724-0; 3-540-25724-1 MR2172762 (2006g:30002)
  7. Fritzsche, Klaus; Grauert, Hans. From holomorphic functions to complex manifolds. Graduate Texts in Mathematics, 213. Springer-Verlag, New York, 2002. xvi+392 pp. ISBN: 0-387-95395-7 MR1893803 (2003g:32001)
  8. Gut, Allan. Probability: a graduate course. Springer Texts in Statistics. Springer, New York, 2005. xxiv+603 pp. ISBN: 0-387-22833-0 MR2125120 (2006a:60001)
  9. Hambly, B. M.; Keevash, P.; O'Connell, N.; Stark, D. The characteristic polynomial of a random permutation matrix. Stochastic Process. Appl. 90 (2000), no. 2, 335--346. MR1794543 (2002c:15041)
  10. Harro Heuser. Lehrbuch der Analysis Teil 1. B. G. Teubner, 10 edition, 1993. Math. Review number not available.
  11. Keating, J. P.; Snaith, N. C. Random matrix theory and $zeta(1/2+it)$. Comm. Math. Phys. 214 (2000), no. 1, 57--89. MR1794265 (2002c:11107)
  12. Macdonald, I. G. Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. ISBN: 0-19-853489-2 MR1354144 (96h:05207)


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.