Multidimensional q-Normal and Related Distributions - Markov Case

Pawel Jerzy Szablowski (Warsaw University of Technology)

Abstract


We define and study distributions in $\mathbb{R}^d$ that we call $q$-Normal. For $q=1$ they are really multidimensional Normal, for $q$ in $(-1,1)$ they have densities, compact support and many properties that resemble properties of ordinary multidimensional Normal distribution. We also consider some generalizations of these distributions and indicate close relationship of these distributions to Askey-Wilson weight function i.e. weight with respect to which Askey-Wilson polynomials are orthogonal and prove some properties of this weight function. In particular we prove a generalization of Poisson-Mehler expansion formula

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1296-1318

Publication Date: August 14, 2010

DOI: 10.1214/EJP.v15-796

References

  1. Bryc, Wƚodzimierz. Stationary random fields with linear regressions. Ann. Probab. 29 (2001), no. 1, 504--519. MR1825162 (2002d:60014)
  2. Bryc, Wlodzimierz. Stationary Markov chains with linear regressions. Stochastic Process. Appl. 93 (2001), no. 2, 339--348. MR1828779 (2002d:60058)
  3. Bryc, Wƚodzimierz; Matysiak, Wojciech; Szabƚowski, Paweƚ J. Probabilistic aspects of Al-Salam-Chihara polynomials. Proc. Amer. Math. Soc. 133 (2005), no. 4, 1127--1134 (electronic). MR2117214 (2005m:33033)
  4. Bożejko, Marek; Kümmerer, Burkhard; Speicher, Roland. $q$-Gaussian processes: non-commutative and classical aspects. Comm. Math. Phys. 185 (1997), no. 1, 129--154. MR1463036 (98h:81053)
  5. Askey, Richard; Wilson, James. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (1985), no. 319, iv+55 pp. MR0783216 (87a:05023)
  6. Carlitz, L. Generating functions for certain $Q$-orthogonal polynomials. Collect. Math. 23 (1972), 91--104. MR0316773 (47 #5321)
  7. Ismail, Mourad E. H. Classical and quantum orthogonal polynomials in one variable.With two chapters by Walter Van Assche.With a foreword by Richard A. Askey.Encyclopedia of Mathematics and its Applications, 98. Cambridge University Press, Cambridge, 2005. xviii+706 pp. ISBN: 978-0-521-78201-2; 0-521-78201-5 MR2191786 (2007f:33001)
  8. Ismail, Mourad E. H.; Stanton, Dennis. On the Askey-Wilson and Rogers polynomials. Canad. J. Math. 40 (1988), no. 5, 1025--1045. MR0973507 (89m:33003)
  9. Ismail, Mourad E. H.; Stanton, Dennis; Viennot, Gérard. The combinatorics of $q$-Hermite polynomials and the Askey-Wilson integral. European J. Combin. 8 (1987), no. 4, 379--392. MR0930175 (89h:33015)
  10. Askey, Richard; Ismail, Mourad. Recurrence relations, continued fractions, and orthogonal polynomials. Mem. Amer. Math. Soc. 49 (1984), no. 300, iv+108 pp. MR0743545 (85g:33008)
  11. Matysiak, Wojciech; Szabƚowski, Paweƚ J. A few remarks on Bryc's paper on random fields with linear regressions. Ann. Probab. 30 (2002), no. 3, 1486--1491. MR1920274 (2003e:60111)
  12. Matysiak, Wojciech; Szablowski, Pawel J. (2005), Bryc's Random Fields: The Existence and Distributions Analysis, ArXiv:math.PR/math/0507296
  13. Bryc, Wƚodzimierz; Wesoƚowski, Jacek. Conditional moments of $q$-Meixner processes. Probab. Theory Related Fields 131 (2005), no. 3, 415--441. MR2123251 (2005k:60233)
  14. Bryc, Wƚodzimierz; Wesoƚowski, Jacek. Bi-Poisson process. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10 (2007), no. 2, 277--291. MR2337523 (2008d:60097)
  15. Bożejko, Marek; Bryc, Wƚodzimierz. On a class of free Lévy laws related to a regression problem. J. Funct. Anal. 236 (2006), no. 1, 59--77. MR2227129 (2007a:46071)
  16. Bryc, Wƚodzimierz; Matysiak, Wojciech; Wesoƚowski, Jacek. The bi-Poisson process: a quadratic harness. Ann. Probab. 36 (2008), no. 2, 623--646. MR2393992 (2009d:60103)
  17. Szabƚowski, Paweƚ J. Probabilistic implications of symmetries of $q$-Hermite and Al-Salam--Chihara polynomials. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008), no. 4, 513--522. MR2483794 (2010g:60125)
  18. Szablowski, Pawel J. (2009) $q-$Gaussian Distributions: Simplifications and Simulations, Journal of Probability and Statistics, 2009 (article ID 752430)
  19. Szablowski, Pawel J. (2009) $q-$Wiener, $(alpha ,q)-$Ornstein-Uhlenbeck processes. A generalization of known processes arXiv:math/0507303, submitted


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.